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ABSTRACT 

In this paper, a new eight-unknown shear deformation theory is developed for bending and 
free vibration analysis of functionally graded plates by finite element method. The theory based 
on full twelve-unknown higher order shear deformation theory, simultaneously satisfy zeros 
transverse stresses at top and bottom surface of FG plates. A four-node rectangular element with 
sixteen degrees of freedom per node is used. Poisson’s ratios, Young’s moduli and material 
densities vary continuously in thickness direction according to the volume fraction of 
constituents which is modeled as power law functions. Results are verified with available results 
in the literature. Parametric studies are performed for different power law index, side-to-
thickness ratios. 

Keywords: functionally graded plate, finite element method, bending, vibration analysis. 

1. INTRODUCTION 

  Since it was invented by Japanese scientists in 1984 [1], functionally graded materials 
(FGMs) are increasingly and  widely used in many fields, such as aerospace, marine, 
mechanical, and structural engineering due to its advantages compared to classical fiber-
reinforced laminated composites. The typical FGMs composed of ceramic and metal materials. 
The ceramic composition offers thermal barrier effects and protects the metal from corrosion and 
oxidation, and the metallic composition provides FGM toughness and strength.   

For dynamic and static analysis of functionally graded plates and shells, many plate 
theories are developed. A review of shear deformation theories for isotropic and laminated plates 
was carried out by Ghugal and Shimpi [2] and Khandan et al. [3]. Focus on modeling of 
functionally graded plates and shells, Thai Huu-Tai and Kim Seung-Eock [4] reviewed various 
theoretical models to investigate their mechanical behavior. The classical plate theory (CPT) 
based on Kirchhoff assumptions and ignores the transverse shear deformation effect gives 
appropriate results for thin plates. First-order shear deformation theory (FSDT) takes into 



 
 
Bending and free vibration analysis of functionally graded plates using new generalized shear… 

403 

account the transverse shear deformation effect and needs a shear correction factor which is 
difficult to determine due to its dependence on many parameters. To overcome the weaknesses 
of FSDT, the higher-order shear deformation theories are proposed.  

A comprehensive review of the various methods employed to study the static, dynamic and 
stability behavior of functionally graded plates can be found in work of Swaminathan et al. [5]. 
The review focuses on comparing the stress, vibration and buckling characteristics of FGM 
plates using different theories. Based on third order shear deformation theory with five 
displacement unknowns, Reddy [6] developed analytical and finite element solutions for static 
and dynamic analysis of functionally graded rectangular plates. El-Abbasi and Meguidin [7] 
used a new thick shell element to study the thermoelastic behavior of functionally graded plates 
and shells. They extended the four-nodded seven-parameter shell element to account for the 
varying elastic and thermal properties, as well as the temperature boundary conditions on both 
faces of FG plates and shells 

 Oyekoya et al. [8] developed Mindlin-type element and Reissner-type element for the 
modelling of functionally graded plate subjected to buckling and free vibration. The Mindlin-
type element formulation is based on averaging of transverse shear distribution over plate 
thickness using Lagrangian interpolation. The Reissner-type element formulation is based on 
parabolic transverse shear distribution over plate thickness using Lagrangian and Hermitian 
interpolation. Talha and Singh [9] studied free vibration and static behavior of functionally 
graded plates using higher order shear deformation theory. A continuous isoparametric 
Lagrangian finite element with 13 degrees of freedom per node is employed for the modeling of 
functionally graded plates. Thai Huu-Tai and Choi Dong-Ho [10] presented finite element 
formulation of various four-unknown shear deformation theories for the bending and vibration 
analyses of functionally graded plates. To describe the primary variables, a four-node 
quadrilateral finite element is developed using Lagrangian and Hermitian interpolation functions. 
Three-dimensional graded finite element method based on Rayleigh-Ritz energy formulation has 
been applied to study the static response of the thick functionally graded plates [11]. 

