
 
 
Tạp chí Khoa học và Công nghệ 50 (4) (2012) 441-452 

 

STABILIZATION CONTROL OF THE DIFFERENTIAL MOBILE 

ROBOT USING LYAPUNOV FUNCTION AND EXTENDED 

KALMAN FILTER 

Thuan Hoang Tran
*
, Manh Duong Phung, Thi Thanh Van Nguyen,                   

Quang Vinh Tran
 

University of Engineering and Technology, VNU, Hanoi City, Vietnam 

*
Email: thuanhoang@donga.edu.vn 

Received: 24 July 2012; Accepted for publication: 19 October 2012 

ABSTRACT 

This paper presents the design of a novel control model to navigate the differential mobile 

robot to reach the desired destination from an arbitrary initial pose. The designed model is 

divided into two stages: the state estimation and the stabilization control. In the state estimation, 

an extended Kalman filter is employed to optimally combine the information from the system 

dynamics and measurements. Two Lyapunov functions are constructed that allow a hybrid 

feedback control law to execute the robot movements. The asymptotical stability and robustness 

of the closed loop system are assured. Simulations and experiments are carried out to validate 

the effectiveness and applicability of the proposed approach. 

Keywords: robot stabilization control, Kalman filter, Lyapunov function, mobile robot control   

1. INTRODUCTION 

Reliable navigation is the key problem in autonomous mobile robotics and it can be split 

into two categories corresponding to indoor and outdoor environments [1 - 5]. Success in 

navigation requires success at the four building blocks of navigation: perception, the robot must 

interpret its sensors to extract meaningful data; localization, the robot must determine its 

position in the environment; cognition, the robot must decide how to act to achieve its goals; and 

motion control, the robot must modulate its motor outputs to achieve the desired trajectory [6]. 

Of these four components, motion control has received great research attention due to the 

challenge in robot model. In general, the dynamics and kinematics of the mobile robot are 

nonlinear and nonholonomic (a system whose state depends on the path taken to achieve it) and 

consist of uncertainty parameters. The design of controller, therefore, requires nonlinear and 

statistical approaches. A number of methods to stabilize a nonholonomic system via feedback 

control have been proposed in the literature [7 - 12]. Most papers, however, assumed ideal 

condition in which there are no disturbances on the mobile robot system. In [12], e.g., feedback 

laws that globally exponentially stabilize the mobile robot with no input disturbances and 

measurement noises were proposed. In [7] globally stabilizing time-varying feedbacks for 
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nonholonomic systems were derived via introducing chain form systems to model the kinematics 

of the mobile robot. Although a discussion of their convergence properties was performed,  the 

case was, however for ideal conditions. In practice, the noises arisen from the system kinematics 

and measurement devices are unavoidable so the robustness issue against actuator disturbances 

and measurement noises deserves further attention. During the past decade, several methods 

have been proposed to study the robust stabilization of the nonholonomic system by using the 

Lyapunov stability theory [13 - 16]. In [15], an adaptive sliding-mode dynamic controller for 

wheeled mobile robots was designed and implemented. It is worth to note that, the authors of 

[13] and [14] have introduced the navigation variables, that were transformed from configuration 

variables; namely: the distance from the robot frame to the target frame, the angle between the 

robot-to-target vector and the target frame, and the angle between the robot-to-target vector and 

the current vehicle orientation. With those definitions, a stabilization control method that 

provides a fast and natural performance path could be conducted.  

We have developed a multi sensor robot with use of an Extended Kalman Filter for the 

purpose of localization [17, 18]. It becomes interesting to apply navigation variables, following 

the approach of [13, 14], to improve the stabilization of our robot and the preliminary simulation 

results of such investigation have been reported in [19]. In the present paper, after introducing 

with more details the kinematics equations we aim to present stabilization research by both 

simulation and experiment. In order to make the paper more complete, we arrange it as follows. 

Details of the control problem are described in Section II. The algorithm for state estimation 

using EKF is explained in Section III. Section IV introduces the design and implementation of 

the stabilization controller. Simulations and experiments are presented in section V. The paper 

concludes with an evaluation of the system, with respect to its strengths. 

2. PROBLEM FORMULATION 

Consider the scenario shown in Fig.1a, with an arbitrary position and orientation of the 

robot and a predefined goal position and orientation. The actual pose error vector between the 

initial and the final configuration given in the robot reference frame is e = [ , , ]R Tx y   with x, y 

and θ being the goal coordinates of the robot. 

