NGHIÊN CỨU ÂNH HƯƠNG CỦA HẠT NANO COBAN ĐẲNG ĐỘN LÈ VÀ HỘN HỘP LÊN SỰ THAY ĐỔI CÁC THÔNG SỐ QUANG HỢP VÀ HOẠT ĐỘ CỦA ENZYME CHỐNG OXY HÓA Ở CÂY DẤU TƯỜNG Glycine max Merr. (DT26)

Phan Hoàng Tuân, Lưu Thị Tâm, Hoàng Thị Lan Anh, Ngô Thị Hoàng Thu, Nguyễn Hoàng Châu, Đặng Điểm Hồng

1 Viên Công nghệ Sinh học, VAST
2 Viên Công nghệ Môi trường, VAST
3 Trường Đại học Khoa học, Đại học Thái Nguyên

TÓM TÁT: Đậu tương (Glycine max (L) Merr.) là một cây trồng quan trọng được trồng phổ biến trên thế giới như là nguồn thực phẩm của con người, động vật nuôi. Công nghệ nano là một trong các giải pháp tiềm năng trong nông nghiệp hiện đại nhằm tăng năng suất cây trồng. Trong nghiên cứu này, chúng tôi trình bày ảnh hưởng của hạt nano coban đẳng đố lên hoạt tính quang hợp và các enzyme chống oxy hóa của cây đậu tương DT26 ở các giai đoạn sinh trưởng khác nhau ở điều kiện pilot. Kết quả thu được cho thấy việc xử lý hạt nano có ở cả 2 dạng đã làm tăng quang hợp của cây đậu tương thông qua tăng hàm lượng chlorophyll a, tốc độ quang hợp thực và tỷ lệ Fv/Fm. Các giai trị này có xu hướng tăng dần và đạt giả trị cực đại tại giai đoạn là kết thúc 5, sau đó giảm dần ở giai đoạn bất đầu ra hoa. Xử lý hạt nano coban đố lên của Mỡ ở nồng độ 0,17 và 16,67 mg/kg hạt làm tăng hoạt độ của catalase, superoxide dismutase và peroxidase gấp 1,60; 2,11 và 1,85 so với giai trị tương ứng ở control đối chứng. Trong khi đó, ascorbate peroxidase lại tăng nhanh nhất (2,73 lần) tại lô xử lý hạt coban đố lên của Việt Nam ở nồng độ 0,17 mg/kg hạt. Điều này đã cho thấy hạt nano coban đã tạo ra các stress “oxy hóa” và giúp cho cây đậu tương kịch hoạt có thể tự bảo vệ của mình thông qua tăng hoạt độ của các enzyme nêu trên nhằm làm giảm hàm lượng H2O2 và O2− tích tụ trong tế bào lá.

Từ khóa: APX (ascorbate peroxidase), CAT (catalase), Chlorophyll a, Glycine max, hạt nano coban, SOD (superoxide dismutase), Tốc độ quang hợp thực.

MÔ ĐẦU

Trong nông nghiệp hiện đại, công nghệ nano được xem là một giải pháp quan trọng và hiệu quả quan trọng năng cảo năng suất và tính chống chịu của cây trồng với điều kiện môi trường bất lợi và giúp chống nồng nhiệt ghé phát triển bền vững. Các hạt nano kim loại được biết đến như một chất kích thích sinh trưởng thực vật và có khả năng kích hoạt các quá trình trao đổi chất trong cơ thể thực vật và động vật. Nhiều nhà khoa học đã nghiên cứu tác động sinh học của hạt nano cũng như những mặt cơ học và cơ hạt trên các loại thực vật khác nhau trong đó có cây đậu tương. Thông thường các nghiên cứu chủ yếu tập trung vào việc đánh giá khả năng sinh trưởng của thực vật thông qua quang hợp, sự phát triển của bộ rễ. Coban được xem là một nguyên tố vi lượng có nhiều icher lợi đối với thực vật bậc cao mặc dù cho đến nay chưa có được những bằng chứng xác thực về vai trò trực tiếp hay cơ chế tác động của chúng trên cơ thể thực vật. Đối với cây họ đậu, coban là một yếu tố cần thiết cho một số loại vi sinh vật đặc biệt là vi sinh vật có dinh nitrơ trong khí quyển, sự thực chất lượng đường như làm giảm hiệu quả cơ chế dinh nitrơ (Evans & Kliwer, 1964). Công bố của Riley & Dilworth (1986) đã cho thấy tầm quan trọng của coban đối với sự sinh trưởng và phát triển của cây họ đậu chủ yếu là do ảnh hưởng của coban trên hoạt động và quá trình vi sinh vật có dinh nitrơ khí quyển thuộc hai chi Azotobacter và Nitrobacter.

