BINARY COPPER AND MANGANESE OXIDE NANOPARTICLES SUPPORTED OMS-2 FOR ENHANCING ACTIVITY AND STABILITY TOWARD CO-OXIDATION REACTION AT LOW TEMPERATURE

Nguyen Trung Thanh, Nguyen Thi Quynh Anh*

Department of Environmental Engineering, An Giang University, 18 Ung Van Khiem, Long Xuyen City, An Giang Province

*Email: ntqanh@agu.edu.vn

Received: 4 September 2018, Accepted for publication: 5 December 2018

ABSTRACT

CuO, CuMnOₓ and MnOₓ catalysts were anchored on the manganese oxide support with the structure of octahedral molecular sieves (OMS-2), which were synthesized using MnSO₄ and KMnO₄ as precursors by refluxing under acidic conditions or impregnation. The catalysts were then tested for CO oxidation. These catalysts and OMS-2 support were characterized by X-ray diffraction, FTIR, SEM, and H₂-TPR. For CO oxidation reaction, CuO and CuMnOₓ catalysts showed extremely higher activities than that of MnOₓ catalyst and OMS-2 support. The 100% conversion of CO (T₁₀₀) for the CuO and CuMnOₓ catalysts were observed at 55 °C and 65 °C, respectively. Due to the presence of Cu²⁺− O²⁻− Mn⁴⁺ ↔ Cu⁺□− Mn³⁺ + O₂ the redox couple in the structure of these solid catalyst. Additionally, the CuMnOₓ catalyst showed higher activity (~1.74 folds) and exhibited better stability than CuO catalyst in CO oxidation, due to the advanced functionality of binary oxide structure of CuMnOₓ catalyst. As known, CO oxidation may follow the Mars-van-Krevelen mechanism with Cu²⁺− O²⁻− Mn⁴⁺ ↔ Cu⁺□− Mn³⁺ + O₂ redox couple. This study shows the high application potential of CuMnOₓ/OMS-2 material in treatment of CO.

Keywords: binary oxide catalyst structure; manganese oxide octahedral molecular sieves; low temperature CO oxidation, advanced CuO/OMS-2 catalyst, Mars-van-Krevelen mechanism.

Classification numbers: 2.4.2, 2.10.1, 3.4.5.

1. INTRODUCTION

The catalyst for CO oxidation has wide applications in indoor air cleaning, CO gas sensors, CO₂ lasers, and automotive exhaust treatment [1, 2]. Generally, precious-metal catalysts such as Au/TiO₂, Au/ZrO₂, Pt/SnO₂ and Pt/SiO₂ have been used for low-temperature CO oxidation [3-5]. However, due to the high cost of precious metals, more attention has recently been given to the use of base-metal catalysts, especially copper catalysts [6-8]. Among them,
Cu–Ce–O catalysts are of special interest due to their remarkable activities that are even comparable to the noble metals [9, 10]. Namely, Chen et al. found that finely dispersed CuO species were the active phase for CO oxidation [8].

Octahedral molecular sieves (OMS-2) of manganese oxides are cryptomelane-type manganese oxides with a porous structure (0.46 nm) arising from edge sharing of 2×2 [MnO₆] octahedral chains to form one-dimensional tunnel structures [11, 12]. Mn species in the OMS-2 material have mixed-valent Mn⁴⁺, Mn³⁺, and some Mn²⁺ sites. Divalent and trivalent transition metal ions incorporated into OMS-2 have been developed as promising catalysts for oxidation reactions [13], such as selective oxidation of benzyl alcohol and cyclohexane, as well as oxidation of methanol for fuel cell applications [14, 15]. Moreover, Ag-OMS-2 has been reported as an active catalyst for the CO oxidation [16]. Especially, Liu et al. found that CuO catalysts supported on OMS-2 (CuO/OMS-2) were highly active for CO oxidation at low temperature (90% conversion of CO at 55 °C) due to the Mars-van-Krevelen mechanism with Cu²⁺–O²⁻–Mn⁴⁺ ↔ Cu⁺–□–Mn³⁺ + O₂ (□ = oxygen vacancy) redox couple [17].

