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Abstract. This paper develops a finite element model based on first-order shear deformation 
theory for optimal placement and active vibration control of laminated composite plates with 
bonded distributed piezoelectric sensor/actuator pairs. The nine-node isoparametric rectangular 
element with five degrees of freedom for the mechanical displacements, and two electrical 
degrees of freedom is used. Genetic algorithm (GA) is applied to maximize the fundamental 
natural frequencies of plates and the constants feedback control method is used for the vibration 
control analysis of piezoelectric laminated composite plates. Numerical results showed the 
accuracy of the presented method against relevant published literatures. 
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1. INTRODUCTION 

During the past decade, the application of piezoelectric materials has steadily increased. 
The piezoelectric elements can be used as automotive sensors, actuators, transducers and active 
damping devices, etc. Piezoelectric materials show coupling phenomenon between elastic and 
electric fields, they induce an electric potential/charge when they are deformed, which is called 
as the direct piezoelectric effect. Conversely, an applied electric field will produce its 
deformation, which is named the converse piezoelectric effect. 

The location of piezoelectric sensor/actuator has significant influence on performance, such 
as controllability, observability, stability and efficiency of control systems. Hence, the problem 
of determining the optimal locations of actuators for the active vibration control of flexible 
structures plays important role in engineering application. 

Using the eigenvalues distribution of the energy correlative matrix of control input forces 
Ning [1] determined optimal number of actuators in active vibration control of structures. Qiu et 
al. [2] used discrete piezoelectric sensors and actuators to investigate active vibration control of 
smart flexible cantilever plate. Optimal placement of sensors and actuators is performed based 
on piezoelectric control equation. Han and Lee [3] used genetic algorithms to find the efficient 
locations of piezoelectric sensors and actuators in composite plates. Bruant et al. [4] also used d 
a genetic algorithm to optimize the number of sensors and location needed to ensure good 
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observability. Using modified control matrix and singular value decomposition (MCSVD) 
approach, Deepak et al. [5] studied the optimal placement of piezoelectric actuators on a thin 
plate. Ngoc and Thinh [6] used genetic algorithms to determine the efficient locations of 
piezoelectric actuators in cantilever laminated composite plate.  

The aim of present study is to develop a smart nine-nodded isoparametric element based on 
first-order shear deformation theory for optimal placement and active vibration control of 
laminated composite plates with collocated piezoelectric sensor/actuator pairs. The integer code 
genetic algorithm (GA) has been utilized to find the optimal locations of the piezoelectric pairs 
to maximize the natural frequencies of piezoelectric laminated composite plate and a constant 
feedback control algorithm is used for dynamic response control through a closed loop. 

2. PIEZOELECTRIC LAMINATED COMPOSITE FINITE ELEMENT MODELING 

2.1. Linear piezoelectric constitutive equations 

The constitutive relations for the piezoelectric composite materials of kth layer are given by 
[7, 8]: 

{ } { } { }kk k k kQ e E   = +    
σ ε                                  (1) 

{ } { } { } { }Tk k k k kD e p E = +  ε                                                      (2) 

where  for kth layer: {σk}  = { σx σy σxy σyz σxz}
T is the elastic stress vector; {εk} = { εx εy γxy γyz γxz}

T 

is the elastic stain vector; kQ 
  is the material stiffness matrix; {Ek} and {Dk} are the electric 

field and electric displacements vectors; [pk] and [ek] are the permittivity coefficient and 
piezoelectric stress coefficient matrices. 

2.2. Displacements and strains based on FSDT 

According to the first-order shear deformation theory by [9], the displacement field takes 
the following form 

0

0

0

θ
θ

= +
= +
=

x

y

u( x, y,z,t ) u ( x, y,t ) z ( x, y,t )

v( x, y,z,t ) v ( x, y,t ) z ( x, y,t )

w( x, y,z,t ) w ( x, y,t )

                                                                   (3) 

The compact form of the strain vector at any point (x, y, z) referred to the plate coordinate 
system can be expressed as 

{ } [ ]{ }0ε ε= Z                                                                                                         (4) 

where  

{ } { }ε ε ε γ γ γ=
T

x y xy xz yz                                                                             (5) 
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x y y x x y
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Hooke’s law for kth orthotropic layer of laminated composite plate in the local coordinate is 
written as  
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                                                      (8) 

where the elastic constants ijQ  are given by 

1 12 2 2
11 12 22 66 12 55 13 44 23

12 21 12 21 12 211 1 1

ν
ν ν ν ν ν ν

= = = = = =
− − −

E E E
Q , Q , Q , Q G , Q G , Q G             (9) 

in which 1 2,E E are Young’s modulus in the 1 and 2 directions, respectively; G12, G23, G13 
are the shear modulus in the 1–2, 2–3 and 3–1 planes, respectively; and νij are the Poisson’s 
ratios. 