Sự tiếp xúc của thực vật đối với môi trường bất lợi (như hạn hán, mặn, lạnh, nông, bịnh hay có mất các kim loại nặng với hàm lượng cao) là điều kiện làm tăng sản sinh các gốc tự do (ROS, Reactive oxygen species) như oxy đơn (O2•−), superoxide (O2−), hydrogen peroxide (H2O2), và gốc hydroxyl (OH•), đẩy lùi sản phẩm chuyển hóa của oxy, có khả năng oxy
hoa mạnh, tham gia điều khiển sự sinh trưởng, phát triển của các cơ quan lá, hoa, quả, thông qua điều tiết các quá trình chuyển hóa nội bào. Nồng độ cao của các gốc tự do gây nên hiện tượng "stress oxy hóa" (Wojszek, 1997; Malecka et al., 2001; Bhattacharjee, 2005). Thức vật có cơ chế hình thành hệ thống chống oxy hóa (bao gồm các enzyme chống oxy hóa và phi enzyme) để điều chỉnh mức độ sản sinh ROS, giúp thức vật bảo vệ các tế bào và các cơ quan của chúng khỏi tác động xấu của các ROS (Mittler, 2002; Apel & Hirt, 2004; Scandalios, 2005). Các enzyme chống oxy hóa chủ yếu bao gồm superoxide dismutase (SOD), peroxidase (POD) catalase (CAT) và các chất chống oxy hóa phi enzyme gồm glutathione peroxidase (GPX), ascorbate peroxidase (APX), proline (Pro) và peroxiredoxin (PrxR) (Ramakrishna & Rao, 2015; Wang et al., 2015). Các enzyme này có mặt trong tất cả các khu vực trong tế bào. Thông thường, một cơ quan có thể có nhiều hơn một enzyme tham gia đào thải một ROS đơn lassen (Mittler, 2002; Mittler et al., 2004; Scandalios, 2005). Các enzyme lão hóa ROS trong thực vật đã được nghiên cứu rộng rãi và cho thấy để đáp ứng lại các di truyền môi trường sống bất lợi, hoat động APX thường tăng lên cùng với các hoạt động của các enzym khác như CAT, SOD (Shigeoka et al., 2002).

Quang hợp là một quá trình sinh lý quan trọng trong thực vật, là cơ sở của sự tổng hợp và phát triển của cây trồng (Chia & He, 1999). Ở cây đậu tương, nang của cây chủ yếu được tạo nên bởi lượng sản phẩm quang hợp trong thời kỳ phát triển thân, là. Hoạt động quang hợp lại phụ thuộc vào khả năng thu giữ ánh sáng và hiệu suất chuyển đổi năng lượng ánh sáng mà vào sinh khoi cây trồng. Chlorophyll là sắc tố chính và thiết yếu trong quang hợp, giúp thực vật thu nhận ánh sáng. Hư lượng chlorophyll cũng như hydro lượng chlorophyll a tại bước 680 nm (Chlorophyll a, 680 nm) thuộc tam phân ứng của hệ quang hòa II (PSII) hiện nay đang được sử dụng như là một cổ cụ hữu hiệu để xác định năng trạng thái sinh lý của cây trồng dưới điều kiện sinh lý tối ưu và bất lợi (Guo et al., 2005; Hussain & Reigosa, 2011).

Cho đến nay chưa có nhiều công bố về tác động của các hạt nano coban đối với sự phát triển các thông số quang hợp cũng như thay đổi hoạt độ của các enzyme chống oxy hóa ở cây đậu tương. Do đó, việc đánh giá, bổ sung những đảm bảo mối về cơ chế bảo vệ của cây trồng này dưới điều kiện cơ và không có hạt nano coban (đơn vị hoặc hồn hợp hạt) là thực sự cần thiết. Giống đậu tương DT26 do Trung tâm nghiên cứu và Phát triển đậu dỗ, Viên Khoa học Nông nghiệp Việt Nam lai tạo là một giống trồng vọng cho hiệu quả kinh tế cao. Anh hưởng của hạt nano coban đơn lẻ và dạng hồn hợp lên sự phát triển các thông số quang hợp và hoạt độ của enzyme chống oxy hóa ở hạt nano đậu tương DT26 đã được tiến hành nghiên cứu nhằm góp phần lý giải tác động của hạt nano coban lên việc tăng năng suất của cây đậu tương.

