Ultrathin perfect absorber based on integrated metamaterial



We improved common metamaterial perfect absorber (MPA) by integrating four embedded inductors or replacing four embedded capacitors in the same compact structure. The obtained results confirmed that the lumped-capacitors MPA maintains an extreme thickness t = λ/940, where λ is operating wavelength at 106.3 MHz. Besides, by replacing these capacitors by inductors in the initial designed-MPA structure, we obtained an effective thickness of t = λ/53 at 1.9 GHz. Furthermore, we explained the absorption mechanism in terms of the magnetic energy and power loss distributions related to the impedance-matching effect.


Metamaterials, Perfect absorption, Low frequency

Full Text:



Veselago V. G. - The electrodynamics of substances with simultaneously negative values of ε and μ, Sov. Phys. Usp. 10 (1968) 509.

Ziolkowski R. W. - Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs, Opt. Express 11 (2003) 662.

Chen J., Wang Y., Jia B., Geng T., Li X., Feng L., Qian W., Liang B., Zhang X., and Gu M. - Observation of the inverse Doppler effect in negative-index materials at optical frequencies, Nature Photonics 5 (2011) 239.

Duan Z. Y., Wu B.-I., Xi S., Chen H., and Chen M. - Research progress in reversed cherenkov radiation in double-negative metamaterial, PIER 90 (2009) 75.

Smith D., Padilla W. J., Vier D., Nemat-Nasser S. C., and Schultz S. - Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 84 (2000) 4184.

Thuy V. T. T., Tung N. T., Park J. W., Lam V. D., Lee Y. P., and Rhee J. Y. - Highly dispersive transparency in coupled metamaterials, J. Opt. 12 (2010) 115102.

Jang M. S. and Atwater H. - Plasmonic rainbow trapping structures for light localization and spectrum splitting, Phys. Rev. Lett. 107 (2011) 207401.

Wu C., Khanikaev A. B., and Shvets G. - Broadband slow light metamaterial based on a double-continuum fano resonance, Phys. Rev. Lett. 106 (2011) 107403.

Fang N., Lee H., Sun C., and Zhang X. - Sub–diffraction-limited optical imaging with a silver superlens, Science 308 (2005) 534.

Scarborough C. P., Jiang Z. H., Werner D. H., Rivero-Baleine C., and Drake C. - Experimental demonstration of an isotropic metamaterial super lens with negative unity permeability at 8.5 MHz, Appl. Phys. Lett. 101 (2012) 014101.

Pendry J. B. - Negative refraction makes a perfect lens, Phys. Rev. Lett. 85 (2000) 3966.

Schurig D., Mock J. J., Justice B. J., Cummer S. A., Pendry J. B., Starr A. F., and Smith D. R. - Metamaterial electromagnetic cloak at microwave frequencies, Science 314 (2006) 977.

Driscoll T., Kim H. T., Chae B. G., Kim B. J., Lee Y. W., Jokerst N. M., Palit S., Smith D. R., Ventra M. D., and BasovD. N. - Memory metamaterials, Science 325 (2009) 1518.

Lee W. S., Lee H. L., Oh K. S., and Yu J. W. - Uniform magnetic field distribution of a spatially structured resonant coil for wireless power transfer, Appl. Phys. Lett. 100 (2012) 214105.

Fitzek F., Rasshofer R. H., Biebl E. M., In: Proceedings of 2010 European Microwave Conference (EuMC). London: Horizon House Publications Ltd., (2010) 1401–1404.

Landy N. I., Sajuyigbe S., Mock J. J., Smith D. R., and Padilla W. J. - Perfect

metamaterial absorber, Phys. Rev. Lett. 100 (2008) 207402.

Hoa N. T. Q., Tuan T. S., Hieu L. T., and Giang B. L. - Facile design of an ultra-thin broadband metamaterial absorber for C-band applications, Sci. Rep. 9 (2019) 468.

Kalraiya S., Chaudhary R. K., and Abdalla M. A. - Design and analysis of polarization independent conformal wideband metamaterial absorber using resistor loaded sector shaped resonators, J. Appl. Phys. 125 (2019) 134904.

Khuyen B.X., Tung B.S., Tung N.T., Hien N.T., Kim Y.J., Chen L.Y., Lee Y.P., Linh P.T., Lam V.D. - Realization for dual-band high-order perfect absorption, based on metamaterial. J. Phys. D: Appl. Phys. 53 (2020) 105502.

Khuyen B. X., Tung B. S., Kim Y. J., Hwang J. S., Kim K. W., Rhee J. Y., Lam V. D., Kim Y. H., and Lee Y. P. - Ultra-subwavelength thickness for dual/triple-band

metamaterial absorber at very low frequency, Sci. Rep. 8 (2018) 11632.

Munk B. A., Frequency Selective Surfaces: Theory and Design (Wiley-Interscience, New York, 2000).

Okano Y., Ogino S., and Ishikawa K. - Development of optically transparent ultrathin microwave absorber for ultrahigh-frequency RF identification system, IEEE Trans. Microwave Theory Tech. 60 (2012) 2456.

Yagitani S., Katsuda K., Nojima M., Yoshimura Y., and Sugiura H. - Imaging radio-frequency power distributions by an EBG absorber, IEICE Trans. Commun. E94-B (2011) 2306.

Costa F., Genovesi S., and Monorchio A. - A chipless RFID based on multiresonant high-impedance surfaces, IEEE Trans. Microwave Theory Tech. 61 (2013) 146.

Costa F., Genovesi S., Monorchio A., and Manara G. - Low-cost metamaterial absorbers for sub-GHz wireless systems, IEEE Antennas Wireless Propag. Lett. 13 (2014) 27.

Yoo Y. J., Zheng H. Y., Kim Y. J., Rhee J. Y., Kang J.-H., Kim K. W., Cheong H., Kim Y. H., and Lee Y. P. - Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell, Appl. Phys. Lett. 105 (2014) 041902.

Zuo W., Yang Y., He X., Zhan D., and Zhang Q. - A miniaturized metamaterial absorber for ultrahigh-frequency RFID system, IEEE Antennas Wireless Propag. Lett. PP(99) (2016) 1.

CST of America, Inc., 492 Old Connecticut Path, Suite 505, Framingham, MA 01701, USA. http://www.cst.com

Zhou J., Economou E. N., Koschny T., and Soukoulis C. M. - Unifying approach to left-handed material design, Opt. Lett. 31 (2006) 3620.

DOI: https://doi.org/10.15625/2525-2518/0/0/15098 Display counter: Abstract : 59 views. PDF : 5 views.


  • There are currently no refbacks.

budidaya tani

Index: Google Scholar; Crossref; VCGate; Asean Citation Index

Published by Vietnam Academy of Science and Technology