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ABSTRACT 

The paper proposes a theorem to assert the arbitrarily good robustness of the fully actuated 
mechanical system controlled by the adaptive feedback linearization controller. The fully 
actuated system to be controlled is considerately perturbed by input disturbances and contains 
constant uncertain parameters in its Euler-Lagrange forced model. It is shown in this paper that 
independent of input disturbances of the adaptive feedback linearization controller with 
appropriately chosen parameters will drive the output of controlled systems to the desired 
trajectory for any arbitrary precision. The adaptive controller is applied to the two-link planar 
elbow arm robot with unknown  mass of the end-effector of second link and input torque noises 
caused by the viscous friction forces and Coulomb friction terms. Simulation results show that 
the arbitrary precision of the tracking errors always is guaranteed.   

Keywords: feedback linearization, robust adaptive feedback control, uncertain systems, Euler-
Lagrange forced model. 

1. INTRODUCTION 

The uncertainness of fully actuated mechanical systems, which is commonly described by 
an Euler-Lagrange forced model as follows [1]: 

 ( , ) ( , , ) ( , )M q q C q q q g q uθ θ θ+ + =ɺɺ ɺ ɺ  (1) 

is understood that the q - dimensional vector and θ  of model parameters are constant but 

unknown, which is however linear dependent on the system in the sense of: 

 0( , ) ( , , ) ( , ) ( , , ) ( , , )M q q C q q q g q F q q q F q q qθ θ θ θ+ + = +ɺɺ ɺ ɺ ɺ ɺɺ ɺ ɺɺ  (2) 

In the Euler-Lagrange model given above the n  dimensional vector q  is called the vector 

of configuration variables, u  is the n  dimensional vector of n  control inputs, ( , ) n nM q θ ×∈R  
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is the inertia matrix, which is symmetric and positive definite, and ( , , ) n nC q q θ ×∈ɺ R  is the 

centripetal and coriolis forces corresponding matrix. 

To tracking control for this uncertain system in the sense, that the tracking error 
r

e q q= −  

has to be bounded for all 0t ≥  and asymptotically convergence to the origin, where ( )
r

q t  is any 

desired trajectory, the adaptive controller presented in [1, 2]: 

 
( )

1 2

  with ( , )

( , ) ( , , ) ( , )

T

r

BF Px x col e e

u M q q K e K e C q q q g q

θ

θ θ θ

 = =


 = + + + +  

⌢ɺ
ɺ

⌢ ⌢ ⌢
ɺɺ ɺ ɺ ɺ

 (3) 

is widely admitted to be an effective solution [1 - 3], where the 2n n×  matrix B  is defined by: 

 1( , )
B

M q θ−

Θ 
=  
 
 

⌢  

in which Θ  is the n n×  zeros matrix, 1 2,  K K  are any two selected n n×  matrices such that the 
2 2n n×  matrix: 

 
1 2

I
A

K K

Θ 
=  − − 

 

with the n n×  identity matrix I , will be Hurwitz, and the symmetric positive definite 2 2n n×  
matrix P  is the solution of the Lyapunov equation: 

 ( )1

2
TA P PA Q+ = −  

where Q  is also an arbitrarily chosen symmetric positive definite 2 2n n×  matrix. In many 
references the adaptive controller (3) is referred to as the adaptive feedback linearization 
controller. 

Furthermore, as it is shown in [2 - 4], for the control problem of input perturbed uncertain 
systems: 

 ( , ) ( , , ) ( , )M q q C q q q g q u nθ θ θ+ + = +ɺɺ ɺ ɺ  (4) 

where ( )n t  is the vector of input noises, which is assumed to be bounded: 

 sup ( )
t

n tδ =  

the q -feedback adaptive feedback linearization controller (3) given above always drives the 

tracking error ( , )x col e e= ɺ  of the closed loop system depicted in Fig. 1 asymptotically to the 

neighborhood O  of the origin defined by: 

 2

min
 

( )
n PB

x x
Q

δ
λ

  = ∈ ≤ 
  

O R  (5) 

where min ( )λ ⋅  denotes the minimal eigenvalue and ⋅  the norm of a matrix. The neighborhood 

O  is also referred as the attractor of closed loop systems. The smaller this attractor is, the better 
tracking performance of the system is. 
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Figurre 1. Structure of the closed loop system obtained by using the adaptive feedback linearization 

controller (3). 

Since the feedback linearization controller (3) contains in it some freely selected 
parameters such as two matrices 1 2,  K K  and the symmetric positive definite matrix P , the 
robust tracking performance defined in the equation (5) above of the closed loop system 
depicted in 0 could be evidently improved further, if these parameters have been suitably 
chosen. 

And this paper will present a methodology to determine matrices 1 2,  ,  K K P  for adaptive 
feedback linearization controller (3) so that the tracking behaviour of the obtained closed loop 
system satisfies any desired arbitrarily small attractor O . 