VẤT LIỆU VÀ PHƯƠNG PHÁP NGHIỆN CƯ CỦA

Hạt nano coban đơn lẻ và hồn hợp hạt

Hạt nano coban dạng đơn lẻ (nano coban hòa trị 0) có kích thước < 50 nm gồm hạt coban do Mỹ sản xuất (US Research Nanomaterials, Texas, USA) và do Viên Công nghệ Môi trường, Viên Hán lâm Khoa học và Công nghệ Việt Nam chế tạo (Ngo et al., 2014). Các hạt này được phân tán trong nước RO bằng máy siêu âm Sonic & Materials (USA) với công suất 375 W, tần số 20 KHz trong 3 phút 30 giây, sử dụng chất bảo vệ CMC và tác nhân khí NaBH₄ để khử ion Co²⁺ thành Co²°. Nano hồn hợp xử lý hạt giống là dạng hồn hợp hạt bao gồm hạt nano coban được phân tán vào các thành phần khác bao bọc N₃, P₂O₅, K₂O, Mg, S, Fe, Cu, Co, Zn, Mn, B, Mo, Se, NAA-axit Naphthaleneacetic, GA₃-axit Gibberelic, amino axit, humic, chất phân diệt nấm Cruiser do Viên Công nghệ Môi trường chế tạo.

Hạt giống đậu tương DT26

Hạt đậu tương giống DT26 do Trung tâm nghiên cứu và Phát triển đậu dỗ, Viên Khoa học Nông nghiệp Việt Nam cung cấp.

Xử lý hạt đậu tương

Pha dung dịch nano coban đơn lẻ của Viên Nam (VN) và Mỹ (USA) bằng nước RO, sử dụng axit trong 3 phút 30 s để bảo đảm hạt nano phân tán hoàn toàn trong nước để đạt nồng độ là 6,67 mg/L và 667 mg/L tương ứng. Dung dịch nano coban hồn hợp hạt gồm 2 nồng độ sử dụng là 1X và 5X (cô nồng độ là 20 mg/L và 100 mg/L, tương ứng trong đó hàm lượng hạt nano coban trong dung dịch này lần lượt là 0,4 và 2,0 mg/L). Lượng thể tích dung dịch nano đều trên
cho xử lý hạt đầu tương là 25 ml dung dịch nano/kg hạt. Hạt giống đầu tương có kích thước đường đầu được lựa chọn cho thí nghiệm. Cân 50 g hạt đã được lựa chọn vào trong đĩa petri. Bộ sung 1,25 ml dung dịch nano đơn lê hoặc hỗn hợp với các lọ thí nghiệm để đạt nồng độ 0,17; 1,66 mg/kg hạt (đối với nano coban đơn) và nồng độ 0,5 và 2,5 mg/kg hạt giống (đối với nano coban hỗn hợp hạt, tương ứng với hạt nano coban có nồng độ là 0,01 mg/kg và 0,05 mg/kg hạt) hoặc xử lý bằng nước RO (nước qua quá trình lọc thẩm thấu nước) cho lộ đối cùng, sau đó lắc đảo cho hạt thẩm nhập dung dịch nano coban. Ưa hạt với dung dịch nano coban trong 30 phút ở nhiệt độ phòng. Sau đó, vớt hạt ra và đan dưới giấy thẩm ở nhiệt độ phòng tối khí vớt hạt khô thì tiến hành gieo. Hạt đầu tương gieo trong khay nhựa kích thước 50 × 20 × 15 cm với mật độ 6 hạt/khay trên nền đất thích hợp. Các khay được đặ trong nhà lơ lửng có mái che với ánh sáng tự nhiên.

Bộ tài thí nghiệm

Thí nghiệm được tiến hành với 7 công thức: đối chứng (ký hiệu DC)-xử lý bằng nước RO (nước qua quá trình lọc thẩm thấu nước); thí nghiệm 1 và 2: xử lý với hạt nano coban do Việt Nam chế tạo với 2 liều là 0,17 và 16,7 mg/kg hạt tương ứng với nồng độ kích thích và ức chế (ký hiệu là KTVN và UCVN); thí nghiệm 3 và 4: xử lý với hạt nano coban do Mỹ chế tạo với 2 liều là 0,17 (liều kích thích) và 16,7 mg/kg hạt (liều ức chế) được ký hiệu KTUSA và UUSA; thí nghiệm 5 và 6: xử lý hạt giống bằng nano hỗn hợp với nồng độ 0,5 và 2,5 mg/kg hạt giống tương ứng với liều kích thích (ký hiệu Mix 1X) và liều ức chế (Mix 5X). Môi cung thức lập lại 5 lần.

Xác định hàm lượng chlorophyll a ở hạt đầu tương

Là đầu tương non hoàn chính hạt được thử ở các thời điểm là kẻ 1 (V1), lềabet 3 (V3), lềabet 5 (V5) và thời điểm bát đầu ra hoa (R1) của cây. Là đầu tương (0,2 g) được cắt nhỏ, nghiền đồng thể trong nước và lán với aceton 80% có bổ sung thêm ít cát thủy tinh. Ly tâm hỗn hợp ở 12.000 rpm/5 min. Hạt phân tích trong pha trên và định mức lên 10 mL và do OD ở các bước sóng 663 nm (A663) và 646 nm (A646). Hàm lượng chlorophyll a (C₆) được tính theo công thức (Lichtenthal, 1994; Wellburn, 1994):

\[C₆ = 12,21 \times A_{663} - 2,81 \times A_{646} (\mu g/mL) \]

Xác định tốc độ quang hợp thực của cây hạt đầu tương

Pn (tốc độ quang hợp thực) là thông số đặc trưng nhất và phản ánh khả năng quang hợp của thực vật. Thông số này có mối liên hệ chặt chẽ với hàm lượng chlorophyll a và được xác định bằng công thức Y = 5,134 X – 2,094 (trong đó X là hàm lượng chlorophyll a và hệ số tương quan r là 0,939) (Qiu et al., 2013).

