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ABSTRACT

In this paper, a functionally graded cantileverrbesith an open crack is investigated on
the base of Timoshenko beam theory; power law pttfanally graded material (FGM) and
taking into account actual position of neutral daristead of the central one. The open and edge
crack is modeled by coupled translational and iatat springs stiffness of which is calculated
by the formulas conducted accordingly to fracturechanics. Using the frequency equation
obtained in the framework of the theory naturatjfrencies of the beam are examined along the
crack parameters and material properties. Thisyaisalemonstrates that sensitivity of natural
frequencies of FGM beam to crack is strongly depahdn the material constants of FGM.

Keywords: FGM, Timoshenko beam; cracked beam, modal analysis

1. INTRODUCTION

Due to advantage properties compared to the lamic@nposites the functionally graded
material (FGM) has been intensively studied regeatid got wide application in the high-tech
industries. An overview of the problems for mantifiging, modelling and testing FGM was
given in [1]. Numerous methods such as the Finitemént Method (FEM) [2]; Spectral
Element Method (SEM) [3]; Dynamic Stiffness Meth@BSM) [4] or Rayleigh-Ritz method [5]
have been developed for analysis of structures nudeGM. Nevertheless, the analytical
methods are still the most accurate and efficientdiynamic analysis of functionally graded
beam-like structures [6-9]. While the most of théorementioned studies investigated
undamaged beam, the crack problem in FGM has Weeied in [10-11]. The most important
result of the studies is that a crack in FGM beam be modeled by an equivalent spring of
stiffness calculated from the crack depth. Basedherrotational spring model of crack, Yang
and Chen [12] studied free vibration and bucklirfigealer-Bernoulli FGM beam with edge
cracks. They found that natural frequencies of FlEAm with smaller slenderness and lower
ratio of the bottom Young’'s modulus to the top @me more sensitive to cracks. The transfer
matrix method was employed by Wei et al. [13] fotasning frequency equation of FGM beam
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with arbitrary number of cracks in the form of thiorder determinant. This simplifies
significantly the modal analysis of multiple cradkeGM beam. Aydin [14] has conducted an
expression for mode shape of FGM beam with multipbecks and used it for constructing the
frequency equation in the form of an explicit deterant of third-order also. Forced vibration
and nonlinear free vibration of cracked FGM beamiavestigated in Ref. [15-16]. Based on the
exponential law of FGM and rotational spring modetrack, Yu and Chu [17] and Banerjee et
al. [18] have applied the FEM and the Frequencyt@anMethod (FCM) for detecting a crack
in Euler-Bernoulli and Timoshenko FGM beams, reipely. Nguyen Tien Khiem and Nguyen
Ngoc Huyen obtained a condition for uncouplingarditudinal and bending vibration in FGM
beam and studied uncoupled flexural vibration eftteam [19].

In the present paper, an analytical approach muisacy domain is proposed to study free
vibration of functionally graded Timoshenko beanthwan open crack modeled by a pair of
translational and rotational springs. This is aaltyvof present paper in comparison with the
previous ones where only rotational spring modetmaitk was adopted. Using the proposed
model of crack, frequency equation of a crackedilearer is conducted and used for sensitivity
analysis of natural frequencies to crack paramebMusnerical results of natural frequencies as
functions of crack positions and depths are obthineMATLAB code.

2. GOVERNING EQUATIONS

2.1. Model of FGM beam

Consider a beam of length cross-section aredd =bxh made of FGM with material
parameters varying along thickness by the power law

E(2)| [B| |BE-E 1y
G(2);=4G,; +1{G, -G, (E+§j ,—h/2<z<h/2, (2.1)
p(2) Po Pt~ Po

whereE, G andp with indexed andb stand for elasticity, shear modulus and mategalsity at
the top and bottom respectivelyis ordinate from the central axis at higl2. Assuming linear
theory of shear deformation, the displacementdigicthe cross-section atre

u(x,zt) =uy,(x,t) = (z-hy)G(x,t); w(x, z,t) = w,(x,t), (2.2)

with Uy (X, t) , Wy (X,t) being the displacements of neutral axis thataatied at the high, from
the central axisg is slope of the cross-section. Therefore, cortstijLequations get the form

E,=0U,/0x—(z-h,))o8/0x y, =ow,/0x—8 (2.3)
and
gy =E(2)€,;Ty, = kG(2) Yy, (2.4)

