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ABSTRACT

Among approximate methods, the method of equivaletarization proposed by N.
Krylov and N. Bogoliubov and extended by Caughey femained an effective tool for both
deterministic and stochastic problems. The ideth@fmethod is based on the replacement of a
nonlinear oscillator by a linear one under the saexeitation. The standard way of
implementing this method is that the coefficierftireearization are to be found from a criterion
of equivalence. When the difference between thdimeer function and equivalent linear one is
significant the replacement leads to unaccepteorerin order to reduce the errors one may
apply the dual approach. One of significant advgeda of the dual conception is its
consideration of two different aspects of a problamuestion allowing the investigation to be
more appropriate. In this paper a special casehefvieighted full dual mean square error
criterion is introduced and investigated in detlilimerical results are carried out to show that
this special full dual mean square error criterd@am give more accurate approximate solutions
for both deterministic and random nonlinear systems
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1. INTRODUCTION

Nonlinear oscillator models have been widely usedmany areas of physics and
engineering and are of significant importance inchamical and structural problems for the
comprehensive understanding and accurate prediotiorotion. The study of nonlinear systems
is of interest to many researchers and various odstlof solution have been proposed [1 - 3].
Among approximate methods, the method of equivdileaarization proposed by N. Krylov and
N. Bogoliubov [1] and extended by Caughey [4] hamained an effective tool for both
deterministic and stochastic problems. The ideth@fmethod is based on the replacement of a
nonlinear oscillator by a linear one under the saexeitation. The standard way of
implementing this method is that the coefficierftéirearization are to be found from a criterion
of equivalence [4 - 7]. In 2006, Crandall's worl fescribed a number of interesting episodes
in the history of the linearization technique thave arisen in the past half century. The problem
of equivalent replacement plays a basic role inymigglds of science and technology. The
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solution of this problem allows transforming a @iffit problem to one that is much easier to be
investigated. When the difference between the neali function and equivalent linear one is
significant the replacement leads to unacceptartsrsee for example [5 - 7]. In order to reduce
the errors one may apply the dual approach recentigosed and developed in [9 - 13]. One of
significant advantages of the dual conceptiondscansideration of two different aspects of a
problem in question allowing the investigation ® more appropriate. In this paper a special
case of the weighted full dual mean square eriitgron [9] is introduced and investigated in
detail. It is shown that this special full dual mesguare error criterion can give good accurate
approximate solutions for both deterministic antdi@n nonlinear systems.

2. FULL DUAL MEAN SQUARE ERROR CRITERION

Let first reconsider briefly the basic idea of ttlassical mean square error criterion. Let
consider a nonlinear system described by the fatigwequation

X(t) + 2hX(t) + «f x(t) + g (x(0), x (1)) = T (1), (1)

whereh and ay are constantsg(x,x) is a nonlinear function of two argumenss X; f(t) is
periodic or random excitation. The correspondingielent linear equation is

(1) + 2h%(t) + af X (t) + ax(t) + Bx(t) = f (1), )

wherea, S are equivalent linearization coefficients. Theaen error is

e(X, X) = g(x,X) —bx —kx . 3
According to the classical mean square error ¢oiteone requires
35 =((9(x30 = ak=px)’) - min. (4)

The symbol<[3 is a corresponding averaging operator. In the oageriodic functions
with the periodT one gets

_1
<§>_?jo (DKt (5)
In the case of random functions[®> is the mathematical expectation operator. The
condition (4) leads to the following coefficientsemuivalence linearization

< g(x,x)x>
o =S9XX)
<X >

_ <g(x,x)x>
<x’>

B (6)

It is observed that the classical mean square eamiberion gives good approximate
solutions for systems with small nonlinearity. Thegveral criteria have been proposed to
increase the accuracy of the equivalent lineadmatiethod [5 - 8]. A new approach to problems
of nonlinear vibration and structural control waseantly proposed by N. D. Anh [9]. This new
approach, called dual approach, has a conceptibalahce in research, following the essence of
problem. Using the dual approach to the problenegtivalent linearization the following
weighted full dual mean square criterion was inticeti in [9]
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Jg == p-0) < (g(x,X)—ax = Bx)’* >+ p< (ax+ Bx— pg(x,x)f > +
+a< (=g (xX)F > - min,

wherep, q are constant weighting parameters. The terminoldgly’ is introduced here to
indicate that the objective function (7) containdeBms. The first term in (7) presents the
forward replacement from the original nonlineardiion to its equivalent linearization part. The
second term in (7) presents the return (dual) ogphent from the equivalent linearization part
to the original nonlinear function, and the lagihten (7) requires that the original and return
(dual) nonlinear functions should be close eacbti@r as much as possible. It is seen that (7)
leads to the classicalp = g = 0), and dual mean square error criteria,=(1/2, q = 0),
investigated in [10-11], respectively. It should beted that the classical mean square error
criterion contains only one replacement and thd dhéan square error criterion investigated in
[10-11] contains 2 replacements. In this paperféliewing casep = g = 1/3 is introduced and,
hence, consider the following full dual mean squaiterion

Jua =5 < (900 = BX> 4+ < (Bx=g(9)"> +

()

1 2 _ (8)
+§<((1—/J)g(><)) >~ min.