Đo huỳnh quang chlorophyll a và hấp thụ ở bước sóng 680 nm

Huỳnh quang chlorophyll a được xác định tại bước sóng 680 nm thực hiện bằng ứng của hệ PSII (P680 nm) bằng máy huỳnh quang fluorometer OS-30 (đồng bằng ADC (Anh) cùng cấp) theo mô tả của Nguyễn Văn Mạnh và nmk. (2013).

Xác định hoạt độ của các enzyme chính oxy hóa

Chuẩn bị dịch chế biến enzyme là hạt đầu tương: Lá đầu tương được chế biến với 5 ml đệm phophate (gồm 50 mM potassium phosphate buffer (pH 7,0), 1 mM phenylmethylsulfonyl fluoride, 0,2 mM EDTA, 1% (w/v) polyvinylpyrrolidone (PVP) và 1% (w/v) polyvinylpyrrolidone (PVP)). Ly tâm hỗn hợp ở 4°C trong 15 phút. Chuyển dịch lên lối falcon mới, định mức lên 5 ml và giữ ở ụ lạnh sâu (-) 20°C để đo hoạt độ của các enzyme APX, SOD, CAT, POX và xác định hàm lượng protein.

Hàm lượng protein của hạt đầu tương được tách chế biến theo phương pháp Bradford (1976). Hoạt độ superoxide dismutase (SOD) được phân tích bằng phương pháp của Scebbas et al. (1999); Catalase (CAT) được xác định theo phương pháp của Chen et al. (2000) cải tiến; Ascorbate peroxidase (APX) được phân tích theo phương pháp của Asada (1982); Hoạt độ peroxidases (POX) xác định theo phương pháp của Amako (1994).

Xử lý số liệu

Số liệu được xử lý bằng phần mềm Excel. Sự khác biệt giữa các công thức thì nghiệm được đánh giá bằng phân tích ANOVA một yếu tố
với mức ý nghĩa $p < 0.05$.

KẾT QUẢ VÀ THẢO LUẬN

Hàm lượng chlorophyll a của lá đầu tương ở các giai đoạn sinh trưởng khác nhau dưới tác động của hạt nano coban hóa trị 0

Hoạt tính quang hợp của thức vật phủ thuộc vào khả năng hấp thụ năng lượng ánh sáng của các sắc tố quang hợp và chuyển hóa năng lượng ánh sáng thành các hợp chất hữu cơ tích lũy tạo ra sinh khối của chúng (Confalonie et al., 2010). Kết quả về sự thay đổi hàm lượng chlorophyll a của cây đầu tương ở các giai đoạn khác nhau dưới tác động của hạt nano coban được trình bày trong bảng 1.

Bảng 1. Thay đổi hàm lượng chlorophyll a của cây đầu tương ở các giai đoạn sinh trưởng khác nhau dưới tác động của hạt nano coban

<table>
<thead>
<tr>
<th>Công thức</th>
<th>Giai đoạn sinh trưởng</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V1</td>
</tr>
<tr>
<td>DC</td>
<td>1.09 ± 0.27^{a}</td>
</tr>
<tr>
<td>KTVN</td>
<td>1.03 ± 0.04^{a}</td>
</tr>
<tr>
<td>KTUSA</td>
<td>1.18 ± 0.20^{a}</td>
</tr>
<tr>
<td>UCVN</td>
<td>1.06 ± 0.16^{a}</td>
</tr>
<tr>
<td>UCUSNA</td>
<td>1.17 ± 0.48^{a}</td>
</tr>
<tr>
<td>Mix 1X</td>
<td>1.11 ± 0.05^{a}</td>
</tr>
<tr>
<td>Mix 5X</td>
<td>1.14 ± 0.13^{a}</td>
</tr>
</tbody>
</table>

Ghi chú: Số liệu trình bày bằng là giá trị trung bình ± độ lệch chuẩn. Các số mực khác nhau trong cùng một cột chỉ sự sai khác có ý nghĩa thống kê sinh học so với đối chứng ($p < 0.05$)