In this paper, a new higher order displacement field based on twelve-unknown higher order 
shear deformation theory is developed to analyze the free vibration and buckling of functionally 
graded plates. The new eight-unknown higher order shear deformation theory is derived from 
the satisfaction of vanishing transverse shear stress at the top and bottom surfaces of the plate. 
The finite element model is developed for bending and free vibration analysis of power-law 
functionally graded plates. A C1 continuous four-node quadrilateral plate element with sixteen 
degrees of freedom per node is employed. Lagrangian linear interpolation functions are used to 
describe the in-plane displacements and the rotation of normals about x, y axes; Hermitian cubic 
interpolation functions are given for the transverse displacement, rotation about z-axis, higher-
order term of displacements and their first derivation. 

2. KINEMATICS 

The twelve-unknown higher order displacement field is given as follow [12]: 

2 * 3 *
0 0

2 * 3 *
0 0

2 * 3 *
0 0( , , , ) ( , , ) ( , , ) ( , , ) ( , , ).

( , , ) ( , ) ( , ) ( , ) ( , );

( , , ) ( , ) ( , ) ( , ) ( , );
x x

y y

z zw x y z t w x y t z x y t z w x y t z x y t

u x y z u x y z x y z u x y z x y

v x y z v x y z x y z v x y z x y

θ θ

θ θ
θ θ

= + + +

= + + +
= + + +     (1) 
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where ,  ,  u v w denote the displacements of a point along the (x, y, z) coordinates. 0 0 0,  ,  u v w  are 

corresponding displacements of a point on the midplane. xθ , yθ  and zθ are the rotations of the 

line segment normal to the midplane about the y-axis, x-axis and z-axis , respectively. The 
functions 0u∗  , 0v∗ , 0w∗ , xθ ∗ , yθ ∗  and zθ ∗  are the higher order terms in the Taylor series expansion 

defined in the mid-plane. 

For bending plates, the transverse shear stresses xzσ , yzσ  must be vanished at the top and 

bottom surfaces. These conditions lead to the requirement that the corresponding transverse 

strains on these surfaces be zero. From , , , , 0
2 2xz yz

h h
x y x yγ γ   ± = ± =   
   

, we obtain: 

( )

( )

2
* * * *
0 , , 0, 0,2

2
* * * *
0 , , 0, 0,2

1 4 1
; ;

2 8 3 3

1 4 1
; .

2 8 3 3

z x z x x x x x

z y z y y y y y

h
u w w

h

h
v w w

h

θ θ θ θ

θ θ θ θ

= − − = − + −

= − − = − + −
      

 (2) 

Thus, the displacement field (1) becomes: 

( ) ( )

( ) ( )

*
1 2 0, 0,

2 3
* *

0 , 1 , 2 0, 0,

2 * 3 *
0 0

2 3
*

, ,0 ;
2 3

;
2 3

.

x x x

y z y z y y y y

z z

x z x z x
z z

u u z c c w w

z z
v v z c c w w

w w z z w z

θ θ θ θ

θ θ θ θ

θ θ

 = + − + − + + 

 = + − + − + + 

= + + +
                  

(3) 

with: 
2

1 2 2

4
; .

4

h
c c

h
= = or in matrix notation as:  

{ } { }.u H d =                (4)         

where:  

3 3 2 3
2 2 1

3 3 2 3
2 2 1

2 3

- -- -
1 0 - 0 0 0 0 0 0 0 0 0

3 3 2 3 2
- -- -

0 1 0 - 0 0 0 0 0 0 0 0 ;
3 3 2 3 2

0 0 0 0 1 0 0 0 0 0 0 0 0

c z c z c zz z
z

c z c z c zz z
H z

z z z

 
 
 
   =   
 
  

 

{ } { }, ,
T

u u v w= displacement vector of any generic point within the plate; 

{ } { }* * * * * *
0 0 0 0, 0, , , 0 0, 0, , ,, , , , , , , , , , , , , , , .

