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ABSTRACT 

This paper presents a method for controlling a mechanism of relative manipulation (MRM 
robot) that based on an algebraic approach to linguistic hedges in the fuzzy logic. The proposed 
model of MRM robot is introduced as a two-component mechanism of which two serial robots 
co-operate with each other to realize technological manipulations. MRM robot has complex 
structure; therefore, the robot system's mathematical equations describing dynamical behaviors 
are voluminous. Furthermore, the external components affect MRM robot's dynamics that are 
difficult to determine adequately and exactly. Applying the well-known methods (based on 
dynamical equations) such as PD/PID, computed torque algorithm etc. for robot control is 
difficult, especially with MRM robot. By dint of the human-like inference mechanism, designing 
controller via the fuzzy logic can overcome the mentioned drawbacks. However, the linguistic 
variables in the fuzzy logic are not represented by any physical values; and hence, the 
comparison among linguistic variables is unable. Moreover, the composition of fuzzy relations 
and the defuzzification use approximation functions which trigger error in data process. Hedge 
Algebras (HA) gives favorable conditions to restrict the fuzzy logic's drawbacks because the 
linguistic labels in Hedge Algebras are represented by the semantic values; and, the composition 
of fuzzy relations and the defuzzification are processed by simple interpolation and mapping 
functions. The obtained results from HA controller are compared to the obtained results from 
two methods which are fuzzy controller and computed torque controller. 

Keywords: mechanism of relative manipulation (MRM robot), hedge algebras. 

1. INTRODUCTION 

The mechanism of relative manipulation (MRM) robot includes two serial/parallel robots 
which has complex structure [1, 2]; thus, the robot's dymical equations are complicated [3, 4] 
and [5]. It causes the difficulty when applying classical algorithms for robot control. In [6], the 
fuzzy logic is applied to control MRM robot that overcomes the mentioned problem. Besides, 
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the obtained results from fuzzy controller are compared with the obtained results from computed 
torque controller to evaluate the reliability. The comparison shows the benefits when applying 
the fuzzy logic to control MRM robot. However, the application of fuzzy logic still exists several 
limitations, namely the fuzzy logic's linguistic variables cannot be compared with each other, the 
use of fuzziness measure and composition of fuzzy relations is still complicated; the 
defuzzification must be processed by approximation functions; and hence, it leads to the error in 
implementation process. With specific features, Hedge Algebras (HA) can overcome aboved 
drawbacks. Firstly, the linguistic labels in HA are represented by the physical values (namely the 
semantic values of each linguistic label is calculated by the semantically quantifying mapping), 
so they can be compared with each other. Moreover, the input and output do not need the 
defuzzification because the semantically quantifying mapping of hedge algebras maps 
input/output's physical values to the value domain [0, 1] to process; and therefore, to calculate 
the physical values of controller's outputs, we just need to map their semantic value (belongs to 
[0, 1]) to their physical domain. The calculation of output's semantic value is conducted by an 
interpolation function. The product operator and the average operator are usually used to 
transform m-demension SAM table (the table of the semantic relationship between inputs and 
outputs) to 2-dimension SAM table, and then building the interpolation function. By doing this, 
the composition of fuzzy relations, the fuzziness measure and the defuzzification are avoided. As 
a results, the complexity is reduced and the accuracy is enhanced. Several papers applied HA in 
control and obtained reasonable results, as [7 - 16]. However, applying HA to robot control is 
relatively new. This paper proposes a method for controlling a mechanism of relative 
manipulation that based on an algebraic approach to linguistic hedges in fuzzy logic. To evaluate 
the proposed method, the obtained results from HA controller are compared to the obtained 
results from two methods which are presented in [6].   

2. MRM ROBOT'S KINEMATIC AND DYNAMICAL MODEL 

Figure 1 presents 5-DOF MRM robot model which is used for welding (or lazer machining), 
including 3-DOF tool-robot (T), 2-DOF jig-robot (B), and technological object (W), (as 
presented in [6]). The tool-robot consists of unmovable base L10, movable links are denoted by 
L11, L12 and L13. The jig-robot consists of unmovable base L20 and movable links L21, L22. 

2.1 MRM robot's manipulation motion 

The motion of the links:  

Links L11 and L12 rotate around axes z10 and z11 respectively which are performed by 
corresponding angles Ө11 and Ө12; link L13 translates along axis z12 which is performed by d13. 