Kết quả chỉ ra ở bảng 1 cho thấy việc xử lý hạt đầu tương với dung dịch hạt nano coban đã làm tăng hàm lượng chlorophyll a so với công thức đối chứng. Xử lý hạt nano coban ở nồng độ 0,17 mg/kg hạt cho hiệu quả cao hơn so với nồng độ 16,67 mg/kg hạt. Hàm lượng chlorophyll a có xu hướng tăng dần và đạt cực đại ở thời điểm V5. Sau đó, hàm lượng này giảm mạnh khi cây đầu tương bắt đầu ra hoa (giai đoạn R1). Không có sự sai khác có ý nghĩa thống kê sinh học về hàm lượng chlorophyll a giữa công thức đối chứng và thí nghiệm ở giai đoạn V1 ($p > 0.05$). Tuy nhiên, khi cây phát triển đến giai đoạn V3 (lã kế 3), sự khác biệt về hàm lượng chlorophyll a giữa các lô xử lý với hạt nano coban đơn lẻ (KTVN, UCVN, UCUSNA) cũng như hỗn hợp nano coban (Mix 1X và Mix 5X) so với công thức đối chứng (DC) được thể hiện rõ rệt ($p < 0.05$). Hiệu quả tác động của hạt nano coban có xuất xứ từ Hoa Kỳ và Việt Nam lên hàm lượng chlorophyll a của cây đầu tương DT26 chưa có sự khác biệt đáng kể ($p > 0.05$). Hơn nữa, trong thí nghiệm này, việc xử lý hạt đầu tương trong bong dung dịch nano coban (đơn lẻ hay hỗn hợp) cho hiệu quả tương đương nhau. Nhiều nghiên cứu đã cho thấy hạt coban hỗ trợ quá trình tổng hợp chlorophyll và hạn chế sự phân hủy của nó trong thời. Kết quả thu được của chúng tôi cũng tương đồng với công bố của Abdul Jaleel et al., (1999) khi xử lý hạt coban ở nồng độ 50 mg/kg hạt đã làm tăng hàm lượng chlorophyll a, b và chlorophyll tổng số ở cây đầu xanh Vigna radiata. Theo công bố của Ngo et al. (2014), hàm lượng chlorophyll của cây đầu tương tăng khoảng 10% so với đối chứng khi hạt được xử lý với dung dịch hạt nano coban hóa trị 0.

Tốc độ quang hợp thực (Pn) của lá đầu tương ở các giai đoạn sinh trưởng khác nhau dưới tác động của hạt nano coban dạng đơn lẻ và hỗn hợp hạt

Sự thay đổi tốc độ quang hợp thực (Pn - thông số đặc trưng và phản ánh khả năng quang hợp của thức vật) ở cây đầu tương DT26 dưới tác động của hạt nano coban dạng đơn lẻ và hỗn hợp hạt được chỉ ra ở hình 1A. Động thái tăng giảm của Pn có mối quan hệ chặt với sự thay đổi của hàm lượng chlorophyll a. Giả trị Pn cũng có xu hướng tăng dần và đạt giả trị cực đại tại thời điểm V5, đỉnh là thời điểm cây đầu tương sinh trưởng mạnh nhất, sau đó, giả trị này giảm dần ở giai đoạn R1. So với lô đối chứng, các lô được xử lý với hạt nano coban giúp cho cây đầu tương sinh trưởng tốt hơn nên tốc độ quang hợp thực cũng đạt được giả trị cao hơn. Sự sai khác có ý nghĩa thống kê khi so sánh giữa lô DC và lô KTVN và KTUSA ($p < 0.05$)

236
Nghiên cứu ảnh hưởng của hạt nano

tại thời điểm V5. Khi cây đầu tương vào giai đoạn bắt đầu ra hoa, giá trị PN của cây giảm đáng kể. Việc giảm giá trị PN có thể là do giai đoạn này cây đầu tương ngừng sinh trưởng sinh trưởng đường và tập trung cho việc sinh trưởng sinh trưởng thực (ra hoa và kết quả) của cây.

Sự thay đổi tỷ lệ Fv/Fm của lá cây đầu tương ở các giai đoạn sinh trưởng khác nhau dưới tác động của hạt nano coban được chỉ ra ở hình 1B. Kết quả nghiên cứu thu được cho thấy Fv/Fm tăng ở tất cả các lô cho tới giai đoạn V5, sau đó tỷ lệ này giảm khi cây đầu tương ở giai đoạn R1. Trong đó, lô thí nghiệm được xử lý với hạt nano coban đến và hồn hợp luôn cao hơn so với đối chiếu trong cùng thời điểm nghiên cứu. Kết quả này cho thấy hạt nano coban đã giúp việc sử dụng năng lượng ánh sáng trong phản ứng quang hóa ở P5II đạt hiệu quả cao hơn dẫn tới tăng hiệu suất quang hợp. Sự sai khác này có ý nghĩa thống kê khi so sánh giữa lô DC và lô KTVCN, KTUSA (p < 0.05) tại thời điểm V5. Tuy nhiên, không có sự sai khác có ý nghĩa thống kê sinh học giữa các nông độ xử lý hạt nano coban (liều kích thích và ức chế) với cộng thức DC cũng như giữa các dạng hạt nano coban đến và hồn hợp ở giai đoạn V1, V3 và R1 (p > 0.05).

