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ABSTRACT 

A study on the free vibration analysis of stiffened laminated composite cylindrical shell is 
described in this paper. The eight-noded isoparametric degenerated shell element is developed to 
model both shell panel and stiffeners by using the degenerated solid concept based on Reissner-
Mindlin assumptions which taking into account the shear deformation and rotatory effect. 
Numerical results are presented and comparison is made with the published results from the 
literature and the good agreement is found. Parametric studies considering different geometrical 
variables of shell and stiffeners have also been carried out. 

Keywords: laminated composite shells; stiffened shells; vibration analysis; finite elements; 
degenerated shell element; static analysis. 

1. INTRODUCTION 

Laminated composite shells and particularly cylindrical panels are increasingly used in 
many engineering applications such as aerospace, mechanical, civil and marine engineering 
structures. The cylindrical panels are often stiffened by stiffener and ring to enhance the specific 
strength/stiffness to weight ratio of the structure. The vibration characteristics of stiffened 
cylindrical panels are of considerable importance to mechanical and structural engineers. 

Vibration of cylindrical shells has been extensively studied by many researchers. The 
vibration analysis of shell is presented in work done by Leissa [1], and Soedel [2]. Quatu [3] 
studied vibration of laminated composite shells and plates and reviewed in his textbook. The 
investigation on stiffened shell vibration is still meager. There are two classes of analysis of 
stiffened plate/shells. 

First, the stiffened structures can be modeled as equivalent homogenous isotropic or 
orthotropic plate/shell. This is done by smearing the properties and effects of the stiffeners or the 
corrugations over the surface of the plate/shell. This is very efficient but it could not be used for 
stress–strain analysis. In addition, there is a severe strictness in the applicability of the model to 
a generalized problem which is due to the simplicity inherent in the approximation. The 
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orthotropic model can be applied when the stiffeners are identical, light, closely spaced and 
having equal spacing and the orientation of stiffeners is orthogonal. Using smearing technique to 
solve technical problems, Szilard [4] has reported in his work. Luan Y. et al. [5, 6] also used this 
technique to analyze vibration characteristic of simply supported doubly curved cross-stiffened 
shells, and then improved it for modeling vibrations of cross-stiffened, thin rectangular plates.  

Secondly, the plate/shell and the stiffeners are modeled as the discrete elements. This 
approach describes better structural behavior and it has been adopted for the analysis of stiffened 
and corrugated plate/shells. In this case, the numerical methods are applied to solve the 
governing differential equations.  

Among the known numerical methods, the finite element method is certainly the most 
favourable. Using the finite element model where stiffeners are modeled by beam finite 
elements, Mustafa and Ali [7] and Bardell and Mead [8] have presented the vibration analysis of 
orthogonally stiffened cylindrical shells. Goswami and Mukhopadhyay [9, 10] studied deflection 
and free vibration of laminated stiffened composite panels by using the nine-noded Lagrangian 
element and heterosis element to model the shell and the stiffener. Employing eight-noded 
isoparametric quadratic element for the shell, three-noded curved beam element for the stiffener 
Prusty and Satsangi [11, 12, 13] investigated static, failure analysis and vibration characteristic 
of laminated composite stiffened  panels based on first order shell theory. Jiang and Olson [14] 
developed a super finite element with C0 shell element and curved beam element for the free 
vibration analysis of cylindrical shells. Using the eight-/nine-node doubly curved isoparametric 
thin shallow shell element with the three-node curved isoparametric beam element, Nayak and 
Bandyopadhyay [15] analyzed free vibration behavior of doubly curved stiffened shallow shells. 

Using triangular shallow shell finite element and beam element for stiffener, Sinha and 
Mukhopadhyay carried out the free vibration analysis of eccentric stiffened plates/ shallow 
shells. Triangular flat shell element and 3D beam element for stiffener has already been used by 
Samanta and Mukhopadhyay [16] to determine natural frequencies and mode shapes of the 
different stiffened structures. In order to model a shell panel without any significant 
approximation related to the representation of arbitrary shell geometry, structural deformation 
and other associated aspects, the isoparametric 3D degenerated shell element is used. 