In the latter equatiok is a coefficient introduced to account for the metry-dependent
distribution of shear stress. Hamilton principléoak one to obtain equations of motion in the
time domain as
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150 = |229 + Ay0" + Agg(W - 6) =0; (2.5)
|11W_A33(V\/'_5') =0,
where
2E,AR, +1) | _20AR, +N)  2pAn[2R,+n R, + n 1
MR ADarn Y (R, +DA+N) 2T (R, D) 22+ @rm C
A, = 2% 0{3Re+n_2Re+na+ Re+na2}
(R.+D)[3@+n) (2+n) @d+n)
_ 2kGyA(R; +n)
T R @) |
2900 {3Rp tn_ 2R, +n R, +naz}a:1/2+h0/h; 2.6)
(R, +D| 338+n) (2+n) @L+n)

___n(R.-Dh E o _p.
TR B g 0T 2 T g 2

|, =bh® /12 A=bh.

Introducing the displacement amplitudes

Eb+Et.p _pb+pt.GO:Gb+Gt.

(U, OW) = [{Up(x,t), 8% 1), wp( X t)}e 2.7)
Eq. (2.5) get to be ’
(@1, U + AU -aw’1,,0=0;
(°1 0+ A0") = Pl U + Ayy(W' =) = 0; (2.8)
W1 W+ Ay(W"-©') =0,

Using the following matrix and vector notations

A, 0 O 0 O 0
A=l0 A, O0|;I=|0 0 A,
0 0 A, 0 -A, O

Wl -y, 0
Clw) = _a)2|12 a)2|22—A33 0
0 0 Wl

z={U,oW}",
Eq. (2.8) are rewritten in the form [19]
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Az"+MIz'+Cz =0. (2.9)
2.2. Crack modeling

Assume that the beam has been cracked at thegpositmeasured from the left end of
beam and the crack is modeled by a pair of equivaprings of stiffnes3 for translational
spring andR for rotational one. Therefore, conditions that thessatisfied at the crack are

U(e+0)-U(e-0)=N(e)/T; O(e+0)-0O(e-0)=M(e)/R, W(e+0) =W(e-0);
N(e) =N(e+0) =N(e-0);Q(e+0) =Q(e-0);M(e+0) =M (e-0)=M(e), (2.10)
where N,Q, M are respectively internal axial, shear forces Brdding moment at sectian
N=AUGM =A50,;Q= A;(W, -0O). (2.11)
Substituting (2.11) into (2.10) one can rewrite li&er conditions as
U(e+0) =U(e-0) + U} (€); ©(e+0) = O(e-0) + y,0, (€) ; W(e+0) =W(e-0);
U,(e+0)=U,(e-0);0,(e+0) =0, (e-0);W,(e+0) =W, (e-0) + y,0.(e), (2.12)

i=ALIT YV, = Ayl R, 12)

The so-called crack magnitudgs)y, introduced in (2.13) are function of the material
parameters such as elastic modulus and they shbeldhose of homogeneous beam
whenE; = E, = E;. On the other hand, using expressions (2.6) thekamagnitudes (2.13) can
be rewritten as

V1 = Va6 (Re,n) Vs = V,6,(Reg,n), (2.14)
where
Va =EAIT, 1, =Eglo/ R

_ 2R, +n) 9. = 24 3Re+n_2Re+na+Re+n
YT(RHDEA+N) Y (Ry+D)[3B+n)  (2+n)  (@+n)

In case of homogeneous beam whéh =1 the crack magnitudes must be equal

az] (2.15)

to V410, Voo, that are calculated from crack deptfor axial [20] and flexural [21] vibrations as
Vio = EoAIT, = 2m(1-vg)hf,(2),z=alh; (2.16)

f,(2) = z* (0.6272- 0.1724& + 5921347 —10.7054z° + 31.5685" - 67472° +
+1391237° -146682z" +9235527°);

Voo = Eol I Ry = 6711—v{)hf,(2); (2.17)

f,(2) = z° (0.6272-1.0453% + 4.5948&° — 9.9736&z° + 20.294&" - 3303512° +
+47.1063° — 40755627 +1967°).
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For modal analysis of cracked FGM beam crack madag are proposed herein to be
approximately calculated using expressions (2.1@)withy, = Vi, Vy = Voo, i- €.

yi=F(a); ), =F,(a); 18)
F,(a) = 271(L-vZ)hé, ,(a); F,(a) = 6r1(1-vi)ho, f, (a). (2.19)
These functions would be used for calculating ttaelc magnitudes from given crack depth.
2.3. Characteristic equation
Continuous solution of Eq. (2.9) sought in the faxgp= de™ yields the equation
[A°A + I +C]d =0. (2.20)