T

x y x y z z x z y x y z z x z yd u v w w w w w wθ θ θ θ θ θ θ θ=  

Following strain - displacement relation, the non-zero strains are given as: 
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                                                       (5) 

or:  

{ } { } { } { } { }2 3+ z .0 0 * *z z= + +ε ε κ ε κ        
     

(6) 

where: 

{ } { } { }0 0 0 0 0
0, 0, 0, 0,, , , , , , ;x y z xy x y z y xu v u vε ε ε γ θ= = +ε            

{ } { }0 0 0 0 *
, , 0 , ,, , , , ,2 , ;x y z xy x x y y x y y xwκ κ κ κ θ θ θ θ= +  

{ } ( ) ( ) ( )* * * * * * * *
, 1 , , 1 , , 1 ,

1 1
, , , , ,3 , ;

2 2x y z xy z xx z xx z yy z yy z z xy z xyc c cε ε ε γ θ θ θ θ θ θ θ = − + − + − + 
 

             (7) 

{ } ( )( ) ( )( )

( )( )

* * * * *
2 , 0, 0, 2 , 0, 0,

*
2 , , 0, 0,

1 1
, , , ,

3 3

1
2 2 ;

3

x y xy x x xx xx y y yy yy

x y y x xy xy

c w w c w w

c w w

κ κ κ θ θ

θ θ

= − + + − + +


− + + + 


                       (8) 

{ } { } { } { }0 0 0 0 * *
0, 0, 1 , 1 ,, , ; , , ;xz yz x x y y xz yz z x z yw w c cγ γ θ θ κ κ θ θ= + + = − −                                        (9) 

{ } ( ) ( ){ } { } { }* * * * * *
2 0, 2 0, , ,, , ; , , .xz yz x x y y xz yz z x z yc w c wγ γ θ θ κ κ θ θ= − + − + =

                             

(10)

 

3. CONSTITUTIVE EQUATION 

Consider a rectangular FGM plate with the length a, width b, and thickness h. The x-, y-, 
and z-coordinates are taken along the length, width, and height of the plate, respectively, as 
shown in Fig. 1. The material properties of FGM plates are assumed to vary continuously 
through the thickness of the plate by a power law distribution as [6]: 

( ) .
1

( )
2

p

c m m
z

V z V V V
h

= − + + 
 
 

                                                (11) 

where V(z) represents the effective material property such as Young's modulus E, mass density 
ρ, and Poisson's ratio ν; subscripts m and c represent the metallic and ceramic constituents, 
respectively; and p is the volume fraction exponent. 
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Figure 1. Geometry  of  FG  plate  with  positive  set  of  reference  axes.   

The stress-strain relationship for the FGM plate can be written as: 

11 12 13

21 22 23

31 32 33

44

55

66

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

x x

y y

z z

xy xy

xz xz

yz yz

Q Q Q

Q Q Q

Q Q Q

Q

Q

Q

σ ε
σ ε
σ ε
σ γ
σ γ
σ γ

    
    
    
       =     

    
    
    
        

        

or: { } [ ]{ }=σ εD

          

(12) 

in which:  

( )
( )( )11 22 33

1
;

1 1 2

E
Q Q Q

ν
ν ν

−
= = =

+ − ( )44 55 66 ;
2 1

E
Q Q Q

ν
= = =
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( )( )12 23 13 21 32 31.1 1 2

E
Q Q Q Q Q Q

ν
ν ν

= = = = = =
+ −

 

4. FINITE ELEMENT FORMULATION 

A C1 continuous four-node quadrilateral plate bending element with sixteen degrees of 
freedom per node is used (Fig. 2). The Lagrangian linear interpolation functions ( ),iN ξ η  are 

employed to describe the variables 0 0, , ,x yu v θ θ  and the Hermitian cubic interpolation functions 

( ),ijH ξ η  are employed to describe the variables * * * *
0 0, 0, , , 0 0, 0,, , , , , , , , ,x y z z x z y x y zw w w w w wθ θ θ θ  