Links L21 and L22 rotate around axes z20 and z21 respectively which are performed by 
corresponding angles Ө21 and Ө22. 

The adequately generalized coordinates of MRM robot is presented by: 

 [ ] [ ]T T

1 5 11 12 13 21 22q ,..,q , ,d , ,= = θ θ θ θq  (2.1) 

MRM robot's kinematic parameters are taken as given in [6] and presented in Table 1. 

Parameters d11, a11, a12 are kinematic dimensions of the tool-robot, Ө20, d20, a20, α20, are 
Denavit-Hartenberg parameters describing the position and the orientation of the jig-robot's base 
frame in the general base frame. 
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Table 1. Parameters describe the robot structure. 

d11 a11 a12 Ө20 d20 a20 α20 d22 

0.82(m) 0.33(m) 0.33(m) 0  0.3(m)  0.45(m) -900 0.1(m) 

During the implemention process of a technological manipulation, link L13 brings the tool 
performing the relative motion to the workpiece (set-up on movable jig-table L22). The welding 
is conducted by the tool's manipulation motions which work on the workpiece. These motions 
are represented through robot's manipulation coordinates in the moving space. The manipulation 
coordinates are determined by the position and the orientation of Catersian coordinates 
x13y13z13(on link L13) in Cartesian coordinates x22y22z22 (on movable jig-table L22). The robot's 
manipuation coordinates are presented by: 

 [ ] TT 22 22 22 22 22 22
1 2 6 p13 p13 p13 p13 p13 p13p ,p ,...,p x , y , z , , , = = α β η p  (2.2) 

The bottom right indexes of elements are represented by index of L13, the upper left indexes 
are represented by index of L22. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. MRM robot – workpiece.  
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Depending on the technological object and the kind of technological manipulation, the 
elements of the vector p are determined as the function of time or numeric data. As mentioned, 
to compare the proposed method with the computed torque controller and the fuzzy controller 
(as presented in [6]), we consider the technological manipulation that MRM robot welded tube 
part to machine part. 

 

 

 

 

 

 

 

 

 

 

Figure 2. Welding path is realized by MRM robot. 

The method of kinematic investigation in [6] is used for this paper; and, the welding 
process is shown in Figure 2. Machine part 2 is on jig-robot’s Table 1 which is welded with tube 
3 following butt-weld 4, with parameters:  
- The path of the butt-weld 4 is intersection of tube surface with machine part’s surface 5, 

which is a parallel plane with y22 axis and slope an angle γ to x22 axis.  
- The tube axis z is perpendicular to the surface 5. 
- Center O of welding path’s circle have coordinates (xo, yo, zo) in the frame x22y22z22, 

radius of the tube is r. 
- The axis of welding tool (welding gun) z13 is coplanar and sloping an angle λ with tube 

axis. 
- The velocity vh of welding tool’s head along the welding path which is given based on the 

welding technics. 

Table 2 shows the parameters appearing in this application which are the same in [6] exept 
for vh (in [6], vh = 0.2 m/s). 

Table 2. Parameters describe the machining object. 

γ xo yo zo r λ vh 

300 0.1(m) 0.1(m) 0.1(m) 0.07(m) 450 0.0275(m/s) 
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By virtue of technological object, the technical requirements for welding manipulation as 
aboved and parameters in Table 2; the relative position of welding gun need to be determined, 
namely the elements of p (2.2). The kinematics and plan motion for robot is investigated by 
applying the same method in [2] and [6]. The obtained trajectory will be the input data (desired 
trajectory) for the controller. These data are saved to files Position.txt, Velocity.txt, 
Acceleration.txt which contain robot's trajectory, including corresponding position, velocity and 
acceleration. 

2.2. MRM robot's dynamical equations 

As given in [6], the robot's dynamical equations are writen in the matrix form:  

 ( ) ( , ) ( )+ + + =M q q C q q G q Q Uɺɺ ɺ  (2.3) 

where  

 ( )
5

T T
Ti i Ti Ri ci Ri

i=1 5x5

(q) J m J +JΘ J
 =  
 
∑M  (2.4) 

( ) [ ] ( ) ( )
5

T kj lj kl
1 2 5 j k l

l k jk,l 1

m m1 m
, c ,c ,..,c ,      c k, l; j q q ,     k, l; j

2 q q q=

 ∂ ∂ ∂= = = + −  ∂ ∂ ∂ 
∑C q qɺ ɺ ɺ  (2.5) 