However, for copper oxide nanocatalyst on OMS-2 support, the efficiency of CO conversion is extremely low per a copper metal atom, because the Mars-van-Krevelen mechanism with Cu²⁺–O²⁻–Mn⁴⁺ ↔ Cu⁺–□–Mn³⁺ + O₂ redox couple could be seen at the contact sites of CuO nanoparticles and OMS-2 support. Meanwhile, the less interaction of Cu–O–Mn is obtained. In the present study, the catalyst of CuO and MnOₓ mixture on OMS-2 (CuMnOₓ/OMS-2) was prepared and tested with CO oxidation reaction. For comparison, the CuO catalyst on OMS-2 support was also synthesized. It was found that the CuMnOₓ/OMS-2 catalyst showed very high catalytic activity for CO oxidation reaction at low temperature. This study showed the prepared material is a potential catalyst for exhaust treatment with CO contamination.

2. EXPERIMENTAL SECTION

2.1. Catalyst preparation

Manganese oxide octahedral molecular sieves (OMS-2) were synthesized by a reflux method [18]. A typical synthesis was as followed: 11.33 g of MnSO₄·H₂O (0.072 mol) dissolved in 120 mL of deionized water was added to a solution of 7.57 g of KMnO₄ (0.045 mol) in 38 mL of deionized water and 4 mL of concentrated HNO₃. The mixed solution was refluxed at 100 °C for 24 h, and the product was filtered, washed, and dried at 120 °C. The dried sample was calcined at 400 °C for 4 h and denoted as OMS-2 in the text.

15 wt.% CuO/OMS-2; 15 wt.% CuMnOₓ/OMS-2 and 15 wt.% MnOₓ/OMS-2 catalysts were prepared by an incipient wetness method to anchor the nanoparticles of CuO, CuMnOₓ, and MnOₓ onto the OMS-2 support. The support was immersed with a proper amount of Cu(NO₃)₂ and/or Mn(NO₃)₂ in 250 mL distilled water. The slurry was heated at 80 °C under stirring for 15 min to remove the water, followed by a calcination at 400 °C for 4 h in air [17, 19].

2.2. Samples characterizations

A wide angle X-ray diffraction (WAXRD) patterns were recorded on a D2 Phaser XRD 300 W diffractometer using Cu Kα radiation (λ = 1.5406 Å) with an angle step of 0.05° and a
Binary copper and manganese oxide nanoparticle supported OMS-2 for enhancing activity (…)

time step of 30 s. The morphology and particle sizes of catalysts were evaluated using Transmission Electron Microscopy (TEM). Brunauer–Emmett–Teller (BET) surface area and pore size of the OMS-2 support were determined from the N\textsubscript{2} adsorption/desorption isotherms at 77 K (Porous Materials, BET-202A). Before the BET measurement, the support was degassed at 150 °C for 24 h to completely remove residual water from the oxide meso-/micro-pores. Accordingly, the BET data shown here are corresponding to the annealed samples. The temperature-programmed reduction (H\textsubscript{2}-TPR, 10 vol% H\textsubscript{2}/Ar mixture) analysis is performed on an AMI 300 chemisorption analyzer (Altamira instrument company) with a thermal conductivity detector (TCD).

2.3. Examination of metal ionic concentrations

The CuO, CuMnO\textsubscript{x}, and MnO\textsubscript{x} loadings on the OMS-2 support were determined by analyzing the Cu and Mn concentrations in the fresh aqueous solution of Mn(NO\textsubscript{3})\textsubscript{2} and Cu(NO\textsubscript{3})\textsubscript{2} chemicals using inductively coupled plasma-atomic emission spectrometry (ICP-AES).