In the formulation of degenerated shell element has been the first time proposed by Ahmad 
[17]. This element is derived by degenerating a 3D solid element into a shell surface element, by 
deleting the intermediate nodes in the thickness direction and then by projecting the nodes on 
each surface to the mid-surface. This approach has the advantage of being independent of any 
particular shell theory. This approach can be used to formulate a general shell element for 
geometric and material nonlinear analysis. The assumptions for degenerated shell are similar to 
the Reissner-Mindlin assumptions. 

A  three-dimensional (3-D) degenerated shell element and a 3-D degenerated curved beam  
element are employed  to model plates/shells and stiffeners is applied by Liao and Chen [18] to 
investigate the dynamic stability of  laminated  composite stiffened or non-stiffened plates and 
shells. Patel et al. [19] used the eight-noded isoparametric degenerated shell element and a 
compatible three-noded curved beam element are used to model the shell/panels and the 
stiffeners to analyze buckling and dynamic instability of stiffened shell panels. 

In the present study, the vibration analysis is carried out for laminated stiffened circular 
cylindrical panels. The first order shell theory is used, and the eight-noded degenerated 3D shell 
element is employed to model the shell panels and the stiffeners. 
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2. FINITE ELEMENT FORMULATION 

2.1. Shell element 

Let consider a degenerated shell element, obtained by degenerating 3D solid element. The 
degenerated shell element as shown in Figure 1 has eight nodes, for which the analysis is carried 

out. Let ( ),ξ η are the natural coordinates in the mid-surface. And ς is the natural coordinate 

along thickness direction. The shape functions of a two dimensional eight node isoparametric 
element are: 
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2.2. Displacement field 

The position of any point inside the shell element can be written in terms of nodal 
coordinates as 
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Since, ς is assumed to be normal to the mid surface, the above expression can be rewritten 
in terms of a vector connecting the upper and lower points of shell as 
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Figure 1. Eight-noded quadrilateral 
degenerated 3D shell element, 

Cited in Ahmad [17]. 

Figure 2. Local and global coordinates, 
Cited in Ahmad [17]. 
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or,  
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For small thickness, the nodal vector along the thickness directionV3i can be represented as 
a unit vector hiv3i: 
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where, hi is the thickness of shell at i-th node. In a similar way, the displacement at any point of 

the shell element can be expressed in terms of three displacements ( )i i i
u v w, , and three rotation 

components ( )xi yi
,θ θ  at the mid-surface nodes as follows:  
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where, ( )xi yi
,θ θ are the rotations of two unit vectors v1i&v2i about two orthogonal directions 

normal to nodal vector V3i.The values of unit vectors v1i and v2i  can be determined in the 
following form:  
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2.3. Strain field 

The strain components with respect to the global coordinates can be expressed from the 
displacement as 
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in which, { }δ is the nodal displacement vector of an element and it is: 
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where i 1 8= ÷
 
for a eight-noded shell element. The matrix coefficients are given by 
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where [J ]  is the Jacobian and [J ]*

 
is the inverse Jacobian of transformation between 

global Cartesian coordinates and local isoparametric coordinates and given by 
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The local strains { }'ε  are related to the global strain { }ε  as 
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where [ ]Tε  the strain transformation matrix is given by 
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In which, 1 2 3 1 2 3 1 2 3, , , , , , , ,l l l m m m n n n  are corresponding direction cosines between the 

global coordinate system and local coordinate system. 

2.4. Constitutive relation 
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The constitutive equation of a kth orthotropic layer in principal axes coordinate is derived 
from Hooke’s law for plane stress as 
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where material constants are given by 
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where E1, E2 are the Young modulus in the 1 and 2 directions, respectively, and G12, G23, G13 are 
the shear modulus in the 1–2, 2–3, 3–1 planes, respectively, and vij are Poisson’s ratios. 