 ( ) [ ]T
1 2 5 j

j

g ,g ,..,g ,      g
q

∂Π= =
∂

G q  (2.6) 

The values mi, JTi and JRi are the mass, the translational Jacobian, and the rotational 
Jacobian respectively of link I; Θci is the inertia tensor of the ith link about center of mass Ci 

which is expressed in the frame with origin at the i th link’s center of mass; i = 1,..,5; Π is the 
potential energy of the system; , ,q q qɺ ɺɺ  are vectors of the joint positions (2.1), velocities, 
accelerations, respectively; (k, l; j) is Christoffel notations;  mkl (k,l = 1,.., 5) are elements of the 
mass matrix M (q). 

The vector U is the expression of the calculated force/torque which matchs the programed 
motion of the robot [17, 18]. 

 [ ]T

1 2 5U , U ,..,U=U  (2.7) 

The vector Q is the expression of the generalized force of friction, the disturbance as well 
as other non-conservative forces applying on the robot. 

 [ ]T

1 2 5Q ,Q ,..,Q=Q  (2.8) 

In general, it is hard to build up exactly the robot’s dynamical equations because of the 
difficulty of their determiniation. To solve these drawbacks, a method based on the fuzzy logic 
which is proposed in [6] for controlling MRM robot. However, the fuzzy method still exists 
some shortcomings. This paper proposes a method based on HA to overcome above drawbacks 
and restrict the shortcoming of the fuzzy controller. 

We assume that Q can be determined exactly to have comparable base between the 
methods. The vector Q is the combination of friction and disturbance forces. It depends on the 
generalized position and the generalized velocity: 
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 T
fr 1 5[q ,...,q ]= µQ ɺ ɺ  (2.9) 

 T
dis 1 2 3 4 4 5[sin(q )+1,cos(q )+1,sin(q ),sin(q )cos(q ),sin(2q )]= δQ  (2.10) 

then  

 fr dis= +Q Q Q  (2.11) 

with µ = 0.003 and δ = 0.5. 

Based on this condition, the computed torque method is conducted to obtain the clear 
control results. 

Q is not used for the fuzzy method and the HA method. The obtained results from three 
methods will be compared with each other to evaluate the HA controller. 

 3. HEDGE ALGEBRAS CONTROLLER 

The technical requirements are described in the previous section which are the position, 
orientation and the velocity of the welding gun in welding technics. To control the welding gun 
following the desired welding path in jig-table's Cartesian coordinates, MRM robot's joints are 
controlled following their trajectory which are received from the inverse kinematics. Throughout 

this paper, qi(t) andq (t)iɺ  present actuated joint’s position and velocity of MRM robot, ��
�(t), 

(t)d
iqɺ present desired position and velocity.  

The controller is designed so that qi(t) and (t)qiɺ  follow ��
�(t) and (t)d

iqɺ . By doing this, the 

welding gun follows the desired welding path in the Cartesian coordinate system of the jig-
robot’s table. In other words, the control purpose is to adjust the driving torque at actuated joints 
so that the position error e(t) and the velocity error �� (t) are small as desire. 

The position error and the velocity error are computed by: 

 
d

i i i
d

i i i

e (t) q (t) q (t)

e (t) q (t) q (t)

 = −
 = −ɺ ɺ ɺ

 (3.1) 

In [6], the fuzzy controller is proposed for controlling MRM robot which aims to reduce the 
difficulty of the dynamical identification. In addition, the computed torque controller is used to 
compare with the fuzzy controller. This paper uses these methods to get the results which are 
used to compared with the obtained results from proposed controller. The control rules and the 
parameters of fuzzy controller and computed torque controller are similarly chosen in [6]. 

3.1. Background of hedge algebras 

An algebra structure called hedge algebras - HA which is defined AX = (X, G, H, ≤) therein 
X = Dom(X) is a term-set of a linguistic variable X, G = {0, c-, W, c+, 1} is the set of the primary 
terms of linguistic variables (W is neutral element), H = {h-, h+} is a set of unary operations 
representing linguistic hedges and “≤” is a partially ordering relation in X.[12], [13]. 