The task of the controller layout is to find control laws, if it exists, of the translational and 

the angular velocity such that the error e is driven toward zero, lim ( ) 0
t

e t


  

 
a) 

 
b) 

Figure 1. (a) The goal of the controller; (b) The robot poses and parameters 
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To formulate the problem in more details, we consider the two wheeled, differential-drive 

mobile robot with non-slipping and pure rolling. The kinematics of the described robot is given 

as (1). The kinematic equations in the navigation variables domain (,,) are written as (2). 
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X v
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where  and v are the control inputs which are, respectively, the rotational angular and the 

translational speed of the robot; X, Y, θ are the coordinates and the orientation of the robot in the 

global coordinate frame OXY. 

Let ( ˆˆ ˆ, ,X Y  ) and ( , ,X Y  ) be, respectively, the estimate and the real poses of the robot. 

Let (X , Y, ) be the estimate noises of the robot pose ( , ,X Y  ). The estimate values of the 

position ( ˆ ˆ,X Y ) and orientation ̂  are defined as follows: ˆ
XX X   , ˆ

YY Y   , ˆ
     

where X X  , Y Y  ,     are the absolute maximum values of the measurement 

noises of the position ( ˆ ˆ,X Y ) and orientation ̂ , respectively. Let , ,     denote the state 

feedback disturbances of the navigation variables (,,): 
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The estimate values of the navigation variables (,,) are: 
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The input disturbances of the translational and angular velocities are defined by v  ,  ; 

,v v       , where ,v    are the absolute maximum of the input disturbances. 

With the existing of input disturbances, (2) is rewritten as follows: 
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without loss of generality, we assume that the goal desired configuration of the system is 

( , , ) (0,0,0)d d dX Y    
which can also be expressed by ( , , ) (0,0,0)d d d    . The aim of the paper 
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is to establish a stabilization control law for the mobile robot that is robust against input 

disturbances and measurement noises. 

3. SYSTEM STATE ESTIMATION 

Our approach for the proposed problem is the development of a closed-loop controller in 

which the feedback state are estimated by using an extended Kalman filter (EKF). The control 

law is then derived by constructing appropriate Lyapunov functions with constraints that 

asymptotically stabilize the system. Fig. 2 shows the diagram of the controller. 

 

Figure 2. The control model 

The design of the stabilization control block will be discussed in the next section. In this 

section, details of the state estimation using EKF is presented. 

During one sampling period t, the rotational speed of the left and right wheels L and R 

create corresponding increment distances sL and sR traveled by the left and right wheels of the 

robot, respectively: 

           L L R Rs tR s tR                                              (6) 

These can be translated to the linear incremental displacement of the robot’s center s and 

the robot’s orientation angle  : 

2

L R R Ls s s s
s

L


    
   

                                       (7) 

The coordinates of the robot at time k+1 in the global coordinate frame can be then updated 

by: 
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        
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                                    (8) 

Let [ ]Tx yx be the state vector. This state can be observed by some absolute 

measurements, z. These measurements are described by a nonlinear function, h, of the robot 

coordinates and a measurement noise, v. Denoting the function (8) as f, with an input vector u, the 

robot can be described by: 
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1 ( , , )

( , )

k k k k

k k k

f

h

 



x x u w

z x v
                                                          (9) 

where the random variables wk and vk represent the process and measurement noise, respectively. 

They are assumed to be white noises, independent to each other and with normal probability 

distributions:  ~ (0, )  ~ (0, )  ( ) 0T

k k k k i jE w N Q v N R w v  

The steps to calculate the EKF are then realized as below: 

1. Prediction step with time update equations:  

   1 1
ˆ ˆ( , , )k k kf

 x x u 0                                                          (10) 

1 1

T T

k k k k k k k



  P A P A W Q W                                           (11) 

where ˆ n

k

 x  is the priori state estimate at step k given knowledge of the process prior to step 

k, ˆ
k


P denotes the covariance matrix of the state-prediction error, Ak is the Jacobian matrix of 

partial derivates of f to x; Wk is the Jacobian matrix of partial derivates of f to w. 
1kQ is the 

input-noise covariance matrix which depends on the standard deviations of noise of the right-

wheel rotational speed and the left-wheel rotational speed.  

2. Correction step with measurement update equations:
   

       
1( )T T

k k k k k k k

   K P H H P H R                                        (12) 

               
  k

ˆ ˆ ˆ
k k k k

   -
x x K z h x                                         (13) 

                          ( )k k k k

 P I K H P                                                (14) 

where ˆ n

k x is the posteriori state estimation at step k given measurement 
kz , Kk is the 

Kalman gain, H is the Jacobian matrix of partial derivates of h to x, Rk is the covariance matrix 

of measurement noise. 

