CHEMICAL COMPOSITION OF ESSENTIAL OILS FROM LEAVES OF VITEX NEGUNDO L. GROWING IN VIETNAM AND LARVICIDAL ACTIVITY AGAINST AEDES AEGYPTI L.

Hung Huy Nguyen, Dai Ngoc Do, Prabodh Satyal, Chung Thanh Nguyen, Nguyen Van Bui, William N Setzer

Abstract


Abstract – HCTN7. The leaves of Vitex negundo L. (Verbenaceae) were collected from Dan Nang City and the Pu Hoat Nature Reserve, Nghe An province, and were hydrodistilled to give the essential oils.  The leaf oils (six separate samples) were analyzed by gas chromatographic – mass spectrometric methods, and showed very different chemical compositions. The major components in the four essential oils from Da Nang were sabinene (6.0-19.9%), 1,8-cineole (1.6-13.7%), α-terpinyl acetate (1.9-7.8%), (E)-caryophyllene (5.7-18.3%), eremophilene (13.1-33.6%), caryophyllene oxide (4.9-18.1%), and an unidentified diterpenoid (5.2-8.3%); while the major components in the two Pu Hoat samples were sabinene (14.7% and trace), trans-β-elemene (0.2% and 11.1%), (E)-caryophyllene (57.0% and 48.2%), and caryophyllene oxide (5.4% and 3.2%).  One sample of V. negundo leaf essential oil from Da Nang and one from Pu Hoat were screened for larvicidal activity against Aedes aegypti, a vector of dengue fever, chikungunya, Zika fever, Mayaro and yellow fever viruses.  The Da Nang essential oil showed only marginal larvicidal activity (24-h LC50 = 82.9 μg/mL; 48-h LC50 = 72.2 μg/mL), but the Pu Hoat sample was significantly more active (24-h LC50 = 16.8 μg/mL; 48-h LC50 = 14.2 μg/mL).  As a test for pesticidal selectivity, V. negundo leaf oil from Pu Hoat was also screened against the water bug, Diplonychus rusticus, an insect predator of mosquito larvae.  The essential oil was significantly less toxic to D. rusticus (24-h LC50 = 136 μg/mL; 48-h LC50 = 134 μg/mL).

Keywords


Verbenaceae, Vitex negundo, Aedes aegypti, arbovirus, dengue fever

Full Text:

PDF

References


REFERENCES

Gubler D. J. - Dengue and dengue hemorrhagic fever, Clin. Microbiol. Rev. 11 (3) (1998) 480–496.

Barrett A. D. T., Higgs S. - Yellow fever: A disease that has yet to be conquered, Annu. Rev. Entomol. 52 (2007) 209–229. https://doi.org/10.1146/annurev.ento.52.110405.091454.

Dhimal M., Gautam I., Joshi H. D., Hara R. B. O. - Risk factors for the presence of Chikungunya and dengue vectors (Aedes aegypti and Aedes albopictus), their altitudinal distribution and climatic determinants of their abundance in central Nepal, PLoS Negl. Trop. Dis. 9 (3) (2015) e0003545. https://doi.org/10.1371/journal.pntd.0003545.

Benelli G., Mehlhorn H. - Declining malaria, rising of dengue and Zika virus: Insights for mosquito vector control, Parasitol. Res. 115 (5) (2016) 1747–1754. https://doi.org/ 10.1007/s00436-016-4971-z.

Kim Lien P. T., Briant L., Tang T. B., Trang B. M., Gavotte L., Cornillot E., Duoc V. T., Duong T. N., Frutos R., Nga P. T. - Surveillance of dengue and chikungunya infection in Dong Thap, Vietnam: A 13-month study, Asian Pac. J. Trop. Med. 9 (1) (2016) 39–43. https://doi.org/10.1016/j.apjtm.2015.12.008.

Quyen N. T. H., Kien D. T. H., Rabaa M., Tuan N. M., Vi T. T., Tan L. Van., Hung N. T., Tuan H. M., Tram T. Van., Da Ha N. Le., et al. - Chikungunya and Zika virus cases detected against a backdrop of endemic dengue transmission in Vietnam, Am. J. Trop. Med. Hyg. 97 (1) (2017) 146–150. https://doi.org/10.4269/ajtmh.16-0979.

Katzelnick L. C., Narvaez C., Arguello S., Mercado B. L., Collado D., Ampie O., Elizondo D., Miranda T., Carillo F. B., Mercado J. C., et al. - Zika virus infection enhances future risk of severe dengue disease, Science. 369 (6507) (2020) 1123–1128.