The constitutive relations for the kth orthotropic lamina referred to (x, y, z) global coordinate 
systems is computed by 
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                                                    (10) 

where ijQ  are transformed plane reduced elastic constants of the kth lamina given by [9]. 

2.3. Isoparametric quadratic element 

The nine-nodded isoparametric quadratic element is adopted and the interpolation formulas 
for the spatial coordinates are: 

9 9

1 1= =

= =∑ ∑i i i i
i i

x N x            y N y                                                                                (11) 

where iN (ξ,η) are the quadratic shape functions. 

The generalized displacement vector { }u  at any point within the element can be written as  
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( ){ } ( ){ }
1

9ξ η ξ η
=

= =∑
n

i i
i

u , N , u ; n                                                                          (12) 

in which Ni is shape function, { }iu  is the nodal generalized displacement vector. From equations 

(4), (7) and (12), the generalized strain vector [ ]ε  are obtained as 

{ } [ ][ ]{ }ε = u iZ B u                                                                                                           (13) 

where 

 [ ] [ ] [ ] [ ]1 2 9 =  u
B B B ... B                                                                               (14) 

with  

[ ]       =       
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i i i iB B   B   B                                                                                   (15) 
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  (16) 

in which ,i xN , ,yiN  are the derivatives of the shape functions with respect to x and y respectively 

(I = 1, 2, … , 9). 

2.4. Electric field-electric potential relations 

The electric potential functions are assumed to be varied linearly across the thickness of the 
piezoelectric actuator/sensor layers. The electric potential vector { }iφ  of the ith element can be 

determined as 

{ } ( ) ( ) ( ){ }1 2φ φ φ φ=
TNp

i ...                                                                                (17) 

where Np is the number of piezoelectric layers and ( )kφ  (k=1, 2, .., Np) is the electric potential of 
the kth piezoelectric layer in the ith element. 

The electric field vector { }jE  in the jth piezoelectric layer can be expressed as 

{ }
( )

( )10 20
φ =

 
= − 
  

…
T

j
p

j

j j , , E    
h

, N                                                                   (18) 

where hj  is the thickness of  jth piezoelectric layer in the ith element. 

2.5. Equations of motion 

The equations of motion for the laminated composite plate with integrated piezoelectric 
sensors and actuators can be derived using the Hamilton’s principle [7, 10, 8]: 

0

0 0
φ

φ φφφ φ
        + =       

        

ɺɺ

ɺɺ

uu uuu

u c

K K FM u u

K K Q
                                                                  (19) 

or in the following form 
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φ

φ φφ

φ
φ

+ + =
 + =

ɺɺuu uu u

u c

M u K u K F

K u K Q
                                                                                            (20) 

Substituting the second equation of (20) into the first equation of (20) yields: 

( )1 1
φ φφ φ φ φφ

− −+ + = +ɺɺuu uu u u u cM u K u K K K u F K K Q                                                     (21) 

here u, φ, F and Qc are the global vectors of displacement, electric potential, applied force 
and charge, respectively. 

The mass matrix: 

[ ] [ ]ρ= ∫
T

uu

V

M N N dV                                                                             (22) 

The mechanical stiffness matrix: 

[ ] [ ] [ ][ ]= ∫
T

uu u u

S

K B H B dS                                                                        (23) 

The mechanical-electrical coupling stiffness matrix: 

[ ] [ ]φ φ   =   ∫
T

u u

S

K B e B dS                                                                              (24) 

The electrical-mechanical coupling stiffness matrix: 

φ φ   =   
T

u uK K                                                                                    (25) 

The piezoelectric permittivity stiffness matrix: 

[ ]φφ φ φ     = −     ∫
T

S

K B p B dS                                                                              (26) 

where [Bφ] is the strain potential matrix and [Bu] is called the strain-displacement matrix. 