![Hình 1. Thay đổi tốc độ quang hợp thực PN - (a) và tỷ lệ Fv/Fm - (b) của lá cây đầu tương ở các giai đoạn khác nhau dưới tác động của hạt nano coban](image)

Ảnh hưởng của hạt nano coban lên hoạt độ của các enzyme chính oxy hóa trong lá đầu tương DT26

Khi gắp các điều kiện sống bất lợi cho sinh trưởng, thực vật hình thành các cơ chế kiểm soát bằng cách điều chỉnh hoạt động của các enzyme chính oxy hóa như SOD, CAT, POX và APX như một cơ chế phòng vệ của cây trồng, đồng thời hạn chế tác động độc tính của chúng đối với tế bào (Maffei et al., 2007; Ahmad et al., 2008). Sự thay đổi hoạt độ các enzyme chính oxy hóa nên trên dưới tác động của hạt nano coban cũng được nghiên cứu (hình 2). Kết quả cho thấy ở lô thí nghiệm xử lý hạt đầu tương dưới tác động dicloben coba do với cộng thức DC không xử lý hạt nano coban. Hoạt độ của các enzyme chính oxy hóa ở lá cây đầu tương đều có xu hướng tăng so với cộng thức DC không xử lý hạt nano coban. Hoạt độ của các enzyme này tăng chậm ở giai đoạn V1 đến V3, sau đó tăng mạnh ở giai đoạn V5 đến R1.

Đối với SOD: Ở cộng thức đối chứng, hoạt độ SOD có xu hướng tăng nhẹ trong suốt quá trình sinh trưởng của cây đầu tương. Trong khi đó, dưới tác động của hạt nano coban dạng đơn lô của Hoa Kỳ với nồng độ là 16,67 mg/kg hạt (UCUSA), hoạt độ enzyme này tăng mạnh ở giai đoạn V5-R1 và đạt giá trị cao nhất là 14,79 nkat/mg protein ở giai đoạn V5, cao hơn 2,11 lần so với cộng thức đối chứng tại cùng thời điểm tương ứng (hình 2a). Cơ sở sai khác có ý nghĩa thống kê sinh học về hoạt độ SOD giữa cộng thức thí nghiệm có xử lý hạt nano coban so với cộng thức DC và giữa dạng hạt nano coban đơn lô và hồn hợp hạt (p < 0.05). Tuy nhiên, không có sự sai khác nhiều về hoạt độ enzyme này giữa các nồng độ hạt nano coban đơn lô hoặc hồn hợp hạt xử lý khác nhau (p > 0.05).

Do SOD là enzyme chuyển hóa O2− thành H2O2 và O2 nên việc tăng hoạt độ của enzyme này giúp giảm lượng O2− nội sinh ở trong lá đầu tương. Sự biến thiên về hoạt độ SOD ở lá đầu tương DT26 dưới tác động của hạt nano coban cũng tương đồng với sự biến thiên về hoạt độ enzyme này dưới tác động của stress Pb2+ của cây đầu tương DT84 (Mai Văn Chung & Trần

237
Ngọc Toàn, 2015) hay dưới tác động của stress Molybdenum (Mo) và Boron (B) có mặt ở trong đất của 3 giống đậu tương Glycine max (L.) Merrill là Zhechun III, Zhechun II và 3811 ở các giai đoạn sinh trưởng V5, R1 và R4 (Liu et al., 2005).

Hình 2. Thay đổi của hoạt độ các enzyme chống oxy hóa ở cỏ cây đậu tương ở các giai đoạn khác nhau dưới tác động của hạt nano coban

a- Superoxide dismutase (SOD); b- Catalase (CAT); c- Peroxidase (POX) và d- Ascorbate peroxidase (APX)

Đối với catalase (CAT): Với chức năng phân giải H₂O₂ thành H₂O và O₂, sự gia tăng mạnh mẽ và liên tục về hoạt độ của CAT sẽ góp phần làm giảm hàm lượng H₂O₂ trong lá. Các kết quả nghiên cứu trình bày trên hình 2b đã cho thấy hoạt độ của catalase có xu hướng tăng nhẹ
ở các công thức được xử lý với hạt nano coban. Hoạt độ này tác giả giả thiết ở giai đoạn R1, đạt 18,7 nkat/mg protein ở liệu xử lý hạt nano coban đơn lẻ của Hoa Kỳ với nồng độ 0,17 mg/kg hạt (KTUSA), tăng gấp 1,60 lần so với công thức DC tại cùng thời điểm. Điều này cho thấy như cấu trúc hở mở catalase đã chịu đột ngột trong tế bào của cây đầu tương là khả cao. Trong khi đó, ở công thức đối chứng hoạt độ của enzyme này không tăng nhiều giữa các giai đoạn sinh trưởng khác nhau. Hoạt độ CAT không có sự khác biệt nhiều giữa các nồng độ hạt nano coban xử lý khác nhau cũng như giữa hạt coban đơn lẻ và hỗn hợp hạt nano kim loại (p > 0,05).