Bowman L. R., Donegan S., McCall P. J. - Is dengue vector control deficient in effectiveness or evidence?: Systematic review and meta-analysis, PLoS Negl. Trop. Dis. 10 (3) (2016) e0004551. https://doi.org/10.1371/journal.pntd.0004551

Vontas J., Kioulos E., Pavlidi N., Morou E., della Torre A., Ranson H. - Insecticide resistance in the major dengue vectors Aedes albopictus and Aedes aegypti, Pestic. Biochem. Physiol. 104 (2) (2012) 126–131. https://doi.org/10.1016/j.pestbp.2012.05.008.

Liu N. - Insecticide resistance in mosquitoes: Impact, mechanisms, and research directions, Annu. Rev. Entomol. 60 (2015) 537–559.

Smith L. B., Kasai S., Scott J. G. - Pyrethroid resistance in Aedes aegypti and Aedes albopictus: Important mosquito vectors of human diseases, Pestic. Biochem. Physiol. 133 (2016) 1–12. https://doi.org/10.1016/j.pestbp.2016.03.005.

Kamrin M. A. - Pesticide Profiles: Toxicity, Environmental Impact, and Fate; CRC Press: Boca Raton, Florida, USA, 1997; ISBN 0-56670-190-2.

Goulson D. - An overview of the environmental risks posed by neonicotinoid insecticides, J. Appl. Ecol. 50 (4) (2013) 977–987. https://doi.org/10.1111/1365-2664.12111.

Suchail S., Guez D., Belzunces L. P. - Characteristics of imidacloprid toxicity in two Apis mellifera subspecies, Environ. Toxicol. Chem. 19 (7) (2000) 1901- 1905.

Sugita N., Agemori H., Goka K. - Acute toxicity of neonicotinoids and some insecticides to first instar nymphs of a non-target damselfly, Ischnura senegalensis (Odonata: Coenagrionidae), in Japanese paddy fields, Appl. Entomol. Zool. 53 (4) (2018) 519–524.

Lanteigne M., Whiting S. A., Lydy M. J. - Mixture toxicity of imidacloprid and cyfluthrin to two non-target species, the fathead minnow Pimephales promelas and the amphipod Hyalella azteca, Arch. Environ. Contam. Toxicol. 68 (2) (2015) 354–361. https://doi.org/10.1007/s00244-014-0086-7.

Silva W. J., Dória G. A. A., Maia R. T., Nunes R. S., Carvalho G. A., Blank A. F., Alves P. B., Marçal R. M., Cavalcanti S. C. H. - Effects of essential oils on Aedes aegypti larvae: Alternatives to environmentally safe insecticides, Bioresour. Technol. 99 (8) (2008) 3251–3255. https://doi.org/10.1016/j.biortech.2007.05.064.

Benelli G. - Research in mosquito control: current challenges for a brighter future, Parasitol. Res. 114 (8) (2015) 2801–2805. https://doi.org/10.1007/s00436-015-4586-9.

Masetti A. - The potential use of essential oils against mosquito larvae: A short review, Bull. Insectology. 69 (2) (2016) 307–310.

Pavela R., Benelli G. - Essential oils as ecofriendly biopesticides? Challenges and constraints, Trends Plant Sci. 21 (12) (2016), 1000–1007. https://doi.org/10.1016/j.tplants.2016.10.005.

Wu C. Y., Raven P. H., Hong D. Y. - Flora of China Available online: http://www.efloras.org/florataxon.aspx?flora_id=2&taxon_id=200019442 (accessed on Sep 4, 2020).

Phuong V. X. - Flora of Vietnam, Volume 6 – Verbenaceae, Science & Technics Publishing House: Hanoi, Vietnam, 2007, (in Vietnamese).

Ho P. H. - An Illustrated Flora of Vietnam, Vol. 3, Youth Publishing House, Ho Chi Minh City, Vietnam, 2000.

Tandon V. R. - Medicinal uses and biological activities of Vitex negundo, Nat. Prod. Radiance. 4 (3) (2005) 162–165.

Rastogi T., Dubde M., Farooqui I. A., Khadabadi S. S. - A review on ethanomedicinal uses and phyto-pharmacology of anti-inflammatory herb Vitex negundo, Int. J. Pharm. Sci. Res. 1 (9) (2010) 23–28.

Vishwanathan A. S., Basavaraju R. - A review on Vitex negundo L. – A medicinally important plant, Eur. J. Biol. Sci. 3 (1) (2010) 30–42.

Ladda P. L., Magdum C. S. - Vitex negundo Linn.: Ethnobotany, phytochemistry and pharmacology - A review, Int. J. Adv. Pharmacy, Biol. Chem. 1 (1) (2012) 111–120.

Venkateswarlu K. - Vitex negundo: Medicinal values, biological activities, toxicity studies, phytopharmacological actions, Int. J. Pharm. Phytopharm. Res. 2 (2) (2012) 126–133.

Basri F., Sharma H. P., Firdaus S., Jain P., Ranjan A. - A review of ethnomedicinal plant - Vitex negundo Linn, Int. J. Adv. Res. 2 (3) (2014) 882–894.