From (12), (13), (14), the estimated state is better than the raw measurement data and the 

variation in the estimation is reduced in each step to reach a stationary state. This estimation is 

the input for equations (5) and is essential for the controller design. 

4. CONTROLLER DESIGN 

Let   , , : , ,X Y R       be the set of all accessible configurations of the robot in the 

configuration space. Let         , , : , , , ,l PX Y X Y X Y X Y              be defined 

as the local configuration set of the robot close to the goal configuration. Let g l   be the 

global configuration set of the robot distant from the goal configuration. In this section, we 

derive the control law for the motion control in the global and local configurations. 

4.1. Stable control in the global configuration 

Let the Lyapunov function for the global configuration set be given by 



 
 
Thuan Hoang Tran, Manh Duong Phung, Thi Thanh Van Nguyen, Quang Vinh Tran 

 446 

 2 22

1 2 0
2 2

g g g

h
V V V

  
                                          (15) 

From (15), Vg is always positive. If we find the constraint of the inputs v(t) and ω(t) so that 

1 2g g gV V V   is always negative then the system is asymptotically stable and the control law 

successfully drives the robot to the destination. 

Let cosvv k    , the term 
1gV  becomes 
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    

   
         (16) 

We can choose a sufficiently large gain Kv so that 2 2cosvk    is much more dominant than the 

terms 2 . cos sinvk      and . cosv   . (16) become 
1 0gV   in the region of g  which 

implies that the term Vg1 converges to a nonnegative finite limit. Consider the term 
2gV : 
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2

cos sin cos sinv v v
g

hk k
V 




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 
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The term 2k  is much more dominant than the terms  , 
 

 
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 sinv h


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 




 so 

2 0gV  .  

We have shown that when the robot is in the configuration set g , the derivative of the 

Lyapunov function 0gV   becomes semi-definite negative. As a result, by using the control law 

(19), the robot, which initially starts from the global configuration set g , will be rendered to 

the local configuration set 
l . The control law in the global configuration set g is rewritten as 

follows: 

 cos sin
cos v

v

hk
v k k

   
   

 


                        (19) 

 

4.2.  Stable control in the local configuration 
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The control law (19) is asymptotically stable in the global configuration g . It, however, 

is not stable in the local configuration 
l . This can be proven as follows. 

Assume that the navigation variable  goes to small parameters /p v vk  . The 

variables (,) go to their small disturbances ( , ). The system kinematics (5) becomes:  

 
 

 

 
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  

 

  

   
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   


 



                   (20) 

Because /P v vk  , we get 

2 2 2 2

1 cos cos sin cos 0g v v v v P P vV k k k                      (21) 

In (21), Vg1 is bounded; thus, ρ is also bounded. However, when 

 
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v v v P vv

P P

k kk h
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 
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 
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   
      
   

 then  diverges from zero causing the 

system to be unstable. In the rest of the paper, we will re-design the control law to obtain the 

robustness property of the closed loop system. 

For the local configuration set 
l , let a Lyapunov function be given as: 

 
22

0
2 2

d

lV
  

                                                         (22) 

Let 
e d     and e d      , the derivative of Vl  becomes: 

cosl e e eV v                                                      (23) 

Let the control law of the for the local configuration set 
l  be given as follows: 

cosv ev k k                                                 (24) 

where ,vk k  is positive gains. The term lV  becomes: 

2 2 2cos 0l v eV k k                                                  (25) 

This implies that the configuration of the robot will not escape to the larger values of (p, , ) 

when the robot configuration is in the set 
l and the system is again stable. 

5. SIMULATION AND EXPERIMENTS 
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To evaluate the functioning operation of the EKF-based state estimation and the stabilization 

controller, several simulations and experiments have been conducted. 

5.1. Simulation results 

Simulations were carried out in MATLAB in which the parameters were extracted from the 

real system [18]. The behaviors of the control law derived from the Lyapunov function in both 

configuration sets g  and 
l  were investigated. In the simulations, the initial configuration of 

the robot is (0,0,0) and the goal configurations are (2,2,30
0
), (2,2,60

0
) and (2,2,90

0
), 

correspondingly. The absolute maximum values of measurement noises and input disturbances 

are as follows: εp = εɸ = εα = 0.001; εv = εω = 0.001; the parameters for the controller are set as:              

kv = 10, kɸ = 100. Figure 3 shows the simulation results in which the final configurations of the 

robot are converged to the position (2,2) from three different directions. This implies the success 

of the controller. 