The latter equation would have nontrivial solutisith respect to constant vectdrunder
the condition

det[l?A + AIT+C] =0,
that can be in turn expressed in the form

(/12'0‘.[1 + a)zlll)[(AzA33 + aJZI 11)(A2A22 + a)zl 22) - a)2|11A33)] - (A2A33 + a)zlll)w4| 122 = O

This is in fact a cubic equation with respect/te- A? that could be elementarily solved and
results in three rootg, /7,,/75. Introducing the notations

Ay =2k =0 A, =2k, = 2,5 A, =2k, = £, (2.21)
general continuous solution of Eq. (2.9) is repnéesg as
z,(X,w) =G(x,w)C, 2.22)
with C =(C,,...C¢)" =(d,,,...d;9)" and
GXw) =[G,(X,w) G,(x,W)]; (2.23)
a0, a,e ae™ g™ ge™
Gy(xw)=| e & & G, (xaw)=| e g kX et |,
k,x k,x KX _ -kx _ —kx  _ —kyx
Ber  pBe Bse Be Be Bse
2
o’ A .
ay=— 122 Py = JA332 =123,
Wl +ATA, (w1 + A7 Ag3)

Using (2.22), it can be found that solution of E8.9) denoted byS(X) satisfying the
conditions

S(0) =(8,$3.0)";S'(0) = (0.0,S9)". (2.24)

is represented as

S(x) =[®(XK S}, 13)
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whereS°? ={SP,S7,S5}" and matrix

a, coshk;x a,coshk,x ascoshksx| | d; O, O3
[@(X)] =| coshk;x coshk, x coshk;x Oy Opp Ong|; (2.26)
B sinhk;x B, sinhk,x  BisinhksX | | 05, O3, O35

Dy = (048] + 01,85 +0,3S5) 51, = (01 S) + 05,55 +0,5539) 1
Dy =(05,S) + 05,55 +05589) 1 A; A=K By (0, —05) + Ko 5o (@3 —ay) + Ko Bs(ay — ) ;
Assuming furthermore tha®’ = y;U" (€),S? = S{ = ,@', (e) or S° =[Z){ Z{(€)} with

n 00
=10 y, 0O}, (2.27)
0O y, O
a particular solutiorz(X) of Eq. (2.9) that satisfies initial conditions
2. (0) ={)AU (), ¥,0%(8,0} " ;z; (0) = (0.0, 1,04(e))" . (2.28)
is
z.(X) =[®@(I[Z{ zo(€)} =[G (K zo(€)} - (2.29)
Using the matrix-function notation
_JG.(X¥) x>0 .,y _|GL(X) x>0
K(X)_{ 0 :st;K(X)_{ 0 :x<0 (2:30)
one is able to prove that the function
z(X) = z5(X) +K(x—€)z,(€) (2.31)

is general solution of Eqg. (2.9) satisfying corali (2.12) at the cracked section.
It can be easily to verify that boundary conditiémscantilever beam are

u(0,t) =w(0,t) =6(0,t) =0; N(L,t)=M(L,t) =Q(L,t)=0. (2.32a); (2.32b)
Applying conditions (2.32a) for solution (2.31) ¢isato
B,,C, +B,C, =0, (2.33)

C, ={C1,C2,C3}T;C2 ={C4'C5'C6}T ;

a, a, 0, a, a, as
Byy=|1 1 1[:By=| 1 1 1
ﬂl ﬂz ﬂs _/81 _132 _ﬂs

Obviously, the above equation allows the vectoysC, to be expressed as

C1 =[Boi]"D,C, =-By,] 'D
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with an arbitrary constant vectbr, so that solutiorz,(X) can be rewritten in the form
Zo(X,w) =Gy(X,w)D, 32)
where
Go (X&) =Gy (X W)Bg1 =G, (X W)Bg;.

Consequently, one obtains

2(X) =[G o (%, @) + K (x - &)G y (6 )}{ D} =[G (x,w)}{ D} . (2.35)
Applying boundary condition (3.32b) for solution32) one gets
[B,L KD} =0, (2.36)
A0, 0 0
BLL(w):BL{GL(Xlw)Hx:L;BL = 0 A0, 0
0 —Ags Ag0
So that characteristic or frequency equation otctiaeked FGM beam is obtained as
N(w) =detB (w)] =0. (23

Positive rootc; of this equation provide desired natural frequeofcthe beam. In the case of
intact beam the frequency equation (2.37) is redltce

No(w) = detB ()] = 0. @)3

Bo(w) = BL{GO(X’C‘))H x=L -

Thus, forward problem is to calculate natural frergies of cracked or uncracked FGM
beam by solving Eq. (2.37) or (2.38).