* *
, ,, :z x z yθ θ  

 

 

 
 

 

 

Figure 2. Node number of four-node quadrilateral element in its natural coordinate. 
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  ∑θ θ θ θ eB q                    (13) 
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= =
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0, , 0, , , 0 0 , 0 , , , 0 0 , 0 , , , 22
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; ; ; = , , ; , , ; , , ; , , = ;
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= =

  ∑∑θ θ θ θ θ θ θ θ eB q    (15) 

{ } { } { }
4 3

* * * * * * * *
0, , 0, , , 0 0 , 0 , , , 0 0 , 0 , , , 23

1 1

; ; ; = , , ; , , ; , , ; , , =
T T

y z y y z y ij y i i x i y zi zi x zi y i i x i y zi zi x zi y
i j

w w H w w w w w w
= =

  ∑∑θ θ θ θ θ θ θ θ eB q    (16) 

For rectangular elements, the interpolation functions iN  and ijH  for the i-th node are given 

in terms of the natural coordinates as: 

( )( )1
1 1 ;

4i i iN ξ ξ η η= + +                     (17) 

( )( )( )

( )( )( )

( )( )( )

2 2
1

2 2
2

2 2
3

1
1 1 2 ,

8
1

H 1 1 1 ,
8
1

1 1 1 .
8

i i i i i

i i i i i

i i i i i

H

H

ξ ξ η η ξ ξ η η ξ η

ξ ξ ξ η η ξ ξ

η η η ξ ξ ξ ξ

= + + + + − −

= − + +

= − + +

                 (18) 

{ } { }2 3 4, , ,
T

eq q q q q= 1  is element nodal displacement vector.  

{ } { }* * * * * *
0 0 0 0, 0, , , 0 0, 0, , ,, , , , , , , , , , , , , , ,

T

i i i xi yi i xi yi zi z xi z yi i xi yi zi z xi z yiq u v w w w w w wθ θ θ θ θ θ θ θ= is nodal 

displacement vector corresponding to i-th node.  

The displacement vector at any generic point can be written as: 

{ } { }ed B q =                              (19) 

where: 1 21 22 23, , ,
T

B = B B B B                      is the shape function matrix. 

The strain vector is expressed by: 

{ } [ ]{ } [ ] { } [ ]{ }= .e eL d L B q B qε  = =                    (20)    

[L] is differential operator matrix, [ ] [ ]B L B =    is the strain - displacement matrix. 

The Hamilton’s principle can be expressed as:  

( )
0

0 .
T

U W T dtδ δ δ= + −∫                    (21) 

and applying for each element: 

The strain energy of the FGM plate element is given by: 
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{ } { } { } [ ] [ ][ ]{ } { } [ ]{ }1 1 1
.

2 2 2

T T TT
e e e e e e

V V

U dV q B D B q dV q K qσ ε= = =∫ ∫
e e

             (22) 

The external work done on the plate element by distributed applied load may be written as: 

{ } { } { } { } { } { }.
e e

T TT T
e e e e

A A

W d f dA q B f dA q F = − = − = − ∫ ∫               (23) 

and {f} is mechanical load vector. 
The kinetic energy of the FGM plate can be expressed as: 

{ } { } { } [ ] [ ]{ } ( ) { } [ ]{ }1 1 1
(z) .

2 2 2

TT TT T

e e e e e e

V V

T u u dV q H B H B q z dV q M qρ ρ   = = =   ∫ ∫ɺ ɺ ɺ ɺ ɺ ɺ     (24) 

Substituting Eqs. (11b-11d) into Eq. (11a), finite element stiffness equation is obtained as:  

[ ]{ } [ ]{ } { }.e e e e eM q K q F+ =ɺɺ                                                                 (25) 

where [Ke], [Me] and {Fe} are the element stiffness matrix, element mass matrix and element 

nodal load vector, {qe} is nodal displacement vector, and { }eqɺɺ  is the second derivative of the 

displacements of the element with respect to time.  
By assembling the element matrices, the global equilibrium equations for the plate can be 

obtained as 

[ ]{ } [ ]{ } [ ].K Q M Q F=+ ɺɺ         (26) 

where [K], [M] and {F} are the global stiffness matrix, mass matrix and nodal load vector of the 
structure, {Q} is nodal displacement vector, and { }Qɺɺ  is the second derivative of the 

displacements of the structures with respect to time.  