And the constitutive equation of a kth orthotropic layer in local coordinate as 
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12 11 22 66 124 cos sin cos sinQ Q Q Q Qα α α α= + − + +  

( )' 4 2 2 4
22 11 12 66 22cos 2 2 cos sin cosQ Q Q Q Qα α α α= + + +  

( ) ( )' 2 2 4 4
66 11 22 12 66 662 2 cos sin cos sinQ Q Q Q Q Qα α α α= + − − + +   (19) 

( ) ( )' 3 3
16 11 22 66 11 22 662 cos sin 2 sin cosQ Q Q Q Q Q Qα α α α= − − + − −    

( ) ( )' 3 3
26 11 22 66 11 22 662 sin cos 2 cos sinQ Q Q Q Q Q Qα α α α= − − + − −  

' 2 2
44 44 55cos sinQ Q Qα α= + ; ( )'

45 44 55 cos sinQ Q Q α α= − ; ' 2 2
55 44 55sin cosQ Q Qα α= +  

2.5. Elastic stiffness matrix 

The element stiffness matrix is expressed as 

[ ] [ ] [ ] [ ][ ][ ] [ ] [ ] [ ][ ][ ]Q' Q'
e e

T T T T

e

V V

K B T T B dxdydz B T T B J d d dε ε ε ε ξ η ζ= =∫ ∫   (20) 

And the element mass matrix can be written as 

[ ]
e e

T T

e

V V

M N N dxdydz N N J d d dρ ρ ξ η ζ       = =       ∫ ∫       (21) 
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The integration in Eq. (20) and (21) are split through each layer by modifying the variable 
ζ  to kζ , in any kth layer, kζ  varies from -1 to +1, facilitating the ease of Gauss numerical 

integration. 

The change of variable from ζ  to kζ  is affected in the following manner: 

( )
1

1
1 1 2

k

k k j
j

k
k

h h
h

h
d d

h

ζ ζ

ζ ζ

=

 
= − + − − + 

 

 =  
 

∑                   (22) 

where hk is the thickness of the kth layer. Applying the above transformation, the element 
stiffness matrix can be rewritten as 

[ ] [ ] [ ] [ ][ ]1 1 1 '

1 1 1
1

m
T T k

e kk
k

h
K B T Q T B J d d d

hε ε ζ ξ η
− − −

=

 =  ∑∫ ∫ ∫       (23) 

And the element mass matrix can be rewritten as 

       [ ] 1 1 1

1 1 1
1

m Tk k
e k

k

h
M N N J d d d

h
ρ ζ ξ η

− − −
=

   =    ∑∫ ∫ ∫      (24) 

In which, m is number of layers, kρ is specified weight and 
1 2 8... ...iN N N N N   =   
ɺ ɺ ɺ ɺ  

where    
1 2

1 2

1 2

0 0
2 2

0 0
2 2

0 0
2 2

i i
i i i i i

i i
i i i i i i

i i
i i i i i

h h
N l N l N

h h
N N m N m N

h h
N n N n N

ζ ζ

ζ ζ

ζ ζ

 
 
 
 =
 
 
 
  

ɺ
. 

By assembling, we obtain the stiffness matrix [ ]K  and mass matrix [ ]M  of the stiffened 

shell, thus the free vibration equation of the stiffened shell is expressed as follow 

[ ]{ } [ ]{ } 0M Kδ δ+ =ɺɺ              (25) 

3. NUMERICAL RESULTS AND DISCUSSIONS 

The finite element formulation described in the previous section has been used to 
investigate various numerical examples. Firstly, the accuracy of the present formulation is 
established by comparing the converged frequencies of specific problems available in the 
literature. Next numerical examples are carried out to study the effect of stiffener position, 
eccentricity of stiffeners on natural frequency of laminated stiffened composite cylindrical 
panels. 

3.1. Validation Example 1: Study of laminated composite beam using shell element 

In order to check the accuracy of using present degenerated shell element to model 
stiffener, let’s consider the laminated composite cantilever beam. The dimensions of the beam 
are given: L=2 m, b=0.06 m, h=0.12 m. Stacking sequence: [00/900/00/900]. The material 
properties are given: E1=25E2 N/m2; G12=0.5E2 N/m2; G13=G12=0.5E2 N/m2; G23=0.2E2 N/m2;    
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ν=0.25; ρ=1500 kg/m3. Concentrated force at free end of the beam: P=10000 N. The maximum 
deflection of the cantilever beam under concentrated force at the free end, and the free vibration 
frequency are presented in Table 1. From the Table 1, it is seen that a slightly discrepancy 
between two results obtained by Ansys’s SHELL99 element and present degenerated ShellDS8 
element for modeling laminated composite beam. 

Table 1. The maximum deflection and natural frequency 
of a rectangular laminated composite cantilever beam. 

