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ABSTRACT 

The connection between operating temperature and membrane scaling/cleaning during an 
air gap membrane distillation (AGMD) process of seawater has been systematically elucidated 
in this study. Experimental and mathematically simulated data demonstrate the profound 
influences of feed salinity and membrane scaling on water flux at various operating 
temperatures. Feed salinity exerted significant impacts on water flux at high operating 
temperatures because of aggravated polarization effects. Membrane scaling and the subsequent 
membrane cleaning efficiency were also strongly affected by operating temperatures. Indeed, 
membrane scaling was more severe and occurred at a lower water recovery when operating at 
60−50 °C (feed−coolant temperature) compared to that at 35−25 °C. Moreover, membrane 
cleaning with fresh water and vinegar was less effective for the membrane scaled at 60−50 °C 
compared to 35−25 °C. Finally, membrane cleaning using vinegar was much more efficient than 
fresh water. Given the availability of vinegar at household level, vinegar cleaning can potentially 
be a low cost and readily accessible approach for MD maintenance for small-scale seawater 
desalination applications in remote coastal communities. 

Keywords: membrane distillation, air gap membrane distillation, membrane scaling, membrane 
cleaning, seawater desalination. 

1. INTRODUCTION 

Seawater desalination is a practical approach to secure drinking water supply for small and 
remote coastal communities around the world [1]. Large-scale seawater desalination using 
reverse osmosis (RO) and conventional thermal distillation such as multi-stage flash (MSF) has 
been effectively implemented to provide freshwater for large and centralized communities. 
Indeed, RO desalination requires a pressure of about 60 bar (hence the need for high-pressure 
pumps and duplex stainless steel materials), intensive pre-treatment, and skilled operators. On 
the other hand, MSF demands a large physical and energy footprint. As a result, both RO and 
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MSF desalination are not applicable for small and remote areas. Freshwater provision for these 
areas requires an alternative desalination process that can negate all the above drawbacks 
inherent in RO and MSF technologies. 

Membrane distillation (MD) is a combination of conventional thermal distillation and a 
membrane separation process. MD utilizes a hydrophobic, microporous membrane as a physical 
barrier for separation and a temperature gradient across the membrane as the driving force for 
mass transfer of water. Given its notable merits, including a complete salt rejection, less 
susceptibility to feed concentration, process compactness, and particularly ability to use low-
grade waste heat and solar energy, MD can possibly be an ideal alternative to RO and MSF for 
small-scale and stand-alone seawater desalination applications in remote coastal regions [2 - 4]. 

MD processes can be operated in four basic configurations, including direct contact MD, 
vacuum MD, sweeping gas MD, and air gap MD. Amongst these configurations, air gap MD 
(AGMD) exhibits the highest process thermal efficiency with the lowest process simplicity. 
Therefore, AGMD is the most widely used for small-scale seawater MD desalination [2, 3]. 

A major technical challenge to seawater MD application in remote areas is membrane 
scaling associated with the desire for a high process water recovery (i.e. the volumetric ratio 
between fresh water product and seawater feed). Membrane scaling results in a reduction in 
water flux and the quality of fresh water product, membrane damage, and energy consumption 
increase [5, 6]. 

Given the detrimental effects of membrane scaling, this study aimed to elucidate membrane 
scaling and cleaning in a seawater AGMD process. The mass transfer coefficient of the AGMD 
system was experimentally determined. Then, the influence of feed salinity and membrane 
scaling on water flux was examined. Finally, the efficiency of scaled membrane cleaning with 
fresh water and vinegar was investigated. 

2. MATERIALS AND METHODS 

The lab-scale AGMD unit used in this study consisted of a plate-and-frame AGMD 
membrane module, two variable-speed gear pumps for water circulation, a heating element to 
heat the seawater feed, and a chiller to cool the coolant. Flat-sheet polytetrafluoroethylene 
(PTFE) membrane provided by Porous Membrane Technology (Ningbo, China) was used in the 
AGMD membrane module. The membrane had thickness, nominal pore size, and porosity of 60 
µm, 0.2 µm, and 80 %, respectively. 