2.4. Catalytic activity measurement

The CO oxidation was performed in a quartz tubular (i.d. = 10 mm) fixed-bed reactor under atmospheric pressure. A 200 mg of the catalyst was loaded in the reactor. The reaction temperature was monitored by a thermocouple placed in the middle of the catalyst bed. A mixture of 1 vol.% CO and 1 vol.% O\textsubscript{2} balanced by N\textsubscript{2} was introduced as the reactants. The total flow rate was 30 mL min-1, corresponding to a space velocity of 9,000 mL g-1 h-1. The CO and CO\textsubscript{2} were analyzed by a gas chromatography (Trace - GC1310) equipped with a FID detector and a TR-WAX column. The gaseous products passed through a methanization converter filled with Raney-Ni catalyst and all the carbon-containing products were converted to methane before they went to the FID detector to ensure a high intensity of signal. Conversion of CO was calculated as follows:

\[
\text{CO conversion} \% = \frac{\text{CO}_{\text{out}} \text{Vol} \cdot \% - \text{CO}_{\text{in}} \text{Vol} \cdot \%}{\text{CO}_{\text{in}} \text{Vol} \cdot \%} \times 100
\]

where \([\text{CO}]_{\text{out}}\) and \([\text{CO}]_{\text{in}}\) are the CO concentrations in the products (vol.%) and feed gas (vol.%), respectively. Carbon balance is near 100 %.

It noted that the analysis procedure of CO concentrations (before and after CO oxidation) was developed from Liu et al.’s work [17].

3. RESULT AND DISCUSSION

3.1. Characterizations of catalysts

3.1.1. Electron microscopy

The electron microscopy image can provide morphology, size, and crystallite property of solid catalyst particle [20]. The TEM images of the CuMnO\textsubscript{x}/OMS-2 catalyst are showed in Figure 1. The CuMnO\textsubscript{x}/OMS-2 exhibits nanorod-shaped morphologies, with diameters of about 13 nm and lengths of 300–500 nm (Figure 1A). This observation consists with the literatures
result about the related OMS-2 materials [21]. Especially, the Figure 1B (zoomed up from Fig.1A at the red square position) shows the light line on the OMS-2 nanorod surface. It may be the binary metallic oxide nanoparticles of copper and manganese that anchored on the OMS-2 support surface.

Figure 1. TEM image of CuMnO\textsubscript{x}/OMS-2 material.

3.1.2. XRD, FT-IR, and surface area of catalysts

The XRD patterns of the catalysts are shown in Fig. 2. This Fig. 2 indicates the diffraction peaks at 2θ of 12.6°, 17.9°, 28.7°, 37.5°, 41.9°, 49.9°, and 60.1° which are attributed to the crystalline phase of cryptomelane (KMn\textsubscript{8}O\textsubscript{16}), indicating that the nanorod OMS-2 material has a cryptomelane-type structure [22]. It consists with the XRD pattern of OMS-2 material in the literatures [21, 22]. However, for XRD pattern of CuO/OMS-2 catalyst, the diffraction peaks at 2θ of 32.6°, 35.5°, 38.8° are attributed to the crystalline phase of copper oxide [17]. For CuMnO\textsubscript{x}/OMS-2 material, the XRD measurement confirms the presence of crystalline phase of copper oxide due to the detection of one peak at 2θ of 32.6° [17]. Especially, the XRD pattern of MnO\textsubscript{x}/OMS-2 material does not show any differences to that of OMS-2 material, indicating that MnO\textsubscript{x} species may be highly dispersed in the sample.