Điều với peroxidase (POX): Sự thay đổi của hoạt độ POX cũng diễn ra trong giai đoạn catalase (hình 2c). Sự có mặt của hạt nano coban đã làm tăng hoạt độ của POX so với công thức DC. Trong cả 4 giai đoạn sinh trưởng V1, V3, V5 và R1 của cây đầu tương DT26, hoạt độ enzyme này không có sự sai khác có ý nghĩa thống kê sinh học (p > 0,05) giữa các dạng và nồng độ hạt nano coban sử dụng. Tuy nhiên, hoạt độ POX có sự sai khác đáng kể giữa công thức thứ thiERRY ví dụ chất hạt nano coban so với công thức đối chứng (p < 0,05). Hoạt độ POX đạt giá trị cao nhất (7,6 ΔΔA470/mg protein/phút), cao hơn 1,85 lần so với công thức đối chứng khi cây đầu tương ở giai đoạn R1 dưới tác dụng của nồng độ hạt nano coban đơn lẻ của Mỹ ở nồng độ là 16,67 mg/kg hạt (UCUSA).

Điều với ascorbate peroxidase (APX): Sự thay đổi hoạt độ của ascorbate peroxidase ở các giai đoạn sinh trưởng khác nhau của cây đầu tương DT26 khi có mật hoặc không có mật của hạt nano coban được trình bày ở hình 2d. Việc xử lý hạt đầu tương với hạt nano coban đã làm tăng thục đẩy hoạt độ của APX trong là đầu tương DT26 tăng lên tiếp theo thời gian. Trong đó, hoạt độ APX ở công thức KTUV, KTUSA luôn cao hơn DC và UCVN, UCUSA cũng như hơn Mix 1X và Mix 5X. Hoạt độ APX ở là đầu tương khi xử lý với hạt nano tổng hạt giống ở giai đoạn V1- V3 và có xơ vượt rừng ở giai đoạn R1. Hoạt độ của enzyme này ở công thức xử lý hạt nano coban luôn cao hơn có ý nghĩa so với đối chứng (p < 0,05). Hoạt độ của hạt nano của APX là 22,47 ± 1,06 nkat/mg protein (tăng 2,73 lần so với công thức đối chứng) đạt được trong là cây đầu tương ở công thức KTUV ở thời điểm V5. APX là enzyme xúc tác cho quá trình khử độc của các hợp chất peroxide (vi dụ, H2O2) trong tế bào chất. Do đó, thay đổi hoạt độ của APX có ảnh hưởng trực tiếp đến sự biến đổi H2O2 nội sinh. Mối quan hệ này đã biểu hiện rõ ở cây đầu tương chịu tác động của hạt nano coban: khi APX duy trì hoạt độ cao trong các giai đoạn V3 và V5, hàm lượng H2O2 trong là được duy trì ở mức thấp.

Theo nghiên cứu của Tewari et al. (2002) khi xử lý cây đầu tương (Phaseolus aureus Roxb. Cv. T-44) bằng CoSO4 có nồng độ 50 μM đã kích thích sinh trưởng của cây thông qua tăng ham lượng chlorophyll và sinh khối khô của ngăn và rễ cây. Động thỏi, hoạt độ của các enzyme ủy hoa hầu như CAT, POX, APX và SOD cũng tăng so với công thức đối chứng. Hơn nữa, tác giả Rizwan et al. (2017) cũng bò anh hưởng của hạt nano kim loại và oxi kim loại khác nhau lên sinh trưởng và sinh lý của một số cây trồng quan trọng đã cho thấy các hạt nano đã gây ra stress ủy hoa bằng việc tạo ra các gốc tự do (ROS). Ở nồng độ xử lý hạt nano thấp, hệ thống bảo vệ ở thực vật đã được kích hoạt để loại bỏ việc hình thành ROS. Nhưng ở nồng độ xử lý cao hơn gây ra diệu kiện bất lợi, thực vật không thể chống lại sự bùng phát của ROS dẫn tới chúng bị ủy hoa nghiêm trọng. Hơn nữa, hoạt độ của các enzyme chống ủy hoa hóa liên quan đến tác động của hạt nano có
KẾT LUẬN