Milli-Q water and seawater were used as the feed. Milli-Q water had electrical conductivity 
of 45±5 µS/cm. Seawater was collected from Wollongong beach (New South Wales, Australia), 
and pre-filtered by 0.45 µm filter papers. The pre-filtered seawater had total dissolved solids 
(TDS), electrical conductivity, and pH of 37,000 ± 2000 mg/L, 52.5 ± 1.0 mS/cm, and 8.35 ± 
0.05, respectively. The total organic carbon (TOC) concentration of this pre-filtered seawater 
was less than 2 mg/L. Fresh water and a vinegar purchased from a local super market were used 
as cleaning agents in AGMD membrane cleaning experiments. As per instructions, the vinegar 
had acetic acid content of 8.0 ± 0.5 % and had pH of 2.55 ± 0.05. 

AGMD of Milli-Q water was conducted to experimentally determine the process mass 
transfer coefficient (Km). The water flux (J) of the process with Milli-Q water was measured at 
various feed and coolant temperatures. Then, Km could be calculated as: 
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where Km and J were in L.Pa-1.m-2.h-1 and in L.m-2.h-1, respectively; ∆P was the water vapor 
pressure difference between the feed and coolant streams (Pa). ∆P was calculated as: 
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The water vapor pressure of the feed and coolant stream was calculated using the Antoine 
equation: 
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where T was the temperature of the stream. 

AGMD of seawater was operated in batch mode. Seawater feed (4 L) was continuously 
concentrated until the process water flux declined to zero or a process water recovery of 80% 
was achieved. Then, membrane cleaning with fresh water or commercial vinegar was initiated. 
Membrane cleaning was conducted at the same water circulation rates and at room temperature 
(i.e. 25 °C). Membrane cleaning efficiency was assessed based on the restoration of membrane 
surface hydrophobicity using contact angle measurement, and the visual analysis of membrane 
surface using scanning electron microscope (SEM) images. 

During the AGMD process with seawater, the presence of dissolved salts reduced the water 
activity of the feed solution, thus lowering its water vapor pressure as expressed in Eq. (4): 

0PaxP waterwaterfeed =      (4) 

where awater was dependent on feed salinity as: 

2105.01 saltsaltwater xxa −−=     (5) 

where xsalt and xwater were the molar fraction of salt and water in the feed. In addition, 
concentration polarization effect in AGMD rendered the salt concentration at the membrane 
surface (Cm.f) higher than that in the bulk feed solution (Cb.f). The polarization effect was 
dependent on the process water flux as expressed in Eq. (6): 
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where k was the mass transfer coefficient of salt. 

3. RESULTS AND DISCUSSIONS 

3.1. Mass transfer of AGMD with Milli-Q water 

Increasing feed−coolant temperature while maintaining a constant temperature difference 
(∆T) between the feed and coolant stream resulted in an increase in water flux but a decrease in 
mass transfer coefficient (Figure 1). The increase in water flux at higher feed−coolant 
temperature could be attributed to the exponential relationship between water vapor pressure and 
temperature as demonstrated in Eq. (3). Indeed, elevating feed−coolant temperature from 35−25 
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to 60−50 °C increased ∆P from 1.28 to 3,68 kPa, thus increasing water flux from 2.5 to 5 L.m-

2.h-1. By contrast, Km decreased from 1.8×10-3 to 1.3×10-3 L.Pa-1.m-2.h-1 (Figure 1). The decrease 
in Km with increased feed−coolant temperature demonstrated the influence of temperature 
polarization on water flux of AGMD. The values of Km were determined using the measured 
temperatures of the feed and the coolant streams instead of temperatures at the feed membrane 
surface and at the condenser surface. Temperature polarization effect rendered the temperature 
difference between the feed membrane surface and the condenser surface (i.e. the actual driving 
force of the process) smaller than that between the feed and coolant stream (∆T), thus reducing 
water flux and hence Km of the process. Increasing feed−coolant temperature elevated water flux 
and therefore magnified temperature polarization effect. 
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Figure 1.  Experimentally measured water flux and mass transfer coefficient (Km) during AGMD process 
with Milli-Q water at various feed−coolant temperature, a constant ∆T of 10 °C, and water circulation rate 

Ffeed = Fcoolant = 0.5 L/min. Error bars represent the standard deviation of water flux measurements. 