Stiffener Type of element 
Frequency (Hz) Max. Deflection 

Mode 1 Mode 2 Mode 3 (m) 

V
er

tic
al

 ANSYS - Shell99 (6 dofs) 20.564 44.152 124.16 0.0244 

Matlab - ShellDS8 (6 dofs) 20.635 44.171 124.44 0.0244 

Disperancy [%] 0.35 0.04 0.23 0.00 

H
o

ri
zo

n
ta

l ANSYS - Shell99 (6 dofs) 22.428 40.348 135.33 0.0291 

Matlab - ShellDS8 (6 dofs) 22.467 40.464 134.84 0.0294 

Disperancy [%] 0.17 0.29 -0.36 1.03 

3.2. Validation Example 2: Study of laminated unstiffened double curved panel 

A four layered [θ/−θ/θ/−θ] laminated doubly curved shell are analyzed by using 
degenerated shell element. The results are compared with those calculated by ANSYS software. 

The properties of the doubly curved laminated composite shell as follows: a = 1 m; b = 1 
m; R1 = R2 = 5a; a/h = 50; All edge boundaries are clamped. E2 = 1×109 Pa; E1 = 25E2; G12 = G13 

= 0.5E2; G23 = 0.2E2; ν = 0.25 and ρ = 1500 kg/m3. 

The maximum deflection of the doubly curved shell under uniformly distributed transverse 
loading q = 1,000,000 N/m2 and natural frequency with various angles of fiber orientation θ are 
presented in Table 2. It can be observed that the present results calculated by degenerated shell 
element are closer to the ANSYS’s results. The difference between the frequencies obtained 
from the present finite element code and ANSY’s software is less than 0.85 %. The maximum 
difference between the central deflections is 0.27 %.  

Table 2. The maximum deflection and frequency of a doubly curved laminated composite shallow shell.  

Stacking 

sequence 

Frequency (Hz) Max. Deflection 

Mode 1 Mode 2 Mode 3 (m) 

ANSYS Present ANSYS Present ANSYS Present ANSYS Present 

0/90/0/90 135.12 135.34 174.23 174.69 175.00 175.46 0.0704 0.0702 

75/-75/75/-75 134.79 134.96 147.31 147.91 176.44 177.96 0.0633 0.0634 

45/-45/45/-45 129.13 129.48 164.99 165.56 165.50 166.05 0.0738 0.0736 

15/-15/15/-15 134.69 134.96 147.28 147.91 176.40 177.96 0.0634 0.0634 
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3.3. Validation Example 3: Study of centrally cross-stiffened laminated composite doubly 
curved shell 

Consider a centrally cross-stiffened laminated composite doubly curved shell with 
laminated stiffener having stiffener laminae orientation vertical as shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 
Figure 3. Geometry of doubly curved shell panel with stiffeners section is 'Rectangular' shape. 

Dimensions of laminated doubly curved composite shell and stiffener are given: a = b = 0.5 
m; a/h = 50; ts = 0.01m; hs = 0.0150 m; Stacking sequence of laminated shell and stiffeners is 
[0/90/0/90]. Composite material properties of shell and stiffener are as follows: E2 = 10 GPa; E1 

= 25E2; G12 = 0.5E2; G23 = 0.2E2; ν12 = ν23 = ν13 = 0.25; All edge boundaries are clamped. Non-
dimensional natural frequencies of stiffened laminated composite shell are calculated as 

ρ
ω ω

E h
=

2

. Table 3 depicts nondimensional fundamental natural frequencies of centrally cross-

stiffened laminated composite doubly curved shell with different stacking sequences and various 
shell radius-to-side ratio. The present results are compared with the results of Prusty [22] and the 
results calculated by ANSYS, and good agreement is observed. 

Table 3. Nondimensional natural frequency of centrally cross-stiffened laminated composite doubly 
curved shell. 

