Study of CYP3A5 genetic polymorphism in Vietnamese Kinh ethnic group

Vu Phuong Nhung, Nguyen Dang Ton, Nguyen Hai Ha

Abstract


Cytochrome P450 3A5 (CYP) belongs to the CYP3A cluster, which encode for several enzymes involved in metabolism of various drugs, endogenous substrates as well as exogenous compounds. Among the four genes of CY3A cluster, CYP3A5 plays an important role in pharmacogenetics since this enzyme metabolizes over 30% of the clinically prescribed drugs. The inter-individual variability in clearance of CYP3A substrates mainly depends on the genetic factors. In the present study, after collecting peripheral bloods samples from 100 unrelated healthy Kinh ethnic group in Vietnam, Sanger sequencing was used in order to determine the CYP3A5 variants responsible for enzyme activity alteration (*3, *6, *8 and *9). It was shown that CYP3A5*3 is the most prevalent variant with 67.5%, in which a haft of individuals carrying *3 were homozygous for this allele. In contrast, the variants *6, *8 and *9 were not found the study subjects. The data observed in current study would support dosing of drugs that metabolized by CYP3A5 and thereby increase treatment outcome.

 

 


Keywords


CYP3A5, drug metabolism, genetic variant, Kinh ethnic group, pharmacogenetics, tacrolimus.

Full Text:

PDF

References


Adehin A., Bolaji O., Kennedy M., 2016. Polymorphisms in CYP2C8 and CYP3A5 genes in the Nigerian population. Drug Metabolism and Pharmacokinetics, 32(3): 189–191.

Ankathil R., Zian A. A., Nizam Z. M., Azlan H., Baba A. A., 2014. P0223 CYP3A4∗ 18 and CYP3A5∗ 3 gene polymorphisms and imatinib resistance in Malaysian patients with chronic myeloid leukaemia. European Journal of Cancer, 50: e71–e72.

Azarpira N., Namazi S., Khalili A., Tabesh M., 2010. The investigation of allele and genotype frequencies of CYP3A5 (1*/3*) and P2Y12 (T744C) in Iran. Molecular biology reports, 38(8): 4873–4877.

Bhatnagar V., Garcia P. E., O'Connor T. D., Brophy V., Alcaraz J., Richard E., Bakris G., Middleton P. J., Norris K., Wright J., Hiremath L., Contreras G., Appel J. L., Lipkowitz M., 2009. CYP3A4 and CYP3A5 Polymorphisms and Blood Pressure Response to Amlodipine among African-American Men and Women with Early Hypertensive Renal Disease. American journal of nephrology, 31(2): 95–103.

Birdwell K. A., Decker B., Barbarino J. M., Peterson J. F., Stein C. M., Sadee W., Wang D., Vinks A. A., He Y., Swen J. J., Leeder J. S., van Schaik R., Thummel K. E., Klein T. E., Caudle K. E., MacPhee I. A. M., 2015. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for CYP3A5 Genotype and Tacrolimus Dosing. Clinical pharmacology and therapeutics, 98(1): 19–24.

Burk O., Koch I., Raucy J., Hustert E., Eichelbaum M., Brockmöller J., Zanger U., Wojnowski L., 2004. The Induction of Cytochrome P450 3A5 (CYP3A5) in the Human Liver and Intestine Is Mediated by the Xenobiotic Sensors Pregnane X Receptor (PXR) and Constitutively Activated Receptor (CAR). Journal of Biological Chemistry 279(37): 38379–38385.

Dai D., Tang J., Rose R., Hodgson E., Bienstock R. J., Mohrenweiser H. W., Goldstein J. A., 2001. Identification of variants of CYP3A4 and characterization of their abilities to metabolize testosterone and chlorpyrifos. The Journal of Pharmacology and Experimetnal Therapeutics, 299(3): 825−831.

Dally H., Bartsch H., Jäger B., Edler L., Schmezer P., Spiegelhalder B., Dienemann H., Drings P., Kayser K., Schulz V., Risch A., 2004. Genotype relationships in the CYP3A locus in Caucasians. Cancer letters, 207(1): 95–99.

Dandara C., Ballo R., Parker M., 2005. CYP3A5 genotypes and risk of esophageal cancer in two South African populations. Cancer letters, 225(2): 275–282.

Danielson P., 2003. The Cytochrome P450 Superfamily: Biochemistry, Evolution and Drug Metabolism in Humans. Current Drug Metabolism, 3(6): 561–597.

Domanski T., Finta C., Halpert J., Zaphiropoulos G. P., 2001. cDNA cloning and initial characterization of CYP3A43, a novel human cytochrome P450. Molecular Pharmacology, 59(2): 386–392.

Hamzah I., Shafi F., Al-Huda N., A H Saeed A., 2018. Study the Association of CYP3A5 Polymorphism on the Risk of Breast Cancer in Some of the Iraqi Women. Journal of Global Pharma Technology, 10(8): 225–235.