3.2. AGMD of seawater 

The influence of feed salinity on water flux and distillate conductivity during AGMD of 
seawater is demonstrated in Figure 2. Increasing feed salinity during the concentration of 
seawater led to a reduction in water flux of AGMD. This was attributed to the decrease in water 
activity and thus the reduction in water vapor pressure of the feed stream with increased feed 
salinity as expressed in Eqs. (4−5) [7]. 

Compared to simulated water flux, the experimentally measured flux decreased more as the 
seawater feed was concentrated (Figure 2). The deviation between the experimentally measured 
and the simulated flux was because of concentration polarization effect and membrane scaling. 
The simulation of water flux using the Km values obtained during AGMD of Milli-Q water 
excluded the influence of concentration polarization effect. Concentration polarization effect 
caused the salt concentration at the membrane surface higher than that in the bulk feed solution, 
thus reducing water flux. Operating AGMD at higher feed−coolant temperature and hence 
higher water flux aggravated concentration polarization as expressed in Eq. (6) [7]. Therefore, 
the deviation between the measured and simulated water flux was more at feed−coolant 
temperature of 60−50 °C compared to that at 35−25 °C (Figure 2). 
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Figure 2. Simulated and experimentally measured water flux and distillate electrical conductivity                    
(EC) as functions of process water recovery during AGMD with seawater. Water circulation rate                        

Ffeed = Fcoolant = 0.5 L/min. 

Membrane scaling caused by the precipitation of sparingly soluble salts (e.g. CaSO4 and 
MgSO4) in seawater further reduced the measured flux (Figure 2). As the seawater feed was 
concentrated, the concentration of these salts exceeded their saturation limits. Concentration 
polarization effect further increased the supersaturation of the salts at the membrane surface, 
leading to the formation of scale layers on the membrane. The scale layers promoted temperature 
and concentration polarization effects, and reduced water vapor pressure at the membrane 
surface and the active membrane area for water evaporation [8, 9]. Therefore, water flux rapidly 
decreased from 2.5 L.m-2.h-1 to almost zero and from 1.5 to 1.0 L.m-2.h-1 as the process water 
recovery exceeded 70 % and 75 % at feed−coolant temperature of 60−50 and 35−25 °C, 
respectively (Figure 2). 

Membrane scaling also resulted in decline in distillate quality (Figure 2). At the beginning 
of the AGMD process, the electrical conductivity of the distillate gradually decreased. The 
gradual decrease in distillate conductivity before membrane scaling demonstrated the ability of 
AGMD for pure water production from seawater. Indeed, distillate with conductivity as low as 
10 µS/cm was obtained from seawater. When membrane scaling occurred, the scale layers 
altered the hydrophobicity of the membrane surface [10, 11], leading to partial intrusion of 
seawater through the membrane pores. Consequently, distillate conductivity started increasing 
following the formation of scale layers on the membrane (Figure 2). 

Operating feed−coolant temperature influenced not only the water flux but also membrane 
scaling in AGMD of seawater. Increasing feed−coolant temperature from 35−25 to 60−50 °C 
doubled water flux, and at the same time escalated membrane scaling. Membrane scaling 
occurred at a lower water recovery when operating at 60−50 °C compared to that at 35−25 °C 
(Figure 2). The operating temperature also affected the efficiency of subsequent membrane 
cleaning as will be discussed in the next section. 
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3.3. Efficiency of membrane cleaning 