Shell stacking 
sequence  

R/a=5 R/a=10 R/a=100 

P
ru

st
y 

A
n

sy
s 

P
re

se
n

t 

P
ru

st
y 

A
n

sy
s 

P
re

se
n

t 

P
ru

st
y 

A
n

sy
s 

P
re

se
n

t 

           0/90/0/90 3.584 3.488 3.509 2.752 2.703 2.660 2.408 2.390 2.306 

45/-45/45/-45 3.440 3.431 3.436 2.687 2.719 2.637 2.376 2.444 2.300 

75/-75/75/-75 3.158 3.484 3.503 2.296 2.717 2.667 1.918 2.412 2.318 

15/-15/15/-15 - 3.484 3.503 - 2.717 2.667 - 2.412 2.318 

3.4. Parametric study 

yx

h

y, x
a

R1
ts

hs
h

Laminated shell surface

Laminated Stiffener

Stringer stiffener
rectangular shape

Doubly curved
Shell surface

Section of Rectangular shaped stiffener

b
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, z
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A stiffened laminated composite cylindrical shell with all edges clamped is considered as 
Figure 4. The shell is cross-stiffened with the stiffeners placed at the center. The stiffeners are 
rectangular, the ply of stiffeners are placed in the horizontal position. Ply orientation of shell is 
taken as [00/900/00/900]. The geometric dimensional are given: a = 1 m; b = 1 m; h = 20×10-3 m; 
ts = 30×10-3m; hs = 50×10-3  m. Material properties are given: E1 = 175.78×109 Pa; E2 = 7.031×109 
Pa; G12 = 3.516×109 Pa; G23 = 1.406×109 Pa; ν = 0.25 and ρ = 1500 kg/m3. 

R

z

x

y

a

anpha

z
h

w

u

v

b Stringer stiffener
Ring stiffener

ts

hs

st if f en er  c r o ss sec t io n

Cylindrical shell panel

  
Figure 4. Centrally cross-stiffened laminated 

composite cylindrical shell. 
Figure 5. Variation of fundamental natural 

frequency versus number of shell layers with 
different curvature R/a ratios. 

3.4.1. Effect of number of shell layers on the natural frequency of stiffened cylindrical shell 

Table 4 listed the three lowest natural frequencies of stiffened laminated cylindrical shell 
with varying curvature ratios (R/a). The stiffener ply orientation is taken as [00/900/00/900] and 
shell ply orientation is taken as [00/900]n with n = 1; 2; 3; 4 (constant shell thickness). 

The variation of fundamental natural frequency versus number of shell layer with different 
curvature ratios is shown in Figure 5. From Table 4 and Figure 5, it can be seen that for all 
values of R/a, the natural frequencies increase with the increase of number of layers. The rate of 
increase of frequency slows down for higher values of shell layers. 

Table 4. First three natural frequencies [Hz] of centrally cross-stiffened laminated  
composite cylindrical shell with various number of shell layers. 

Shell 
stacking 
sequence 

R/a = 5 R/a = 10 R/a = 100 
Mode No. Mode No. Mode No. 

1 2 3 1 2 3 1 2 3 
[00/900] 255.2 281.2 360.3 195.1 226.2 326.7 169.1 203.3 309.1 
[00/900]2 275.5 312.3 413.5 220.5 264.6 374.9 198.2 246.3 360.9 
[00/900]3 278.7 317.8 420.3 224.4 271.1 382.7 202.6 253.3 369.1 
[00/900]4 279.7 319.8 422.8 225.6 273.5 385.5 204.0 255.9 372.1 

3.4.2. Effect of number of stiffener layers on the natural frequency of stiffened cylindrical shell 

The three lowest natural frequencies of stiffened laminated cylindrical shell with varying 
curvature ratios (R/a) are tabulated in Table 5. 
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The shell ply orientation is taken as [00/900/00/900] and stiffener ply orientation is taken as 
[00/900]n with n = 1; 2; 3; 4 (constant stiffener width). Figure 6 illustrated the variation of 
fundamental natural frequency versus number of stiffener layers with different curvature ratios. 
From Table 5 and Figure 6, it can be observed that with the increase of the number of stiffener 
layers, the lowest three natural frequencies increase very slowly for all values of R/a, and 
practically it can be negligible.  

Table 5. First three natural frequencies [Hz] of centrally cross-stiffened laminated composite cylindrical 
shell with various number of stiffener layers. 

Stiffener 
stacking 
sequence 

R/a = 5 R/a = 10 R/a = 100 
Mode No. Mode No. Mode No. 