 
Figure 3. Simulation trajectories  with the assumption of random measurement noises and input 

disturbances 

5.2. Experimental results 

A) Experimental setup 

Experiments on a real mobile robot are implemented in a rectangular shaped flat-wall 

environment constructed from several wooden plates surrounded by a cement wall. The robot is a 

two wheeled, differential-drive mobile robot. Its wheel diameter is 10 cm and the distance 

between two drive wheels is 60 cm. The drive motors are controlled by microprocessor-based 

electronic circuits. Due to the critical requirement of accurate speed control, the PID algorithm is 

implemented. The stability of motor speed checked by a measuring program written by 

LABVIEW is  5 %. In case of straight moving, the speed of both wheels is set to 0.3 m/s. In 

turning, the speed of one wheel is reduced to 0.05 m/s in order to force the robot to turn to that 

wheel direction. The sensors employed as measurements include a compass sensor and a laser 

range finder. The compass sensor has the accuracy of 0.1
0
. The LRF has the accuracy of 30 mm 

in distance and 0.25
0
 in deflect angle. The sampling time T of the EKF is 100 ms. 
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B) State estimate evaluation 

The state estimation was experimentally evaluated in our previous work [18]. Different 

configurations of the EKF were implemented and it was concluded that the EKF algorithm 

improved the robot localization and the combination of all available sensors gave the optimal 

result. 

C) Stablization control 

In this experiment, we evaluate the applicability of the proposed controller in a real 

autonomous navigation application. The goal is to navigate the mobile robot from the starting 

point (0,0,0) to, respectively, reach the following destinations: (2,2,30
0
), (2,2,60

0
), (2,2,90

0
). 

Figure 4 describes the trajectories of the robot and Fig. 5 presents the tangent and angular 

velocities of the robot during the operation. The physically reaching the destinations (Fig. 4) and 

the convergence of tangent and angular velocities toward zero (Fig. 5) in all experiments imply 

the asymptotic stabilization of the designed controller. The matching between the experiment 

(Fig. 4) and simulation (Fig. 3) trajectories emphasizes the correctness of our approach. It is also 

noted that the convergence time among experiments are almost identical (around 70 seconds). 

This implies the reliability of the system operation.  

 

Figure 4. Operation trajectories of the robot   

  

Figure 5. Operation variation in tangent velocity (left) and direction (right)  
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In experiments, the real trajectory of the robot depends on the determination of control 

parameters α, λ, h. Consequently they can be tuned to be suitable to specific applications. In 

addition, the design of a hybrid controller in combination with an EKF-based estimator could 

ensure the robustness of the system in noise conditions. This is also the main contribution of our 

work. 

6. CONCLUSION 

In this paper, a new controller for the stabilization problem of mobile robot in the presence 

of system noise and measurement disturbances is proposed. A state estimation algorithm using 

EKF is implemented in which the knowledge of the system dynamics and the measurement 

information are combined in an optimal manner. Two Lyapunov functions corresponding to each 

subset configuration of the mobile robot is constructed and the control law is derived. The 

asymptotical stabilization of the system is theoretically analyzed and proven. Simulations and 

experiments confirm the validity of the proposed approach. 
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Bài báo trình bày một mô hình bộ điều khiển mới để điều khiển ổn định cho robot di động 

có hai bánh xe vi sai di chuyển đi đến một tọa độ đích mong muốn, từ một vị trí và hướng ban 

đầu bất kỳ của robot. Mô hình bộ điều khiển được chia thành hai giai đoạn: ước tính trạng thái 

và điều khiển ổn định. Trong giai đoạn ước tính trạng thái, một bộ lọc Kalman mở rộng được áp 

dụng để tổng hợp một cách tối ưu các thông tin từ hệ thống động lực và các phép đo. Hai hàm 

Lyapunov sau đó được thiết kế để xây dựng luật điều khiển phản hồi điều khiển chuyển động 

của robot. Sự ổn định tiệm cận của hệ thống điều khiển vòng kín  được chứng minh về mặt lý 

thuyết. Nhiều mô phỏng và thực nghiệm đã được thực hiện để chứng minh tính hiệu quả và khả 

năng ứng dụng của phương pháp đã đề xuất. 

 

Từ khóa: điều khiển ổn định Robot, bộ lọc Kalman, hàm Lyapunov,  robot di động. 

 