The generalized governing equation (26) can be employed to study the free vibration and 
static analysis by dropping the appropriate terms as: 

For linear static analysis: 

 [ ]{ } { }.K Q F=                                     (27) 

For free vibration analysis, the frequency of natural vibration can be obtained from the 
bellow eigenvalue problem:  

[ ] [ ]( ){ } [ ]2 0 .K M Qω =-                                                      (28)   

This equation can be solved after imposing boundary conditions of the structure, with 
eigenvalues solving common problems.  

The boundary conditions for an arbitrary edge with simply supported and clamped edge 
conditions are: 

Clamped (C): 

* * * * * *
0 0 0 0, 0, , , 0 0, 0, , ,x y x y z z x z y x y z z x z yu v w w w w w wθ θ θ θ θ θ θ θ= = = = = = = = = = = = = = =  

at x = 0; a and y = 0; b.  

Simply supported (S):  

* * * *
0 0 0, , 0 0, ,y y z z y y z z yv w w w wθ θ θ θ θ= = = = = = = = =  at x = 0; a. 
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* * * *
0 0 0, , 0 0, ,x x z z x x z z xu w w w wθ θ θ θ θ= = = = = = = = =  at y = 0; b. 

5. NUMERICAL RESULTS 

Matlab codes for finite element model have been built for numerical investigation. After 
checking convergence, a 10×10 mesh of four-node element has been used in the computation. 
The selective integration scheme based on Gauss-quadrature rules, with 3×3 for membrane, 
coupling, flexure and inertia terms and 2×2 for shear term. A rectangular FG plates with different 
boundary conditions as shown in Fig. 3 are considered (F-free, S-simply supported, and C-
clamped). Material properties of the P-FG plate are given in Table 1. For convenience, the 
following dimensionless forms are used [13]: 

3

4
0

10 cwE h
w

q a
= ; .c

c

h
E

ω ω
ρ

=  

Table 1. Material properties used in the P-FG plate [13]. 

Properties E (GPa) υ ρ (kg/m3) 

Metal Aluminum (Al) 70 0.3 2702 

Ceramic Alumina (Al2O3) 380 0.3 3800 

y

x

y

x

y

x

y

x

y

x

y

x

y

x

CCCC SCSC SSSC

SSSS SFSC SFSS SFSF  

Figure 3. Boundary conditions of plates. 

Example 1. Validation study  

Dimensionless central deflections w  of isotropic square plates (p = 0) with various values of 
thickness ratios a/h are presented in Table 2. The present results are compared with the solutions 
given by Thai, H.T., & Choi, D.H. [10] based on four-unknown shear deformation theories 
(zeros shape function - FSDT) and the analytical solutions reported by Zenkour [14] based on a 
mixed first-order shear deformation theory (MPT). It can be seen that the present solution is in 
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close agreement with those solutions (errors <0.2 %). 

          Dimensionless fundamental frequencies ω  of simply supported (SSSS) square FG plates (p = 
0) with various values of thickness ratios a/h and power law index p are presented in Table 3. The 
comparison of the dimensionless fundamental frequencies of present results shows good agreement 
with analytical solutions of  Thai H. T., & Kim S. E. [12] based on simple higher-order theory, 
and finite element results of Thai H. T., & Choi D.H. [9] based on four unknowns shear 
deformation theories.  