For free harmonic vibration of the nth mode, Eq. (19) can be written in the form [7] 

( )2 0

0

φ

φ φφ

ω φ

φ

− + =

+ =
uu n uu u

u

K M u K

K u K
                                                                                     (27) 

where ωn is the angular natural frequency corresponding to mode n. By performing the 
condensation of the electrical potential degrees of freedom we obtain 

( )2 0ω− =*
n uuK M u                                                                                        (28) 

where  
1

φ φφ φ
−= −*

uu u uK K K K K                                                                                         (29) 

3. ACTIVE CONTROL BY SENSORS AND ACTUATORS 

Consider a laminated piezoelectric composite rectangular plate of sides a and b with 
thickness h consist n layers as shown in Figure 1. The top layer serves as actuator denoted with 
subscript “a” and the bottom layer serves as sensor denoted with subscript “s”. When the plate 



 
 

 Tran Huu Quoc, Vu Van Tham, Tran Minh Tu 

118 

vibrates, electric displacements are induced on the sensor surface. The charges are collected in 
the thickness direction. Through closed loop control, the charges increase the electric potentials, 
which are then amplified and converted into the open circuit voltage. Next, the signal is then fed 
back into the distributed actuator, which causes deformation. The stress resultant induced can 
actively control the dynamic response of the laminates. 

Figure 1. Schematic diagram of a laminate plate with integrated piezoelectric sensors and actuators. 

The actuating voltage vector φa can be written as 

φ φ φ= + ɺ
a d s v sG G                                                                                                          (30) 

in which, the constant gains Gd and Gv of the displacement feedback control and velocity 
feedback control introduced by [11], and φs is sensing voltage vector. 

Without the external charge Q, the generated potential on the sensor layer can be derived 
from the second equation of (20) as: 

1
φφ φφ −   =    s u ss s

K K u                                                                                             (31) 

and the induced charge due to the deformation is 

φ =  s u ss
Q K u                                                                                                          (32) 

Substitution of the above equation into equation (20) leads to 
1 1

φ φφ φφ φ φφ φφ φ
− −            = − −            

ɺa u a d u s v u sa a s a ss s
Q K u G K K K u G K K K u                     (33) 

Substituting equations (31) and (33) into equation (21), we get  

+ + =ɺɺ ɺ
*

uu a uuM u C u K u F                                                                                             (34) 

where Ca is the active damping matrix in the form 

1
φφ φφ φ

−    =     a v ua ss
C G K K K                                                                                (35) 

[ ] 1
φ φφ φ

−    = −     
*
uu uu d u us ss

K K G K K K                                                                   (36) 

If the structural damping effect is incorporated into equation (34), it can be rewritten as 

( )+ + + =ɺɺ ɺ
*

uu a d uuM u C C u K u F                                                                                (37) 

where Cd is the Rayleigh damping matrix of the structure, which can be expressed as  

α β= +d uu uuC  M  K                                                                                             (38) 
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in which α and β are the Rayleigh damping coefficients. 

4. OPTIMAL DESIGN 

In this section, the Genetic Algorithm is used to find the optimal placement of fix number 
of piezoelectric actuators/sensor pairs based on the objective fitness, which is the maximum 
fundamental natural frequency. The discrete optimal sensor/actuator pair location problem is 
formulated in the form of a zero-one optimization problem. A zero performs the absence of a 
sensor/actuator pair and one represents the presence of a sensor/actuator pair on the element. 
Genetic algorithms are random search techniques derived from principles of natural selection 
and genetics. The decision parameters are coded as a string of binary bits that corresponds to the 
chromosome in natural genetics. The objective function value corresponding to the design vector 
plays the role of fitness in natural genetics. The artificial recombination among the population of 
strings is based on the fitness and the accumulated knowledge. In every new generation, a new 
set of strings is created by creation of three kinds of children: Elite, Crossover and Mutation 
children. In each generation, the best parents are selected based on their fitness values.  

The application of GA for the optimization problems can be outlined as :  

• The initial population is created randomly. The length of each chromosome will be equal 
to the number of finite elements in the structure.  

• Calculate the fitness value. Genetic operators are applied to reproduce a new set of 
chromosomes. 