3. NUMERICAL RESULTSAND DISCUSSION

3.1. Compar ative study

To investigate effect of actual position of neutrais on natural frequencies of Timoshenko
FGM cantilevered beam, it is examined an undamdmgpzon studied in [4] that is composed

from steel: E, = 210GPa, g, = 780tkg/m°, 1, = 0.3 at the bottom and Aluminum Oxide

(Al,0;): E, =390GPa, p, = 396Ckg/m3,,ut = 025 at the top surface.

Tables 1 shows first five natural frequencies cotegun the present paper for various
slenderness ratib/h, and power law index. Comparison with those obtained in [4] where
neutral axis is assumed coincident with the midiile shows that effect of actual position of
neutral axis on the lower natural frequenciesésudy observed in the case of small slenderness,
L/h=5, and n=2. In this case natural frequencidsutated with actual position of neutral axis
are lower than those computed by the centroid ttesry. However, higher natural frequencies
of FGM beam with greater slenderness and powelindex are not very much changed by the
correcting position of neutral axis.
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Table 1. Comparison of frequency parameters; (aj_zlh),/,ob/Eb , for undamaged FGM cantilever
beam: Present — actual and Ref. [4] — centroidtiposof neutral axis.

L/h 5 10 20 30
n Fr. Present Ref.[4] Present Ref.[4] Present Ref.[4] séme Ref.[4]
No.
1 17377 17574 17854 17966 1.8020 1.8070 1.8060  1.8089
2 93254 90511 10.6630 10.782 11.1116 11.196 11.2359 11.278
01 3 141039 14005 280582 28.190 30.4454 30.800 31.1476  31.325
4 :23?247122 22682 283600 28.404 56.3576 56.379 60.2240  60.681
5 37.747 51.8239 51.618 580334 58.897 84.5711  84.569
1 16294 16638 1.6804 17010 17011 1.7107 17061 1.7126
2 86806 8.9969 9.9804 10.208 10.4534 10.600 10.5981  10.678
0.2 3 134167 13.390 26.3172 26.781 285635 29.161 29.3406  29.657
4 209419 21.482 269510 26.895 53.4530 53.562 56.6568  57.449
5 355698 35754 48.9926 48.878 544140 55762 80.3494  80.343
1 14308 14911 14852 15244 15118 15332 15183  1.5348
2 7.5158 80609  8.7058 9.1477  9.2390  9.4992  9.4075  9.5691
05 3 120814 15012 2028654 24.024 251327 26130 25.9870 26.576
4 ég:gg;g 19.043 245762 24.098 47.3355 48.048 50.0731  51.475
5 32.022 435626 43.787 48.3416 49.962 72.0863  72.072
1 12809 13557 1.3345 1.3864 1.3636 1.3945 13705  1.3960
2 6.6597 7.3164 7.7397 83146 83071 8.6383 84791  8.7027
10 3 10.9037 10.811 20.3079 21.623 22.5403 23.755 23.3925  24.165
4 16.4188 17.441 221864 21.886 42.3703 43.246 450165  46.795
5 28.9477 28.989 38.7308 39.732 435214 45402 64.8906  64.870
1 11757 12471 12252 12762 12519 12839 12583  1.2853
2 6.1047 6.7053  7.1063 7.6440  7.6240 7.9501  7.7835  8.0112
20 3 98238 9.7403 18.6028 19.481 20.6777 21.851 21.4688  22.239
4 15.0301 15937 20.0358 20.088 38.6088 38.961 41.3021  43.049
5 26.4566 26.428 35.5854 36.403 39.4505 41.733 58.4651  58.442
1 11030 1.1446 1.1405 1.1722 1.1604 1.1795 1.1651  1.1809
2 58414 6.1274 6.6706 7.0111  7.0955 7.3014  7.2209  7.3594
50 3 88103 87633 17.3374 17.527 19.2998 20.057 19.9462  20.425
4 143168 14516 17.7729 18.391 35.0124 35.053 38.4225  39.525
5 249321 24.009 32.4530 33.2625 36.5838 38.278 52.5932  52.580
1 10629 10867 1.0962 1.1130 1.1105 1.1199 11138 1.1212
2 56345 58159 6.4753 6.6562 6.8192 6.9324 69167 6.9876
10 3 83591 83430 16.6488 16.686 18.6108 19.394 19.1378  19.394
4 135189 13.776 17.0828 17.459 33.3597 33.372 36.9246  37.532
5 228182 22783 31.2177 31575 35.3365 36.345 50.0635  50.058
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T T
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(a) First frequency ratio, L/h=10, n=0.5
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o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Crack position
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(b) Second frequency ratio, L/h=10, n=0.5
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(c) Third frequency ratio, L/h=10, n=0.5