The efficiency of membrane cleaning could be evaluated by the restoration of membrane 
surface hydrophobicity. Compared to fresh water, vinegar demonstrated a superior membrane 
cleaning efficiency under the same cleaning conditions (i.e. water circulation rates, temperature, 
and cleaning duration) (Figure 3). Given its hydrophobic nature, the contact angle of the virgin 
membrane used in this study was 130°. The scale layers formed at the membrane rendered its 
surface so hydrophilic that its contact angle could not be determined. Cleaning the scaled 
membrane with vinegar effectively removed scalants from the membrane surface, thus returning 
it to a hydrophobic condition (i.e. contact angle of the scaled membrane at 60−50 and 35−25 °C 
increased to 120° and 125°, respectively, after cleaning with vinegar). It is worth noting that the 
vinegar contained a high content of acetic acid that might have increased the solubility and thus 
the removal of the sparingly soluble salts from the membrane surface. The slight decrease in 
contact angle of the vinegar cleaned membrane compared to the virgin membrane was expected 
because deterioration in membrane hydrophobicity has been reported in DCMD process with 
only pure water [5]. Cleaning the scaled membrane with fresh water was unable to remove all 
scale deposits from the membrane surface (i.e. confirmed by SEM images of the scaled 
membrane surfaces). The scales remained on the membrane surface significantly reduced its 
hydrophobicity. Thus, the contact angle of the scaled membrane surface following fresh water 
cleaning was far below 90° (Figure 3). 

The operating feed−coolant temperature slightly affected the efficiency of subsequent 
scaled membrane cleaning. Cleaning with both vinegar and fresh water was more efficient for 
the membrane scaled at 35−25 °C compared to that at 60−50 °C (Figure 3). As discussed above, 
membrane scaling at 60−50 °C was more severe than at 35−25 °C, resulting in thicker and 
possibly more compacted scale layers at 60−50 °C compared to 35−25 °C. The morphology of 
the scale layers appeared to exert an effect on the efficiency of the subsequent membrane 
cleaning. 

0

30

60

90

120

150

Wate
r cl

ean
ed

     
     

 35-25 
o C
Wate

r cl
ean

ed

     
     

 60-50 
o C

Vinegar c
lea

ned

     
     

 60-50 
o C

Vinegar c
lea

ned

     
     

 35-25 
o C

 

 

C
o

nt
ac

t a
ng

le
 (o )

Virg
in mem

.

 
Figure 3. Contact angles of the virgin membrane and the scaled membranes at 35−25 and                                 

60−50 ºC after cleaning with vinegar and fresh water. Error bars represent the standard deviation                     
of 5 repeated measurements. 

The results reported here have significant implications for pilot or small-scale seawater 
AGMD application, in which membrane modules with long membrane channels are employed. 
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Along the membrane channels, the feed temperature significantly decreases from 70 to 35 °C, 
and the coolant temperature increases from 25 to 60 °C [12, 13]. The change in feed−coolant 
temperature will result in an uneven distribution of water production along the membrane 
channels − more distillate is obtained at the higher temperature end of the membrane module 
compared to the low temperature end. Also because of the uneven distribution of feed−coolant 
temperature, membrane scaling will occur at the high temperature membrane area before the low 
temperature one. Finally, when membrane scaling occurs, it will be harder to clean the 
membrane area scaled at higher temperature compared to that at low temperature. The scale 
remnants on the membrane after cleaning will act as crystal nuclei, and thus accelerating 
membrane scaling in the next seawater AGMD cycle [6]. As a result, repetitive membrane 
scaling and cleaning in AGMD of seawater will inevitably lead to deterioration in process 
performance. In this context, effective scaling prevention techniques, including but are not 
limited to anti-scalant addition [14 – 16], utilization of ultrasonic and gas bubbling [17, 18], or 
process optimization [9, 19, 20], are highly recommended. 

4. CONCLUSIONS 

AGMD of an actual seawater feed were investigated. The experimental results demonstrate 
a profound influence of feed salinity and operating temperature on water flux, scaling behavior, 
and the efficiency of subsequent membrane cleaning. Feed salinity reduced the water flux of the 
AGMD process with seawater compared to that with fresh water, particularly at higher operating 
temperatures due to the aggravated polarization effects. Increasing feed−coolant temperature 
from 35−25 to 60−50 °C doubled water flux but also escalated membrane scaling during 
seawater desalination with AGMD. At feed−coolant temperature of 60−50 °C, membrane 
scaling occurred at a lower water recovery compared to that at 35−25 °C. The efficiency of 
membrane cleaning with fresh water and vinegar was also lower for the membrane scaled at 
60−50 °C compared to at 35−25 °C. Vinegar cleaning demonstrated a superior efficiency to 
fresh water cleaning. Given the accessibility to vinegar at household level, membrane cleaning 
using vinegar can be a practical scaling control method for small-scale seawater MD 
desalination applications. 
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