The FT-IR patterns of catalysts are shown in Fig. 3. For CuO/OMS-2 catalyst, the FT-IR pattern is characterized by oscillations of Cu-O-Cu (410 cm-1, 420 cm-1, and 430 cm-1) and Cu-O (440 cm-1) [23]. These oscillations of Cu-O-Cu (410 cm-1, 420 cm-1, and 430 cm-1) and Cu-O (440 cm-1) [23] are also observed in the FT-IR pattern of CuMnO\textsubscript{x}/OMS-2 material. It consists with the XRD pattern of this material. Additionally, the BET surface area of OMS-2 material is 48.5 m2/g. However, the BET surface area of other catalysts is lower than that of OMS-2 support (see the Table 1 for detail).
Figure 2. XRD patterns of catalysts (*the peaks are contributed by CuO diffraction*).

Table 1. BET surface area, ratio of Cu and Mn of catalysts.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>BET surface area (m²/g)</th>
<th>Cu and Mn concentrations in the fresh solution (g/g)</th>
<th>Ratio of Cu:Mn</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMS-2</td>
<td>48.5</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>CuO/OMS-2</td>
<td>41.4</td>
<td>0.11</td>
<td>---</td>
</tr>
<tr>
<td>CuMnO/OMS-2</td>
<td>25.9</td>
<td>0.064:0.041</td>
<td>6:4</td>
</tr>
<tr>
<td>MnOₓ/OMS-2</td>
<td>25.8</td>
<td>0.12</td>
<td>---</td>
</tr>
</tbody>
</table>

Figure 3. FT-IR patterns of catalysts.

3.1.3. \(H_2\)-TPR analysis
The redox properties of the catalysts are usually characterized by means of H₂-TPR. Figure 4 shows the H₂-TPR profile of CuMnOₓ/OMS-2 catalyst. In comparison to H₂-TPR result of Liu et al.’s [17], two reduction peaks (γ₁, γ₂) are shifted to lower temperature indicating that the presence of copper promotes the reducibility of manganese oxide through a hydrogen spillover effect. Additionally, the α peak is assigned to the reduction of the CuOₓ species that have strong interaction with Mn oxides and the β peak belongs to the reduction of highly dispersed CuOₓ species on the catalyst surface which have a weak interaction with the surface Mn oxides or the Cu clusters. Moreover, the appearance of β peak is probably due to a combined reduction of large CuO particles and MnO₂ to Mn₃O₄[24]. Remarkably, the CuMnOₓ/OMS-2 catalyst exhibited more excellent reducibility than that of CuO and Mn oxides because of which the collaborative effect between Cu and Mn components as the Cu²⁺-O²⁻-Mn⁴⁺ structure could enhance the redox potential of metal-oxide species [25]. The reduction temperatures of each peak are summarized in Table 2.

Table 2. The reduction temperature of the peaks in H₂-TPR profile.

<table>
<thead>
<tr>
<th>Catalysts</th>
<th>α/(ºC)</th>
<th>β/(ºC)</th>
<th>γ₁/(ºC)</th>
<th>γ₂/(ºC)</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuO/OMS-2</td>
<td>180</td>
<td>275</td>
<td>350</td>
<td>400</td>
<td>Ref. [17]</td>
</tr>
<tr>
<td>CuMnOx/OMS-2</td>
<td>175</td>
<td>245</td>
<td>340</td>
<td>375</td>
<td>This study</td>
</tr>
</tbody>
</table>