• The maximization problem is converted into a minimization problem with fitness                
f(x) = - Jopt. 

• A constraint of the problem is that the total number of sensor/actuator pairs is equal to a 
given fixed number. 

5. NUMERICAL RESULTS AND DISCUSSIONS 

5.1. Free vibration of simply supported square piezoelectric laminate 

The first numerical problem is used to validate the developed models. 

Free vibration of simply supported square piezoelectric laminates plates with thickness h = 
0.01 m and side length a = 50 h (Figure 2) is analyzed. The laminate consists of a four-layer 
Graphite-Epoxy sub-laminate and two PZT-4 outer layers. Each elastic layer has a thickness of 
0.2 h, whereas each piezoelectric layer has thickness of 0.1 h. The material properties are given 
in Ref. [12]. In addition, all layers are assumed to have a unit density (ρ = 1 kg/m3). The cases of 
closed-circuit condition and open-circuit condition are considered. Table 1 presented the 
fundamental natural frequencies of laminated piezoelectric rectangular plate. The results are 
compared with those reported by [12], in which the spline finite strip method was applied. 

It can be seen that the fundamental frequency of the plates in case of closed-circuit is 
smaller than in case of open-circuit condition. The maximum discrepancy between the results of 
present study with those of Akhras [12] is 2.55 % (%Error = 100%×(Akhras [12]–
Present)/Present). It can be concluded that the algorithm and the program developed in the 
present study are reliable. 
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Figure 2. Simply supported piezoelectric sensor/actuator plate. 

Table 1. Fundamental frequencies of simply supported six-layer square laminates. 

Lay-ups 

ω1/100 in radians per second 

Closed circuit Open circuit 

Akhras    
[12] Present % Error 

Akhras    
[12] Present % Error 

[p/0o/90o/90o /0o/p] 584.51 577.90 1.14 617.20 601.83 2.55 

[p/45o/-45o/45o/-45o/p] 630.80 632.16 0.22 661.39 654.25 1.09 

[p/45o/-45o/-45o/45o/p] 635.75 630.23 0.88 666.80 652.90 2.13 

5.2. Optimal placement of piezoelectric sensor/actuator pairs on plate using genetic 
algorithm (GA) 

The rectangular plate consisting of four composite layers and two surface-bonded 
sensor/actuator pairs are now considered. The assumed material properties are the same as 
problem 5.1. The objective of the optimization problem is to maximize the first natural 
frequency of the plate with various boundary conditions, geometrical dimensions and lamination 
sequences. The convergence of genetic algorithm (GA) as shown in Fig. 3. 
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Figure 3. Convergence of GA for              
SSSS plate. 
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5.2.1. The effect of boundary conditions 

A square plate (0.2 × 0.2) m with lamination sequence of [45o/-45o/45o/-45o] is studied. Five 
pairs of piezoelectric sensor/actuator pairs are bonded to each side of the plate (the size of each 
patch is equal to the size of each element). The plate is under different constraints: SSSS, CCCC, 
CFCF, CFFF. The results of the optimization problem are summarized in Table 2, and in Figures 
from 4 to 10. 

Table 2. Effect of constraints to optimized deflections. 

Case Boundary condition Optimized fundamental 
frequencies (ω1/100 in rad/s) 

1 SSSS 3159.54 

2 CCCC 3983.47 

3 CFCF 3054.34 

4 CFFF 535.34 

From the results shown in Table 2 and in Figures from 4 to 7, it is possible to deduce the 
optimal locations of piezoelectric pairs with respect to different boundary conditions. It is 
observed that the placement of piezoelectric pairs is optimal when they are closed to the 
constraints. 

 
Figure 4. Optimal locations of sensor/actuator on 

SSSS plate. 

 
Figure 5. Optimal locations of sensor/actuator on 

CCCC plate. 

 
Figure 6. Optimal locations of sensor/actuator on 

CFCF plate. 

 
Figure 7. Optimal locations of sensor/actuator on 

CFFF plate. 
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5.2.2. The effect of geometrical dimensions of the plate 

In this example, two SSSS plates of sizes (0.3×0.2) m and (1×0.2) m with lamination 
sequence of [45o/-45o/45o/-45o] are studied. Other conditions such as lamination sequence are the 
same as example 5.2.1 (a). The results of the optimal locations of the patches are shown in         
Figure 8 and Figure 9. 