Table 2. Dimensionless deflection w  of isotropic square plates under uniform loads. 

a/h Method 
Boundary condition 

SCSC SSSC SSSS SFSC SFSS SFSF 

5 MPT [14] 0.3021 0.3827 0.4904 0.7139 0.9072 1.4539 

FSDT [13] 0.2837 0.3686 0.4929 0.6945 0.9146 1.4794 

Present 0.2833 0.3565 0.4526 0.6958 0.8837 1.5742 

10 MPT [14] 0.2209 0.3059 0.4273 0.6065 0.8224 1.3459 

FSDT [13] 0.2220 0.3062 0.4298 0.6121 0.8314 1.3722 

Present 0.2550 0.3337 0.4390 0.6625 0.8629 1.5406 

25 MPT [14] 0.1965 0.2830 0.4096 0.5737 0.7981 1.3154 

FSDT [13] 0.2047 0.2887 0.4121 0.5890 0.8080 1.3422 

Present 0.2005 0.2816 0.3961 0.5822 0.8005 1.4487 

10,000 MPT [14] 0.1917 0.2785 0.4062 0.5667 0.7931 1.3094 

FSDT [13] 0.2014 0.2853 0.4087 0.5847 0.8036 1.3365 

Present 0.1919 0.2736 0.3905 0.5694 0.7918 1.4324 

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

D
im

en
si

on
le

ss
 d

ef
le

ct
io

n

p

 

 

CCCC
SCSC

SSSC

SSSS
SFSC
SFSS

SFSF

             
0 10 20 30 40 50 60 70 80 90 100

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

D
im

en
si

on
le

ss
 d

ef
le

ct
io

n

a/h

 

 

CCCC
SCSC

SSSC

SSSS
SFSC
SFSS

SFSF

 
Figure 4. Variation of dimensionless deflection 

w  versus power law index p of Al/Al2O3-1 
square plates under uniform loads (a/h = 10). 

 Figure 5. Variation of dimensionless 
deflection w  versus thickness ratio a/h of 

Al/Al2O3-1 square plates under uniform loads 
(p = 2). 
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Figure 6. Variation of dimensionless fundamental 

frequency ω  versus power law index p of 
Al/Al 2O3 square plates (a/h = 10). 

 Figure 7.Variation of dimensionless 
fundamental frequency ω  versus thickness 
ratio a/h of Al/Al 2O3 square plates (p = 2). 

Table 3. Dimensionless fundamental frequency ω  of SSSS Al/Al2O3 square plates. 

a/h Method 
Power law index (p) 

0 0.5 1 4 10 

5 TSDT [14] 0.2113 0.1807 0.1631 0.1378 0.1301 

FSDT [13] 0.2108 0.1802 0.1629 0.1396 0.1322 

Present 0.2280 0.1949 0.1765 0.1504 0.1420 
10 TSDT [14] 0.0577 0.0490 0.0442 0.0381 0.0364 

FSDT [13] 0.0576 0.0489 0.0441 0.0382 0.0365 

Present 0.0591 0.0502 0.0457 0.0402 0.0383 
20 TSDT [14] 0.0148 0.0125 0.0113 0.0098 0.0094 

Present 0.0154 0.0130 0.0119 0.0105 0.0100 

Table 4. Dimensionless deflection w  of Al/Al 2O3 square plates under uniform loads. 