Hassan R., Sadia Ameen S., Al Maruf A., Nandini A., Tabin H., Ahmed M., Islam M., Shahdaat Bin Sayeed M., Hasnat A., 2013. Genotype-phenotype variability in human CYP3A locus in Nepalese people residing in Bangladesh. International journal of clinical pharmacology and therapeutics, 51(3): 207–214.

Hiratsuka M., Takekuma Y., Endo N., Narahara K., Ismail Hamdy S., Kishikawa Y., Matsuura M., Agatsuma Y., Inoue T., Mizugaki M., 2002. Allele and genotype frequencies of CYP2B6 and CYP3A5 in the Japanese population. European journal of Clinical Pharmacology, 58(6): 417–421.

Hodel E. M. S., Csajka C., Ariey F., Guidi M., Kabanywanyi A. M., Duong S., Decosterd L. A., Olliaro P., Beck H.-P., Genton B., 2013. Effect of single nucleotide polymorphisms in cytochrome P450 isoenzyme and N-acetyltransferase 2 genes on the metabolism of artemisinin-based combination therapies in malaria patients from Cambodia and Tanzania. Antimicrobial agents and Chemotherapy, 57(2): 950–958.

Josephson F., Allqvist A., Janabi M., Sayi J., Aklillu E., Jande M., Mahindi M., Burhenne J., Bottiger Y., Gustafsson L. L., Haefeli W. E., Bertilsson L., 2007. CYP3A5 genotype has an impact on the metabolism of the HIV protease inhibitor saquinavir. Clinical Pharmacology & Therapeutics, 81(5): 708−712.

Kayilioğlu H., Kocak U., Kan D., F. Percin E., Sal E., Tekkeşin F., Isik M., Oner N., Belen B., Keskin E., Okur A., Albayrak M., Kaya Z., Pinarli F., Yenicesu I., Karadeniz C., Oguz A., Gursel T., 2017. Association of CYP3A5 Expression and Vincristine Neurotoxicity in Pediatric Malignancies in Turkish Population. Journal of Pediatric Hematology/Oncology, 39(6): 458–462.

Koch I., Weil R., Wolbold R., Brockmöller J., Hustert E., Burk O., Nuessler A., Neuhaus P., Eichelbaum M., Zanger U., 2002. Interindividual variability and tissue-specificity in the expression of cytochrome P450 3A mRNA. Drug Metabolism and Disposition 30(10): 1108–1114.

Krishnakumar D., Gurusamy U., Dhandapani K., Surendiran A., Baghel R., Kukreti R., Gangadhar R., Prayaga U., Manjunath S., Adithan C., 2012. Genetic polymorphisms of drug‐metabolizing phase I enzymes CYP2E1, CYP2A6 and CYP3A5 in South Indian population. Fundamental & Clinical Pharmacology, 26(2): 295–306.

Kuehl P., Zhang J., Lin Y., Lamba J., Assem M., Schuetz J., Watkins P. B., Daly A., Wrighton S. A., Hall S. D., Maurel P., Relling M., Brimer C., Yasuda K., Venkataramanan R., Strom S., Thummel K., Boguski M. S., Schuetz E., 2001. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet, 27(4): 383−791.

Lamba J., Hebert J. M., Schuetz E. G., Klein T. E., Altman R. B., 2012. PharmGKB summary: very important pharmacogene information for CYP3A5. Pharmacogenet Genomics, 22(7): 555−558.

Lamba J. K., Lin Y. S., Schuetz E. G., Thummel K. E., 2002. Genetic contribution to variable human CYP3A-mediated metabolism. Advanced Drug Delivery Reviews, 54(10): 256−269.

Langman L., van Gelder T., Schaik R., 2016. Pharmacogenomics Aspect of Immunosuppressant Therapy. Personalized Immunosuppression in Transplantation: 109−124.

Lee S. J., Usmani K., Chanas B., Ghanayem B., Xi T., Hodgson E., Mohrenweiser H., Goldstein J., 2003. Genetic findings and functional studies of human CYP3A5 single nucleotide polymorphisms in different ethnic groups. Pharmacogenetics and Genomics 13(8): 461–472.

Lewis F. V. D., 2004. 57 varieties: The human cytochromes P450. Pharmacogenomics 5(3): 305–318.

Lim Y. J., Cha E. Y., Jung H. E., Ghim J. L., Lee S. J., Kim E. Y., Shin J. G., 2014. Genetic polymorphisms of CYP2C9, CYP2C19, CYP2D6, CYP3A4, and CYP3A5 in Vietnamese-Koreans. Translational and Clinical Pharmacology 22(2): 70–77.

Liu C. H., Peck K., Huang J. D., Lin M. S., Wang C. H., Hsu W. P., Wang H. W., Lee H. L., Lai M. L., 2005. Screening CYP3A single nucleotide polymorphisms in a Han Chinese population with a genotyping chip. Pharmacogenomics 6(7): 731–747.

Lolodi O., Wang Y., Wright W., Chen T., 2017. Differential Regulation of CYP3A4 and CYP3A5 and its Implication in Drug Discovery. Current Drug Metabolism 18(12): 1095–1105.