  

Figure 8. Optimal locations of sensor/actuator on 
(0.3×0.2) m plate. 

      

Figure 9. Optimal locations of sensor/actuator on 
(1.0×0.2) m plate. 

The results show that the optimal locations of piezoelectric patches on square plates are 
different from those on rectangular plates. The optimal locations of piezoelectric patches change 
as the length-to-width ratio of the rectangular plate changes. 

5.2.3. The effect of lamination sequence 

In this example, two SSSS square plates (0.2 × 0.2) m with the following lamination 
sequences are considered: symmetric (p/θ/-θ/-θ/θ/p) and anti-symmetric (p/θ/-θ/θ/-θ/p). The 
results of optimal locations of piezoelectric patches are shown in Figure 10 and Figure 11. 

Figure 10. Optimal locations of sensor/actuator in 
cases of symmetric lamination sequences. 

       

Figure 11. Optimal locations of sensor/actuator in 
cases of anti-symmetric lamination sequences. 
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From Figure 10 and Figure 11, it can be observed that optimal locations of piezoelectric 
patches in case of symmetric lamination sequences are different to those in case of anti-
symmetric lamination sequences. In this investigation, in case of symmetric lamination 
sequences with ply angles of θ=450 or θ=900 the optimal locations are symmetric through the 
diagonal line of the plate as in Figure 10; while in case of anti-symmetric lamination sequences 
with ply angles of θ=450 or θ=900, the optimal locations are rotational symmetric as in       
Figure 11. 

5.2.4. Transient response of composite plates with integrated piezoelectric sensor/actuator pairs 

The square plate (0.2×0.2) m with lamination sequence of [-45o/45o/45o/-45o] is considered 
again to investigate the active vibration control of the cantilever plate. The plate consists of four 
composite layers and two surface-bonded sensor/actuator patches. The material properties are 
given in Table 2 following [11]. Here, the dynamic velocity feedback control algorithm is used 
to actively control the responses of the plate through a closed loop. The Newmark-β method  is 
used to analyze the transient response of the laminated plate. The parameters α and β are 
selected to be 0.5 and 0.25, respectively. All the simulations of transient response are performed 
using a time step of 0.01 s. 

 

 
(12a) 

 
(12b) 

 
(12c) 

 
(12d) 

Figure 12. Piezoelectric sensor/actuator pairs configurations. 
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We now consider four cases of placement of piezoelectric patches: 

• Case 1:  The sensor/actuator piezoelectric pairs are attached close to the clamped-edge 
– Figure (12a),  

• Case 2: The sensor/actuator piezoelectric pairs are attached along the middle line in x-
direction – Figure (12b), 

• Case 3: The sensor/actuator piezoelectric pairs are attached along the middle line in y-
direction – Figure (12c), 

• Case 4: Locations of the sensor/actuator piezoelectric pairs are the above-mentioned 
optimum results in Section 5.2.1  – Figure (12d).  

Figures 13 (a-d) show the results of transient analysis of the laminated composite plates 
integrated sensor/actuator piezoelectric pairs corresponding to the considered cases. The results 
show that in case 4 (sensor/actuator piezoelectric pairs are similar to reinforcing ribs for plate at 
the clamped edge), the vibration of the plate damps faster than the others. 
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Figure 13. Transient response of composite plates with integrated piezoelectric pairs. 
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6. CONCLUSION 

In this study, finite element model based on first-order shear deformation theory is 
developed and a genetic algorithm is used to formulate the optimization problem. The models 
are then applied to achieve the optimal design of laminated plates with bonded pairs of 
sensor/actuator piezoelectric patches. The design objective is the maximization of the 
fundamental natural frequencies of the plate with various boundary conditions, lamination 
sequences, and dimensions. The design variables are locations of pairs of piezoelectric patches 
on the surfaces of the plate. 

As shown in the investigated examples, the stiffness of laminated composite plates bonded 
with sensor/actuator piezoelectric patches can be improved with optimal locations of 
piezoelectric patches. The results also show that the optimal locations of sensor/actuator 
piezoelectric patches depend on specific studied cases and the optimal location of 
sensor/actuator piezoelectric patches not only affects the natural frequency, but also the damping 
of the vibration of laminated composite plates.  
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