If X and H are linearly ordered sets then AX is the linear hedge algebras. By dint of the 
action-effect of the hedgesh∈H on elementx∈X , we observe H(x) is a set of all elements 
hx	∈	X and 1...nhx h h x=  with 1,...,nh h ∈ H ; and therefore, H(x) is a linearly ordered set [14]. 
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If X is created from G and hedges therein G is a linearly ordered set, then X is also a 
linearly ordered set. Moreover, with u and v belong to X, if and, (v) v (u)u v u< ∉ ∉H H , then

(u) (v)<H H . In addition, if 1...nu h h x= and 1... (m n)mv h h x= < , then u is more special than v. 

Elements in H are comparable; and, ifh k≠ andhx kx= then x is a fixed point [13], [14], [15]. 

Fuzziness measure: a given fuzziness measure of element τ called fm(τ), τ ∈ X that the values of 
fm(τ) always belong to [0, 1] [16]. 

(1) fm(τ) = 0, if τ is clear.                                    
(3.2) 

(2) If h is a hedge and τ is a fuzzy value then hτ is more featured than τ, so we have 

fm(hτ) <fm(τ) and fm(hτ) = µ(h)fm(τ), with ∀τ ∈ X.   (3.3) 

(3) If c+, c– are two primary terms in X, then 

fm(c+) + fm(c–) = 1.                                (3.4) 

Semantically quantifying mapping: By fm is a fuzziness measure of X, semantically 
quantifying mapping υ: X → [0,1] is determined [12]: 

(1) ʋ(W) = θ = fm(c-), ʋ(c-) = θ – αfm(c-) = βfm(c-), ʋ(c+) =θ + αfm(c+)       (3.5) 

(2) ʋ(hjx) = ʋ(x)+ Sign(hjx).	∑ fmh�x��
�������� � ωh�x�fmh�x��           (3.6) 

where ω(h�x) = 
�
�[1 + Sign(hjx)Sign(hphjx)(β-α)], and 

j ∈ {−q ≤ j ≤ p&j ≠ 0} = [−q...p]. ∑ μh����
����  = α and ∑ μh���

���  = β, 

with α, β > 0 and α + β = 1. 

W is neutral element. 

In the fuzzy logic, the composition of fuzzy relations is demonstrated by m dimensional 
FAM table (the table of the fuzzy rules among the inputs and outputs), we will use the 
semantically quantifying mapping to convert FAM table to semantic table SAM. 

3.2. Applying hedge algebras for controlling MRM robot 

Step 1: Determining inputs/outputs 

The inputs of hedge algebras controller includingd d(t),  (t),  (t), (t)q q q qɺ ɺ which are desired 
trajectory, velocity and real trajectory, velocity of MRM robot. The output is adjusted torque u(t) 

at actuated joints so that(t), (t)q qɺ follow d d(t),  (t)q qɺ , in other words, e and � � are small as desire:  

d
i i iu τ τ= −  

here in  �  is real driving torque set at the ith actuated joints to ei and !"�  come to 0;    �
� is 

theoretical driving torque set at the ith actuated joints to ei and !"�  come to 0. 

Now, we can consider controller's inputs of e(t) and �� (t), output of u(t)  

[ ]1 5,...,
T

e e=e  

[ ]1 5,...,
T

e e=de ɺ ɺ  

[ ]1 5,...,u
T

u=u  
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where , ,i i ie e uɺ are position error, velocity error and ajusted torque at the ith actuated joint of 

MRM robot, respectively. Approximately physical domain of inputs/outputs are later used in 
Table 6. 

Step 2: Choosing hedge parameters 

Owning to the number of linguistic terms in the fuzzy controller, we chose hedge 
parameters so that each input/output, ,i i ie e uɺ  will be demostrated by five linguistic labels with 

five semantic values. This gives the same condition when designing two controllers for the 
purpose of comparing the proposed controller and the fuzzy controller. The set of the primary 
terms of linguistic variables and hedges are chosen such that if applying hedges to the set of the 
primary terms of linguistic variables, then we observe five linguistic values which present for 
each input/ output , ,i i ie e uɺ of each joint: 

G = {0, S, W, B, 1} with S= Small; B = Big. 
H = {H -, H+} with H - = L; H+ = V => q=1, p =1 herein L = Little; V= Very. 