1 2 3 1 2 3 1 2 3 
[00/900] 274.7 311.2 411.1 219.6 263.3 372.5 197.2 244.9 358.4 
[00/900]2 275.5 312.3 413.5 220.5 264.6 374.9 198.2 246.3 360.9 
[00/900]3 275.7 312.5 414.0 220.7 264.8 375.5 198.4 246.5 361.5 
[00/900]4 275.8 312.6 414.3 220.8 264.9 375.8 198.6 246.6 361.7 

3.4.3. Effect of number of the eccentricity of the stiffener 

For this investigation, the stiffener cross-sectional area is kept constant, and accordingly, 
the depth (hs) and the width (ts) of stiffeners are adjusted, thus the eccentricity (hs/ts) of the 
stiffeners is varied. A four-layered cross-ply lamination sequences [00/900/00/900] in the shell 
and the stiffeners have been considered. 

Table 6. First three natural frequencies of centrally cross-stiffened laminated composite cylindrical shell 
with different eccentricity of stiffener. 

Eccentricity 
of stiffeners 

R/a = 5 R/a = 10 R/a = 100 
Mode No. Mode No. Mode No. 

1 2 3 1 2 3 1 2 3 
hs = 0.5ts 260.9 298.9 373.2 202.9 249.6 332.2 178.9 230.4 317.0 

hs = ts 268.2 305.1 393.4 211.8 256.5 354.3 188.7 237.7 339.8 
hs = 1.5ts 273.9 310.6 409.2 218.6 262.7 370.5 196.2 244.2 356.3 
hs = 2.0ts 278.5 315.6 421.1 224.1 268.2 382.9 202.1 250.1 369.1 
hs = 2.5ts 282.3 319.9 430.6 228.5 273.1 392.9 206.9 255.2 379.1 

Three lowest natural frequencies of stiffened laminated cylindrical shell with different 
eccentricity of stiffeners and various curvature ratios (R/a) are given in Table 6.  Figure 7 shows 
the variation of fundamental natural frequencies of stiffened laminated cylindrical shell versus 
eccentricity of stiffeners. It can be seen that the natural frequencies of stiffened laminated 
cylindrical shell increases with increasing eccentricity of stiffeners for all values of R/a. 
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Figure 6. Variation of fundamental natural 

frequency versus number of stiffener layers with 
different curvature R/a ratios. 

Figure 7. Variation of fundamental natural frequency 
vs. eccentricity of stiffener with different R/a ratios. 

4. CONCLUSION 

This paper presents a formulation of the degenerated eight nodes shell finite element with 
six degrees of freedom per node. First order shear deformation theory has been adopted. A finite 
element program was developed using Matlab to analyze free vibration characteristic of 
laminated stiffened cylindrical composite shell. The accuracy and efficiency of the proposed 
shell finite element formulation are tested by three numerical examples, and results have a good 
agreement with the other reference solutions.  

From the parametric study, it can be concluded that with constant thickness of the shell, the 
increasing the number of layers, the stiffened laminated shell stiffness can be increased (higher 
nature frequency). The influence of number of stiffener’s layer can be negligible. Keeping the  
cross-sectional area  of  the  stiffeners same  for all the cases, it was  found  that depth of  the 
stiffener is the guiding factor for the dynamic behavior  of  stiffened shell. As the depth 
increases, the strength of the structure also increases. With a fixed R value, the smaller is the  
value, the stronger is the structure. 

The  shell  and  stiffener  finite  elements  presented  in  this  paper  can  be  applied  to  
study the linear response and failure analysis of stiffened laminated  composite shells.  
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TÓM TẮT 

PHÂN TÍCH DAO ĐỘNG RIÊNG CỦA PANEL TRỤ COMPOSITE LỚP CÓ GÂN                      
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Bài báo trình bày phân tích dao động riêng của panel trụ composite lớp có gân gia cường. 
Phần tử vỏ suy biến đẳng tham số 8 nút được phát triển trên cơ sở phần tử khối và giả thiết 
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Mindlin có kể đến biến dạng cắt ngang và mô men quán tính quay để mô hình hoá cả vỏ 
composite lớp và gân gia cường. Kết quả số được kiểm chứng qua so sánh với một số kết quả đã 
công bố. Ảnh hưởng của một số tham số hình học khác nhau của vỏ và gân đến đặc trưng dao 
động của vỏ có gân gia cường đã được thực hiện. 

Từ khóa: vỏ composite lớp, vỏ có gân gia cường, tần số dao động riêng, phần tử hữu hạn, phần 
tử vỏ suy biến, phân tích tĩnh.  