Here, for simplicity, it is supposed that the noahr function depends only an Taking
partial derivatives ofl,,, respect tog, 4 one gets

S%Jm =< (9(X) = BX(=X)> +< (Bx=pg(x))X)>=0,
g%J =< (Bx - Hg(x))(~9(x) >~ (1~ ) < g* (x)> =0. ©)
Solving this system yields
P s @0
where it is denoted
2 _ <g(x¥)x>? (11)

T <gi(X) >< X2 >
Thus, the corresponding equivalent linearizatiogficient £ is defined by (10) where®

is determined by (11). Substituting (10) into (Bads to the corresponding equivalent linear

equation as follows
() +20(0) + (f + 3 _<9(x)x)>

-’ <x*>

x(©) = (). (12)
Hence, the approximate response of the nonlinesiesy(1) where the nonlinear function

g depends only on x can be found from the lineaiaggn (12). In the next section the accuracy
of the full dual mean square error criterion (8¢xamined for some typical nonlinear systems.

3. NUMERICAL EXAMPLES

Example 1. Free vibration of extended Duffing oscillator vhigh nonlinearity
Consider the extended Duffing system of high naaiity
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Table 1. Comparison of frequencies.

n w, w, Error (%) Wy Error (%)
1 0.847./y 0.866y 2% 0.852fy 1%
2 0.747Jy 0.791/y 6% 0.765[y 2%
3 0.675\/y 0.74Qfy 10% 0.70%fy 5%
0,
4 | 0620y 0.702/y 13% | 0.664/y %
0,
5 | 0577y 0.672y 16% | 0.63L/y 9%
0,
6 0.542/y 0.647/y 19% 0.605,/y 12%
0,
7 0.512\/y 0.627/y 22% 0.583,/y 14%
X+ yx2™ =0, (13)

with initial conditions x(0) =1, x(0) = 0, where ) is a positive constant. For n=1, the system
(13) is known as the Duffing oscillator. The pei@dibration exists for the conservative system
(13) and its exact frequency is determined by timéla [1]

1
=T, = (14)
e 0 [ZJ‘ yX2n+1dX]1/2
Using (6), (12) one gets frequencies obtained lycthssical (4) and full dual (8) criteria,
respectively,
X232 (t cos™? (,t
o y("0) _ ¥ @ )>, (15)
(x@) (cos @t )

Wy =\/ 4 3 (cos™@t) ,_ (co8" gt ) (16)

-r? <co§ @t )> e < cod"? o, t >< CcOS ¢, t >)'

The comparison between the approximate frequefit®s (16) with exact one is shown in
Tab.1, in which it is observed that the accuracyl6f is much better than the one of (15) for all
values of n. In particular, the percent error afssical solution is 22% while the percent error of
full dual solution is 14% for n=7, respectively.

Example 2. Mean square response of Duffing oscillator subpto random excitation
Consider the forced Duffing oscillator
X+ 2h% + afx+ yx® = o (t), (17)

whereh,a,,y,0 are positive constantg,(t) is a white noise with delta correlation function

(é(t)y=0, (&(t)é(t+1))=5(r). (18)
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The exact mean square response to the nonlingansy$7) is found as follows [5-6]

Table 2. Comparisons of mean square responses.

y <X2 ('E)>ex <X2 (t)>CI Error% <X2 ('E)>fd Error%
0.1 0.818 0.805 1.5% 0.821 0.4%
0.5 0.579 0.549 5.3% 0.570 1.6%

1 0.468 0.434 7.2% 0.454 3.0%

5 0.254 0.227 10.6% 0.240 5.5%
10 0.189 0.167 11.6% 0,176 6.9%
50 0.090 0.078 13.3% 0,083 7.8%
100 0.065 0.056 13.8% 0,060 7.7%

_[ x? exp{—‘lg(lexz +1yx4j}dx
<X2> — o\ 2 4
e % 4h(1 1 '
expd - | —afx?+ = yx* | dx
Jol- 300 )
The equivalent linearization equation correspondnBuffing system (17) takes the form

%+ 2hx + af x + kx = o€ (t), (20)

(19)

wherek is the equivalent linearization coefficient. Fr¢20) one gets [5]

0.2

X)) = — . 21
() 4n(af +k) )
For the classical mean square error criterion (4),
4
k=k,, k, =22 Z=3/<x?>, (22)

<X >

For the full dual mean square error criterion (8),
o (y<x'>)? (By<x*>%?
k= kfd = 6 73 2 2.3 2
15/ < x®><x*> 15°<x*>%x?>

3
51
Ky = L =2y < x> (23)

The exact and approximate mean square responsks mindom Duffing system (17) are
shown in Tab. 2 wherey, =1,0%/(4h)=1 and the nonlinearity coefficieny varies. It is

obtained that the full dual mean square responsegnach close to the exact ones than the
classical mean square responses for all valudseafdnlinearity coefficierjt. In particular, the

percent error of classical solution is 13.8% wihiile percent error of full dual solution is 7.7%
for y =100, respectively.

4. CONCLUSION

Among approximate methods, the method of equivalerarization proposed by N.
Krylov and N. Bogoliubov and extended by Caughey femained an effective tool for both
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deterministic and stochastic problems. When thiemihce between the nonlinear function and
equivalent linear one is significant the equivalénéarization leads to unaccepted errors. In
order to reduce the errors one may apply the dyaoach. One of significant advantages of the
dual conception is its consideration of two différaspects of a problem in question allowing
the investigation to be more appropriate. In trapgr a special case of the weighted full dual
mean square error criterion is introduced and itiya®d in detail. The investigation leads to a
new equivalent linearization coefficient which iff&fent to the classical one. Numerical results
are carried out to show that this special full doedan square error criterion can give good
accurate approximate solutions for both determimisind random nonlinear systems, for
example, the percent error can be reduced from @22%1% for the periodic system and from
13.8 % to 7.7 % for the random system, respectivelyther investigation will be followed to
extend this new approach to other nonlinear probleamch as single and coupled flutter
instability [14].
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