Now, each input/output, ,i i ie e uɺ are presented by one hedge algebras which is created from 

the set of the primary terms of the linguistic variable G and the set of hedges H through a 
linearly ordering relation. However, we just use the partition k = 2 when creating linguistic 
values in each hedge algebras which aims to compare with the fuzzy controller. So, the linguistic 
terms in hedge algebras are presented by X = {VS, LS, W, LB, VB}. In the fuzzy controller, the 
linguistic values are the same for inputs/ outputs, but their physical domains are different. In the 
same way, with each hedge algebras present and,   i i ie e uɺ , their linguistic values are the same; 

and therefore, they will have the same semantic values. However, those values just describe 
semantics in individual input/ output's physical domains; and hence, by mapping their semantic 
values to their real physical domain, we observe different values for different inputs/ outputs. 

The values 0 and 1 in G present elements which have the smallest semantic value and the 
biggest semantic value, respectively; and, they are fixed points. The values 0 and 1 will be used 
when processing the input/ output by merging operators to avoid the loss of the information. 

By virtue of G and H, the fuzziness of the primary terms and hedges are measured through 
(3.2), (3.3) and (3.4). 

fm(S) = # = 0,5 . µ(L) = µ(V) = 0,5	→	α = β = 0,5 and fm(B) = 1- fm(S) = 0,5. 

In [6], the fuzzy terms are AL, AN, Z, DN and DL of which A, D, Z stand for negative, 
positive and zero, respectively; whereas N and L stand for small and big, respectively. Now, the 
fuzzy terms are transformed to HA-terms: 

AL => VS AN => LS Z => W  DN => LB DL => VB 

Step 3: The semantic representation of linguistic labels 

The usual fuzzy rule base is converted into a linguistic rule base to convert the ordinary 
linguistic labels into HA-terms. By virtue of above parameters, (3.5) and (3.6), the FAM table is 
transfomed to SAM table. In fuzzy controller, the composition of fuzzy relations is presented via 
Table 3 [6], including linguistic values which describe inputs/ outputs , ,i i ie e uɺ of controller. 

However, in hedge algebras, a set of rules is demonstrated by semantic Table 4 (m-SAM table), 
including the semantic values of the linguistic labels which describe , ,i i ie e uɺ . If inputs ,i ie eɺ
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belong to linguistic domains, with semantic value in [0, 1], then the controller will respond the 
output signal ui belong to the linguistic domain, with suitable semantic value to adjust,i ie eɺ  to 0. 

Table 3. FAM table (GTNN: linguistic values). 

GTNN  AL AN Z DN DL 

AL DL DL DL DN Z 

AN DL DN DN Z AN 

Z DL DN Z AN AL 

DN DN Z AN AN AL 

DL Z AN AL AL AL 

Table 4. m-SAM table (SV: semantic values). 

SV υ(VS) = 0,125  υ(LS) = 0,375 υ(W) = 0,5 υ(LB) = 0,625 υ(VB) = 0,875 

υ(VS) = 0,125 0,875 0,875 0,875 0,625 0,5 

υ(LS) = 0,375 0,875 0,625 0,625 0,5 0,375 

υ(W) = 0,5 0,875 0,625 0,5 0,375 0,125 

υ(LB) = 0,625 0,625 0,5 0,375 0,375 0,125 

υ(VB) = 0,875 0,5 0,375 0,125 0,125 0,125 

Table 5. 2-SAM table. 

m-dimentional SAM table presents the semantic relationship 
between the input and the output; and, it represents a super 
surface in 3-D space. Merging operator will be used to exchange 
m dimensional SAM table to 2-dimensional SAM table which 
aims to simplify the interpolation. This paper use Product 
operator.  

Table 5 represents 2-dimensional SAM table which is a 
curve in 2-D space R2. The horizontal axis is the integration of 
the semantic values of the linguistic labels which demonstrate ei 
and !"�  and the vertical axis is the semantic value of the linguistic 
label which describes ui. We can interpolate polynomial easily. In 
addition, a set of rules is chosen to be symmetry about semantics, 
so there is no point which has the similar horizontal degree with 
other ones.  

No case in interpolation should be left out, if input's 
physical value is on the left of linguistic value AL's physical 
domain then its semantic value is υ(0)= 0. If input's physical 
value is on the right of linguistic value DL's physical domain 
then its semantic value is υ(1)= 1 

0 1 
0.0156 0.875 
0.0469 0.875 
0.0625 0.875 
0.0781 0.625 
0.1094 0.5 
0.1406 0.625 
0.1875 0.625 
0.2344 0.5 
0.3281 0.375 
0.25 0.5 

0.3125 0.375 
0.4375 0.125 
0.3906 0.375 
0.5469 0.125 
0.7656 0.125 

1 0 
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Step 4: Determining output's physical value 

The controller's outputs are adjusted torques at actuated joints; however, the interpolation 
based on 2-dimensional SAM table which gives the semantic values of the linguistic variables. 
We need to determine real physical values of outputs via their semantics. To receive outputs' real 
physical values, we map their semantic values from [0, 1] to their individual physical domains. 