a/h p 
Boundary condition 

CCCC SCSC SSSC SSSS SFSC SFSS SFSF 

5 0 0.2064 0.2833 0.3565 0.4526 0.6958 0.8837 1.5742 

0.5 0.3048 0.4225 0.5379 0.6909 1.0545 1.3526 2.4082 

1 0.3897 0.5418 0.6919 0.8911 1.3602 1.7498 3.1272 

2 0.5090 0.7053 0.8956 1.1463 1.7574 2.2511 4.0427 

5 0.6757 0.9205 1.1406 1.4234 2.2019 2.7611 4.9461 

10 0.7802 1.0537 1.2921 1.5952 2.4780 3.0770 5.5048 

10 0 0.1800 0.2550 0.3337 0.4390 0.6625 0.8629 1.5406 

0.5 0.2720 0.3875 0.5104 0.6756 1.0148 1.3290 2.3678 

1 0.3424 0.4899 0.6491 0.8642 1.2974 1.7087 3.0590 

2 0.4280 0.6131 0.8144 1.0868 1.6364 2.1622 3.9014 

5 0.5271 0.7489 0.9827 1.2960 1.9656 2.5738 4.6574 

10 0.5999 0.8469 1.1016 1.4402 2.1933 2.8499 5.1563 

20 0 0.1393 0.2056 0.2862 0.3996 0.5895 0.8056 1.4562 

0.5 0.2135 0.3158 0.4411 0.6175 0.9085 1.2445 2.2444 

1 0.2725 0.4039 0.5659 0.7945 1.1696 1.6075 2.9111 
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2 0.3429 0.5086 0.7136 1.0029 1.4810 2.0400 3.7224 

5 0.4088 0.6042 0.8439 1.1809 1.7518 2.4059 4.4104 

10 0.4536 0.6689 0.9309 1.2984 1.9302 2.6432 4.8511 

50 0 0.1297 0.1940 0.2756 0.3919 0.5727 0.7942 1.4395 

0.5 0.2001 0.2996 0.4259 0.6062 0.8848 1.2280 2.2205 

1 0.2566 0.3846 0.5478 0.7810 1.1413 1.5877 2.8827 

2 0.3231 0.4848 0.6913 0.9863 1.4460 2.0156 3.6873 

5 0.3801 0.5698 0.8118 1.1570 1.7013 2.3708 4.3596 

10 0.4181 0.6263 0.8913 1.2690 1.8679 2.6000 4.7882 

Example 2. Effect of power law index p and side-to-thickness ratio a/h on the dimensionless 
central deflection w .  

In this example, the square FG plate with different boundary conditions under uniformly 
distributed load is considered.  The calculated dimensionless central deflection with various power 
law index p = 0; 0.5; 1.0; 2; 5; 10 and a/h = 5; 10; 20; 50 are given in Table 4. Figures 4 and 5 show 
the variation of power law index p and side-to-thickness ratio a/h versus dimensionless central 
deflection. It is found that the dimensionless central deflection increases as power law index p 
increases, while dimensionless central deflection decreases as side-to-thickness ratio increase with all 
types of boundary conditions. 

Table 5. Dimensionless fundamental ω  frequency of Al/Al2O3 square plates. 