Gill B. S., Mehra R., Navgeet; Kumar S. - Vitex negundo and its medicinal value, Mol. Biol. Rep. 45 (6) (2018) 2925–2934. https://doi.org/10.1007/s11033-018-4421-3.

Chi V. Van. - Dictionary of Vietnamese Medicinal Plants, Medical Publishing House: Hanoi, Vietnam, 2012.

Adams R. P. - Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; 4th ed.; Allured Publishing: Carol Stream, IL, USA, 2007; ISBN 978-1-932633-21-4.

Mondello L. - FFNSC 3; Shimadzu Scientific Instruments: Columbia, Maryland, USA, 2016;

NIST17 - National Institute of Standards and Technology: Gaithersburg, Maryland, USA, 2017.

Satyal P. - Development of GC-MS Database of Essential Oil Components by the Analysis of Natural Essential Oils and Synthetic Compounds and Discovery of Biologically Active Novel Chemotypes in Essential Oils, Ph.D. dissertation, University of Alabama in Huntsville, 2015.

Finney D. - Probit Analysis, Reissue Ed.; Cambridge University Press: Cambridge, UK, 2009; ISBN 978-0521135900.

Singh V., Dayal R., Bartley J. P. - Volatile constituents of Vitex negundo leaves, Planta Med. 65 (6) (1999) 580–582. https://doi.org/10.1055/s-2006-960832.

Huang H. C., Chang T. Y., Chang L. Z., Wang H. F., Yih K. H., Hsieh W. Y., Chang T. M. - Inhibition of melanogenesis versus antioxidant properties of essential oil extracted from leaves of Vitex negundo Linn and chemical composition analysis by GC-MS, Molecules. 17 (4) (2012) 3902–3916. https://doi.org/10.3390/molecules17043902.

Issa M., Chandel S., Singh H. P., Batish D. R., Kohli R. K., Yadav S. S., Kumari A. - Appraisal of phytotoxic, cytotoxic and genotoxic potential of essential oil of a medicinal plant Vitex negundo, Ind. Crop. Prod. 145 (2020), 112083. https://doi.org/10.1016/j.indcrop.2019.112083.

Padalia R. C., Verma R. S., Chauhan A., Chanotiya C. S., Thul S. - Phytochemical diversity in essential oil of Vitex negundo L. populations from India, Rec. Nat. Prod. 10 (4) (2016) 452–464.

Lee D. C., Ahn Y. J. - Laboratory and simulated field bioassays to evaluate larvicidal activity of Pinus densiflora hydrodistillate, its constituents and structurally related compounds against Aedes albopictus, Aedes aegypti and Culex pipiens pallens in relation to their inhibitory effects on acetylcholinesterase activity, Insects. 4 (2) (2013) 217–229. https://doi.org/10.3390/insects4020217.

Govindarajan M., Benelli G. - α-Humulene and β-elemene from Syzygium zeylanicum (Myrtaceae) essential oil: Highly effective and eco-friendly larvicides against Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus (Diptera: Culicidae), Parasitol. Res. 115 (7) (2016) 2771–2778. https://doi.org/10.1007/s00436-016-5025-2.

Benelli G., Pavela R., Drenaggi E., Desneux N., Maggi F. - Phytol, (E)-nerolidol and spathulenol from Stevia rebaudiana leaf essential oil as effective and eco-friendly botanical insecticides against Metopolophium dirhodum, Ind. Crop. Prod. 155 (2020) 112844. https://doi.org/10.1016/j.indcrop.2020.112844.

Renjana P. K., Thoppil J. E. - Larvicidal activities of the leaf extracts and essential oil of Premna latifolia Roxb. (Verbenaceae) against Aedes albopictus Skuse (Diptera: Culicidae), J. Appl. Pharm. Sci. 3 (6) (2013) 101–105.

Das A. K., Suresh Kumar J., Swamy P. S. - Larvicidal activity and leaf essential oil composition of three species of genus Atalantia from south India, Int. J. Mosq. Res. 2 (3) (2015) 25–29.

Silva A. M. A., da Silva H. C., Monteiro A. O., Lemos T. L. G., de Souza S. M., Militão G. C. G., Santos H. V., Alves P. B., Romero N. R., Santiago G. M. P. - Chemical composition, larvicidal and cytotoxic activities of the leaf essential oil of Bauhinia cheilantha (Bong.) Steud, South African J. Bot. 131 (2020) 369–373.




DOI: https://doi.org/10.15625/2525-2518/58/6A/15499 Display counter: Abstract : 30 views. PDF : 16 views.

Refbacks

  • There are currently no refbacks.


Bioteknologi Agrikultur

Index: Google Scholar; Crossref; VCGate; Asean Citation Index

Published by Vietnam Academy of Science and Technology