Hiệu quả quang hợp của cây dầu tương DT26 tăng khi hạt được xử lý với dung dịch nano koban (dạng don lê với nồng độ 0,17 và 16,67 mg/kg hạt; dạng hơng hợp hạt ở nồng độ 0,5 và 2,5 mg/kg hạt) thông qua tăng gia trị của các thông số quang hợp như hàm lượng chlorophyll a, b, tốc độ quang hợp thực Pn và tỷ lệ Fv/Fm. Hiệu quả tác động lên quang hợp của hạt nano koban don lê do Việt Nam và Mỹ sau xuất không có sự khác biệt. Vì vậy, để chủ động nguồn nguyên liệu hạt nano, tiết kiệm chi phí sản xuất và tăng hiệu quả kinh tế nên sử dụng hạt nano koban đang don lê do Việt Nam chế tạo ở nồng độ 0,17 mg/kg hạt giống.

Hạt nano koban don lê của Việt Nam và Hoa Kỳ đã gây “stress oxy hóa” như cay dầu tương DT26 và làm tăng hoạt độ của các enzyme chống oxy hóa. Xử lý hạt dầu tương với hạt nano koban don lê của Hoa Kỳ ở nồng độ 16,67 mg/kg hạt (UCUSA) đã làm hoạt độ của superoxide dismutase và peroxidase tăng gấp 2,11 và 1,85 lần so với đối chứng. Hoạt độ catalase đạt được ở công thức xử lý hạt nano koban don lê của Việt Nam (KTVN) và Mỹ (KTUSA) ở nồng độ 0,17 mg/kg hạt, tăng gấp 2,73 và 1,60 lần so với giã trái tương ứng ở công thức đối chứng. Hoạt độ của các enzyme chống oxy hóa tăng được xem như là một cơ chế bảo vệ của cơ thể nhằm giảm thiểu những tác động có hại của các stress này gây ra.

LỜI CẢM ON: Công trình được hỗ trợ kinh phí của đề tài thuộc Họp phân IV “Nghiên cứu cơ chế tác động và đánh giá an toàn sinh học của các chế phẩm nano được nghiên cứu trong dự án” có mã số: VAST.TD.NANO.04/15-18, thuộc Dự án KH-CN trong diem cấp Viện Hàn lâm KH&CNVN “Nghiên cứu ứng dụng công nghệ nano trong nông nghiệp” do PGS.TS. Nguyễn Hoài Châu làm chủ nhiệm.

TẢI LIỆU THAM KHẢO

241

STUDY ON THE EFFECT OF SINGLE AND MIXTURED OF COBALT NANOPARTICLES ON THE CHANGE OF PHOTOSYNTHESIS PARAMETERS AND ANTIOXIDANT ENZYMES ACTIVITY OF SOYBEAN SEEDLINGS

Glycine max (L.) Merr. (DT26)

Phan Hoang Tuan1,2, Luu Thi Tam1, Hoang Thi Lan Anh1, Ngo Thi Hoai Thu1, Nguyen Hoai Chau2, Dang Diem Hong2

1Institute of Biotechnology, VAST
2Institute of Environmental Technology, VAST
3Thai Nguyen University of Sciences

SUMMARY

Soybean (Glycine max (L.) Merr.) is one of the major crops grown worldwide for human food and animal feed. Nanotechnology is one of the most potent tools in modern agriculture to improve crop productivity. In this paper, we investigated the effect of single and mixture cobalt nanoparticles on the change of photosynthesis-related parameters and antioxidant enzyme activity of soybean Glycine max (L) Merr “DT26” at different growth stages under pilot scale. The results showed that all form of cobalt nanoparticles treatment enhanced the photosynthesis of soybean by increasing the content of chlorophyll a, Pn and the ratio of Fv/Fm. These values tended to increase and reached the maximum value at fifth trifoliate stage and then decreased at the beginning bloom stage. The activity of antioxidant enzymes such as superoxide dismutase and peroxidase (when seeds were treated with USA single cobalt nanoparticles at concentration of 16.67 mg/kg) and catalase (with USA single cobalt nanoparticles at concentration of 0.17 mg/kg) were increased in 2.11, 1.85 and 1.60 times respectively compared to the control group (without the treatment of cobalt nanoparticles) while ascorbate peroxidase was reached highest value (increased in 2.73 times) under the condition of Vietnam single cobalt nanoparticles at the dose of 0.17 mg/kg seeds. This suggests that cobalt nanoparticles treatment has generated oxidative stresses and soybean DT26 has the self-protection mechanism by increasing the
activity of antioxidant enzymes in order to reduce the amount of H$_2$O$_2$ and O$_2$ which accumulates in the leaf cells.

Keywords: APX (ascorbate peroxidase), CAT (catalase), Chlorophyll a, Cobalt nanoparticles, *Glycine max*, net photosynthetic rate, SOD (superoxide dismutase).

Corresponding author email: ddhong60vn@yahoo.com

Received 11 January 2018, accepted 30 September 2018