a/h p 
Boundary condition 

CCCC SCSC SSSC SSSS SFSC SFSS SFSF 

5 0 0.3422 0.2896 0.2562 0.2280 0.1480 0.1386 0.1097 

0.5 0.2970 0.2503 0.2201 0.1949 0.1263 0.1180 0.0933 

1 0.2702 0.2274 0.1996 0.1765 0.1143 0.1067 0.0840 

2 0.2432 0.2051 0.1806 0.1602 0.1037 0.0968 0.0758 

5 0.2174 0.1850 0.1651 0.1482 0.0962 0.0903 0.0706 

10 0.2052 0.1755 0.1575 0.1420 0.0924 0.0869 0.0682 

10 0 0.0984 0.0805 0.0684 0.0591 0.0312 0.0300 0.0252 

0.5 0.0843 0.0688 0.0582 0.0502 0.0267 0.0256 0.0215 

1 0.0775 0.0631 0.0532 0.0457 0.0248 0.0238 0.0197 

2 0.0714 0.0582 0.0490 0.0421 0.0233 0.0222 0.0182 

5 0.0661 0.0543 0.0461 0.0398 0.0219 0.0209 0.0172 

10 0.0630 0.0519 0.0442 0.0383 0.0209 0.0200 0.0165 

20 0 0.0275 0.0220 0.0182 0.0154 0.0080 0.0077 0.0064 

0.5 0.0234 0.0187 0.0154 0.0130 0.0069 0.0066 0.0055 

1 0.0214 0.0171 0.0141 0.0119 0.0064 0.0061 0.0050 

2 0.0197 0.0158 0.0130 0.0109 0.0060 0.0057 0.0046 

5 0.0187 0.0150 0.0123 0.0104 0.0057 0.0054 0.0044 

10 0.0180 0.0144 0.0119 0.0100 0.0054 0.0052 0.0042 

50 0 0.0046 0.0036 0.0030 0.0025 0.0013 0.0012 0.0010 

0.5 0.0039 0.0031 0.0025 0.0021 0.0011 0.0011 0.0009 
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1 0.0035 0.0028 0.0023 0.0019 0.0010 0.0010 0.0008 

2 0.0033 0.0026 0.0021 0.0018 0.0010 0.0009 0.0007 

5 0.0031 0.0025 0.0020 0.0017 0.0009 0.0009 0.0007 

10 0.0030 0.0024 0.0019 0.0016 0.0009 0.0008 0.0007 

Example 3. Effect of power law index p and side-to-thickness ratio a/h on the fundamental 
frequency ω  

Table 5 presents the dimensionless fundamental frequency for various power law index p = 0; 0.5; 
1.0; 2; 5; 10 and a/h = 5; 10; 20; 50. Different boundary condition for each case is considered. The 
variation of dimensionless fundamental frequency versus power law index p and side-to-thickness 
ratio a/h is illustrated in Figures 6 and 7.  

It is observed that, for all types of boundary condition, dimensionless frequencies decreases 
as power law index and side-to-thickness ration increases. Effect of boundary conditions is clearly 
too, the dimensionless frequency of FG plate with boundary conditions CCCC is highest, and the 
lowest with SSSS boundary conditions. 

6. CONCLUSIONS 

In this study, the new eight-unknown shear deformation theory is used to analyze the 
bending and free vibration of rectangular fuctionally graded plates  by finite element approach. 
The governing equations and boundary conditions are derived by employing the Hamilton’s 
principle. Validation studies have been carried out to confirm the accuracy of the present 
formulation. The obtained result shows a good agreement with those available in the literature. 
Influence of power law index, side-to-thickness ratio on bending and vibration responses of FG 
plates have been investigated and discussed. The new eight unknowns shear deformation theory 
is accurate in predicting static and free vibration responses of FG plates. 
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TÓM TẮT 

PHÂN TÍCH UỐN VÀ DAO ĐỌNGTỰ DO CỦA TẤM CÓ CƠ TÍNH BIẾN THIÊN (FGM) 
BẰNG PHƯƠNG PHÁP PHẦN TỬ HỮU HẠN DỰA TRÊN LÍ THUYẾT TẤM VỚI 8 ẨN 
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Bài báo đề xuất lí thuyết tấm biến dạng cắt với 8 thành phần chuyển vị để phân tích uốn 
và dao động riêng của tấm có cơ tính biến thiên (FGM) bằng phương pháp phần tử hữu hạn. Lí 
thuyết này được phát triển trên cơ sở lí thuyết tấm bậc ba đầy đủ, đồng thời thoả mãn điều kiện 
ứng suất ngang tại mặt trên và mặt dưới của tấm bằng không. Mô hình phần tử hữu hạn sử dụng 
phần tử tứ giác 4 nút, mỗi nút 16 bậc tự do. Mô đun đàn hồi kéo (nén), hệ số Poisson và khối 
lượng riêng của vật liệu biến thiên dọc theo chiều dày tấm theo quy luật hàm mũ. Kết quả tính 
được so sánh với các kết quả đã công bố của một số tác giả khác cho thấy độ tin cậy của lí thuyết 
và mô hình tính đã xây dựng. Ảnh hưởng của chỉ số tỉ lệ thể tích, tỉ lệ kích thước hình học… đã 
được khảo sát. 

Từ khoá: tấm FGM, PTHH, dao động tự do, uốn, kết cấu tấm. 