1 1 1 1 1 1 1 1 1
(o} 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1

0.5
Crack position

Figure 1. Sensitivity of natural frequencies (a- first,decond, c- third) in dependence on crack depth
(5 % - 30 %) and elasticity modulus ratigR0.2&5.0 with L/h = 10, n = 5.
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3.2. Sengitivity of natural frequenciesto crack
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Figure 2. Sensitivity of natural frequencies (a- first,d@cond, c - third) in dependence on the
elasticity modulus rati®, (0.1 — 10) and n=0.5;5.0 with L/h=10, a/h=20%.
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The change in natural frequencies caused by a esaokually called sensitivity of the
natural frequencies to crack. The natural frequesaysitivity is represented in this paper by a
ratio of the damaged to undamaged frequenciesragidn of crack location along the beam
length. Such indicator for the natural frequenaysgevity is investigated herein in dependence
on the material and geometry parameters of a FGNIeaer beam. Results are shown in Figs.
1-5 for combinations of various crack depth a/Bnderness ratio L/h, power law indexand
elasticity modulus rati®..

First, it is observed in the Figures that, likely the homogeneous beam, a natural
frequency could be unchanged if crack occurredmatespositions on beam. Such positions are
called critical points (or frequency node) for \d@bion mode with the unchanged frequency. For
instance, the free end of homogeneous cantile\ambg a consistent critical point for all modes
including either axial or flexural vibration. Appdionate critical points for first three vibration

modes with undamaged natural frequemﬁyof an FGM beam are given in Table 2.

Table 2. Possible critical points for FGM Timoshenko chawer beam.

Mode First frequency node Second frequency n0t|ie rdTflrequency node
1 1.0
2 0.22 1.0 no
3 0.13 0.49 1.0

Observation of the graphs given in Figs. 1-4 previthat the sensitivity of natural
frequencies is monotonically reducing with growirgck depth and it is dependent also on the
material and geometry of the beam. Namely, theitbé@tsis increasing with elasticity modulus

ratioRg = E; / E, for n<1 and decreasing when>1. The latter implies that increase of
elasticity modulus from bottom to top of Timosherdeam makes the natural frequencies more
or less sensitive to crack dependently on thatl or n >1. Similarly, it is observed from Fig.

3 that natural frequency sensitivity is increasiugh n for a fixed Rz <land would be

decreasing iRz >1. Fig. 4 shows that natural frequencies of flexwiatation modes become

less sensitive to crack for increasing slenderregss and it is independent on whatever material
the beam is made of but the axial mode frequerstiew to be most sensitive to crack when L/h
= 10.
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Figure 3. Sensitivity of natural frequencies (a- first,decond, c-third) in dependence on the power law
index n = 0.2 -10; the slenderness ratio L/h10 wi#fsticity modulus rati® = 0.2 & 5.0 and crack depth
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Figure 4. Sensitivity of natural frequencies (a- first,decond, c-third) in dependence on the slenderness
ratio L/h = 5 - 50 with elasticity modulus raffRy = 0.2 & 5.0,n = 05 & 5.0 and crack depth a/h = 20 %.
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4. CONCLUSION

Major results obtained in the present paper afelksvs:

A consistent theory of vibration beam has been @ated in the frequency domain for
functionally graded Timoshenko beam that can bel dee analysis of either free or forced
vibrations in the beam.

Frequency equation for functionally graded Timo#meheam with single crack modeled
by coupled translation and rotation springs wasstonted in a form that is applicable
straightforward to frequency analysis of the bedpplication of the equation for natural
frequency analysis of FGM beam demonstrates thatralafrequencies of flexural vibration
modes are more sensitive to crack than those af gikiration modes and the natural frequency
sensitivity is strongly dependent on both matedat geometry parameters of functionally
graded Timoshenko beam.

The theory proposed in the present work can behdurdeveloped for analysis and
identification of FGM beam with multiple cracks.
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