3.2. Catalytic performance for CO-oxidation reactions

The CO-oxidation performances of OMS-2, CuO/OMS-2, CuMnOₓ/OMS-2, and MnOₓ/OMS-2 catalysts are shown in Figure 5. It is noted that the fabricated catalysts were packed and sieved to enhance the stability under the effect of high gas flow rate in the U-reactor. As shown in the Figure 5A, the activated based CuO catalysts on OMS-2 support showed very high activity for CO-oxidation reaction at low temperature. However, the OMS-2 and MnOₓ/OMS-2 catalysts showed very low catalytic activities for CO oxidation reaction in the temperature range of this study. The Figure 5A also shows that the full conversion of CO is observed at 55 ºC and 65 ºC for CuMnOₓ/OMS-2 and CuO/OMS-2, respectively. It means that
the CuO based catalyst is the active catalyst for CO oxidation. It consists with the Liu at al. report [17]. The CuO catalysts on OMS-2 support show high catalytic activity for CO oxidation due to the presence of $\text{Cu}^{2+} - \text{O}^{2-} - \text{Mn}^{4+} \leftrightarrow \text{Cu}^{+} - \square - \text{Mn}^{3+} + \text{O}_2$ redox couple [17] in the solid catalyst structure. Especially, CuMnO$_x$/OMS-2 catalyst showed higher CO oxidation activity than that of CuO/OMS-2 catalyst. For example, a lower temperature for full conversion of CO was observed with CuMnO$_x$/OMS-2 catalyst. A special rate at ~ 35 °C (room temperature) for CO conversion of CuMnO$_x$/OMS-2 catalyst is 1.74 folds better than that of CuO/OMS-2 catalyst (see the Fig. 5B and Table 3). It could be said that the rate for CO conversion of CuMnO$_x$/OMS-2 catalyst is faster than that of CuO/OMS-2 catalyst. The advanced functionality of binary oxide structure of CuMnO$_x$/OMS-2 catalyst is probably due to the higher content of $\text{Cu}^{2+} - \text{O}^{2-} - \text{Mn}^{4+} \leftrightarrow \text{Cu}^{+} - \square - \text{Mn}^{3+} + \text{O}_2$ redox couple.

Figure 5. Temperature effects to catalytic activity of CO conversion.

Table 3. Specific rate of catalysis for CO oxidation.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Reaction temperature (°C)</th>
<th>Specific rate $(\text{mol}{\text{CO}} \cdot \text{h}^{-1} \cdot \text{g}{\text{Cu}}^{-1})$</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuO/OMS-2</td>
<td>20</td>
<td>11.2×10^3</td>
<td>Ref. [17]</td>
</tr>
<tr>
<td>CuO/OMS-2</td>
<td>Room temperature (~35 °C)</td>
<td>13.91×10^3</td>
<td>This study</td>
</tr>
<tr>
<td>CuMnO$_x$/OMS-2</td>
<td>Room temperature (~35 °C)</td>
<td>24.14×10^3</td>
<td>This study</td>
</tr>
</tbody>
</table>

3.3. Catalyst stability for CO-oxidation reactions

Stability tests of CuO/OMS-2 and CuMnO$_x$ catalysts for CO conversion were performed at room temperature with a constant flow rate of CO. The results are shown in Fig. 6. For CuO/OMS-2 catalyst, the decreased catalytic activity for CO conversion was observed after 24 hours and no activity for CO conversion was observed after 72 hours. However, for CuMnO$_x$/OMS-2 catalyst, the inactivation is observed after 98 hours of stability test. The result showed a better stability of CuMnO$_x$ catalyst for CO oxidation. It is implied that the binary
structure with the advanced composition of manganese may enhance the CuO catalytic activity and stability for CO oxidation.

![Figure 6. Catalyst stability for CO conversion.](image)

4. CONCLUSIONS

In this study, CuMnOₓ/OMS-2 catalysts with various Cu/Mn molar ratio were successfully prepared using the incipient wetness method. A complete conversion of CO at low reaction temperature was observed with the CuMnOₓ/OMS-2 catalyst using the 6/4 molar ratio of Cu/Mn. The temperatures at which CO conversion reach 100% (T₁₀₀) were as follows: CuMnOₓ/OMS-2 (55 °C) < CuO/OMS-2 (65 °C). In addition, the CuMnOₓ/OMS-2 showed the catalytic stability better than that of the CuO/OMS-2 catalyst. These results showed that the enhancing catalyst performance of the CuO catalyst in CO oxidation could be assumed by the structure of binary oxide functional with the advanced composition of manganese. This study showed the high application potential of CuMnOₓ/OMS-2 material in exhaust treatment for environmental safety.

REFERENCES