The simulink model for HA-controller is presented in Figure 3. 

 

Figure 3. Simulink model for HA controller. 

herein Position.mat and Velocity.mat are desired position and velocity which are obtained from 
kinematic problem and trajectory planning. Physical Domain is approximate domains of inputs 
and outputs, Torque.mat is approximate torque. HAs Control is controller via hedge algebras; 
Robot is the robot model, all are programmed in M-File  which are inserted into Simulink by 
Matlab Function. 

3. SIMULATION RESULTS 

The proposed model of MRM robot is described in section (2); and, its kinematic and 
dynamical parameters are shown in Table 7. In this paper, the mass, the center of mass and the 
inertia tensor are received from design software. By doing this, the proposed model of MRM 
robot is more accurate and closer to real robot model (because robot's links are not homogeneous 
and its cross sections are not unchanged in reality). Based on the technical requirements in 
section (2.1) and robot's kinematics and dynamics, we obtain the results in Figure 4 - Figure 11 
by applying above control methods. 

Table 6. Physical domains of inputs/output of HA controller. 

Joint ei !� i ui 

1 [-0.002, 0.002] (rad) [-0.06, 0.06] (rad/s)        [-42, 41.73] (N.m)                     

2 [-0.002, 0.002] (rad) [-0.09, 0.09] (rad/s)      [-47,46.08] (N.m) 

3 [-0.0001, 0.0001] (m) [-0.08, 0.08] (m/s) [-54.6, 55] (N)                  

4 [-0.0001, 0.0001] (rad) [-0.05, 0.05] (rad/s) [-68, 68] (N.m) 

5 [-0.0001, 0.0001] (rad) [-0.03, 0.03]  (rad/s)      [-8.0, 8.1] (N.m) 
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Table 7. Kinematic and dynamical parameters of MRM robot. 

Link 11 12 13 21 22 

Weight(kg) 8 8 3.5 50 20 

Coordinates of links' 
barycenter on local 

Cartesian coordinate 
system 

x(m) -0.165 -0.165 0 0 0.068845 

y(m) 0 0 0 0 0.022064 

z(m) 0 0 0.2 -0.077511 0.107575 

Inertia tensor (kg.m2) 

Ixx 0.002818 0.002716 0.041672 1.36253 0.204889 

Iyy 0.108298 0.115332 0.041672 1.146869 0.188627 

Izz 0.108825 0.115847 0.000166 1.861916 0.307898 

Ixy 0 0 0 0 0.005476 

Ixz 0.000381 -0.00002 0 0 0.008992 

Iyz 0 0 0 0 -0.002919 

 
Figure 4. Graph of desired and real trajectory of MRM robot's 5 joints. 

 

Figure 5. Graph of position error of the joint 11 (e1). 
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Figure 6. Graph of position error of the joint 12 (e2).  

 

 
Figure 7. Graph of position error of the joint 13 (e3). 

 

 
Figure 8. Graph of position error of the joint 21 (e4). 
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Figure 9. Graph of position error of the joint 22 (e5). 

 

Figure10. Desired and real welding path in Cartesian coordinate system x22y22z22 
of jig-robot’s table (Fig. 1). 

 

Figure 11. Position error between calculated welding path and real welding path 
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The desired and real welding path, received by torque, fuzzy and HAs controller overlap 
each other because the position error is very small (Fig. 10). Figure 11 shows the position error 
of each path. 

5. CONCLUSION 

The recevied results show that the proposed method is more accurate than the classical 
fuzzy method. Moreover, the application of HA in control will be easier to understand and 
simpler than the use of fuzzy logic. It brings several benefits for controlling engineering systems. 
This paper used 5 linguistic values for the fuzzification of inputs and outputs. To compare HA 
method with the fuzzy controller in the same condition, we just use the partition k=2 for 
inputs/output. The analysis and results contribute a meaningful part in the expansion of research 
and application of modern theories for controlling robots which have complex structure, such as 
MRM robot. However, the use of Product operator to convert m-SAM table to 2-SAM table can 
lead to the loss of the control information, so this problem will be analyzed in the next studies.  
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