Nebert W. D., Wikvall K., Miller L. W., 2013. Human cytochromes P450 in health and disease. Philosophical transactions of the Royal Society of London. Series B: Biological sciences, 368(1612): 20120431.

Ozdemir V., Kalow W., Tang B. K., Paterson A. D., Walker S. E., Endrenyi L., Kashuba A. D. M., 2000. Evaluation of the genetic component of variability in CYP3A4 activity: A repeated drug administration method. Pharmacogenetics and Genomics, 10(5): 373–388.

Plummer J. S., Conti V. D., Paris L. P., Curran A., Casey G., Witte S. J., 2003. CYP3A4 and CYP3A5 genotypes, haplotypes, and risk of prostate cancer. Cancer Epidemiology, Biomarkers and Prevention, 12(9): 928−932.

Rahmioglu N., Heaton J., Clement G., Gill R., Surdulescu G., Zlobecka K., Hodgkiss D., Ma Y., Hider R., Smith N., R Ahmadi K., 2011. Genetic epidemiology of induced CYP3A4 activity. Pharmacogenetics and Genomics 21: 642−651.

Rendic S., 2002. Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metabolism Reviews, 34(1-2): 83–448.

Sarasamma S., Gracious N., Nair S. S., Radhakrishnan R., 2016. Pharmacogenomics of CYP3A5 Polymorphism: Predicting Dose-adjusted Trough Levels of Tacrolimus in South Indian Renal Transplant Patients. Journal of Pharmacogenomics and Pharmacoproteomics, 7(3): 1–5.

Schuetz D. J., Kauma S., Guzelian P., 1993. Identification of the fetal liver cytochrome CYP3A7 in human endometrium and placenta. The Journal of Clinical Investigation, 92(2): 1018−1024.

Schuetz D. J., Beach L. D., Guzelian P., 1994. Selective expression of cytochrome P450 CYP3A mRNAs in embryonic and adult human liver. Pharmacogenetics and Genomics, 4(1): 11–20.

Tateishi T., Watanabe M., Moriya H., Yamaguchi S., Sato T., Kobayashi S., 1999. No ethnic difference between Caucasian and Japanese hepatic samples in the expression frequency of CYP3A5 and CYP3A7 proteins. Biochemical Pharmacology, 57(8): 935–939.

Veerakikosol K., Chariyavilaskul P., Townamchai N., Wittayalertpanya S., 2016. Association of CYP3A5 and POR polymorphisms with the maintenance tacrolimus dosage requirement in Thai recipients of kidney transplants. Asian Biomedicine, 10(5): 483–490.

Veiga M. I., Asimus S., Ferreira P. E., Martins J. P., Cavaco I., Ribeiro V., Hai T. N., Petzold M. G., Björkman A., Ashton M., Gil J. P., 2009. Pharmacogenomics of CYP2A6, CYP2B6, CYP2C19, CYP2D6, CYP3A4, CYP3A5 and MDR1 in Vietnam. European Journal of Clinical Pharmacology, 65(4): 355–363.

Werk A. N., Lefeldt S., Bruckmueller H., Hemmrich-Stanisak G., Franke A., Roos M., Kuchle C., Steubl D., Schmaderer C., Brasen J. H., Heemann U., Cascorbi I., Renders L., 2014. Identification and characterization of a defective CYP3A4 genotype in a kidney transplant patient with severely diminished tacrolimus clearance. Clinical Pharmacology & Therapeutics, 95(4): 416−422.

Westlind-Johnsson A., Malmebo S., Johansson A., Otter C., Andersson T. B., Johansson I., Edwards R. J., Boobis A. R., Ingelman-Sundberg M., 2003. Comparative analysis of CYP3A expression in human liver suggests only a minor role for CYP3A5 in drug metabolism. Drug Metabolism and Disposition 31(6): 755–761.

Wojnowski L., Turner P., Pedersen B., Hustert E., Brockmöller J., Mendy M., Whittle C. H., Kirk G., Wild P. C., 2004. Increased levels of aflatoxin-albumin adducts are associated with CYP3A5 polymorphisms in The Gambia, West Africa. Pharmacogenetics and Genomics 14(10): 691−700.

Xie H. G., Wood A., Kim B. R., Michael Stein C., Wilkinson R. G., 2004. Genetic variability in CYP3A5 and its possible consequences. Pharmacogenomics 5(3): 243–272.

Zanger U. M. ,Schwab M., 2013. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacology and Therapeutics 138(1): 103–141.

Zanger U. M., Turpeinen M., Klein K., Schwab M., 2008. Functional pharmacogenetics/genomics of human cytochromes P450 involved in drug biotransformation. Analytical and Bioanalytical Chemistry 392(6): 1093‒1108.




DOI: https://doi.org/10.15625/0866-7160/v42n1.13790 Display counter: Abstract : 82 views. PDF : 38 views.

 

          mitra usaha tani       budidayatani.com

Editorial Office:

1st Floor, A16 Building, 18B Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam

Tel: (+84) 24 3791 7101

Email: tapchisinhhoc@vjs.ac.vn