2. MAIN RESULT 

Also according to the suggestion of [1], both matrices 1 2,  K K  of the feedback linearization 
controller (3) could be chosen diagonally: 

 1 1 2 2( ),  ( ),  1,2,   ,i iK diag k K diag k i n= = = …  

and appropriately the matrix Q  of the form: 

 
2 2
1 1

2 2
2 1 2 1

( )

( )

i

i i

K diag k
Q

K K diag k k

   Θ Θ
   = =
   Θ − Θ −   

 (6) 

In this circumstance the matrix A  is Hurwitz if and only if: 
2

1 2 10,  i i ik k k> >  for all 1,2,   ,i n= …  

and the Lyapunov equation has the following unique solution: 

 1 2 1

1 2

2K K K
P

K K

 
=  
 

 (7) 

which is obviously symmetric and positive definite. 

Moreover, it is easily to recognize from the equation (5), that the measure of O  defined as 
follows: 

 ( )
,

max
x y

m x y= −O  for all ,x y ∈O  

is an intuitive value to appreciate the robustness of the closed loop system. The smaller ( )m O  

is, the better robustness of the system is. 

q  , ,
r r r

q q qɺ ɺɺ  
θ

n

Controlled 
system (1) 

Linearization 
Controller (3) 



 
 
About the robustness of adaptive feedback linearization controller... 

279 

Theorem: For any given 0ε >  always exits two matrices 1 2,  K K  such that the proposed q -

feedback dynamic controller (3) satisfies the desired robustness: 

 ( )m ε≤O  (8) 

Proof: 

Chosen 1 2,  K K  diagonally with: 

 1 ( ),  1K diag k k= >  and 2 ( ),  2K diag ak a= >  (9) 

as well as Q  from the structure (6), then there are obtained: 

 ( )
1

1 2 1 1
1 21 11 2 2

2
max  , i i
i

K K K K M
PB k k

K K M K M
γ

−

− −

 Θ  
 = = ≤         

⌢

⌢ ⌢  

and    
2 2
1 1

2 2
2 1 2 1

( )

( )

i

i i

K diag k
Q

K K diag k k

   Θ Θ
   = =
   Θ − Θ −   

 

⇒ ( )2 2
min 1 2 1( ) min  , i i i

i
Q k k kλ = −  

where M
⌢

 is the short expression of  the matrix ( )( , ) ( , )ijM q m qθ θ=
⌢ ⌢

 and: 

 1

1 1
max ( , )

m

ij
i m j

M m qγ θ−
≤ ≤ =

= = ∑
⌢ ⌢

 

Hence, it deduces: 

 

( )

( ) ( )

( ) ( )

2 2 2 2 2 2
min

2 2 2 2 2 2 2

max  , 

( ) min  , min  , 

min  , min  , ( 1)

i

i i

i i

k akPB ak

Q k a k k k a k k

ak ak a

kk a k k k a k

γδδ γδ
λ

γδ γδ γδ

= =
− −

≤ = =
− −

 

and from which to find out: 

 lim 0
k

a

k

γδ
→∞

=  

Therefore, by any given 0ε >  always exists a sufficiently large number 0k >  such that: 

 ( ) a
m

k

γδ ε≤ <O  

which affirms the rightness of Theorem. ♦ 

3. NUMERICAL EXAMPLE 

To illustrate the proposed theorem it is considered hereafter a two-link planar elbow arm 

robot (Fig. 2), which is now additionally perturbed by input noises 1 2( , )Tn n n=  and described 
by the uncertain Euler-Lagrange forced model (4) with the following parameters [1]: 
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1 1 1

2 2 2

2 2 2
1 2 1 2 2 2 1 2 2

2 2
2 1 2 2 2

1 2 2 2 1 2 2 2

1 2 1 2

1 1

,  ,  

( ) 2 cos ( cos )
( , )

( cos )

2 sin sin
( , , )

sin 0

( ) cos
( , )

n
q u n

n

m l l l l l l l
M q

l l l l

l l l l
C q q

l l

m gl g
g q

ϕ τ
ϕ τ

θ θ θ ϕ θ ϕ
θ

θ ϕ θ
θ ϕ ϕ θ ϕ ϕ

θ
θ ϕ ϕ
θ ϕ θ

θ

     
= = =     
     

 + + + +
 =
 + 

− − 
=  
 

+ +
=

ɺ ɺ ɺ ɺ
ɺ

ɺ

2 1 2

2 1 2

cos( )

cos( )

l

gl

ϕ ϕ
θ ϕ ϕ

+ 
 + 

 (10) 

where 1 2( , )Tτ τ τ=  is the input vector, in which the torque 1τ  produces the angular motion 1ϕ  

and the torque 2τ  produces the angular motion 1ϕ  of robot arms. 

 
Figure 2. The controlled system is a two-link planar elbow arm robot. 

Now, the adaptive controller (3) is applied to the arm robot in Fig. 2 for tracking problem 
of the angles and the velovities of two links, by using two diagonal matrices 1 2,  K K  suggested 
in (9) with 2a = : 

 1 2
0 2 0

,  
0 0 2

k k
K K

k k

   
= =   
   

  ⇒  
2

1 2 2

2 0

0 2

k
K K

k

 
 =
 
 

 

and 

 

2

21 2 1

1 2

4 0 0

2 0 4 0

0 2 0

0 0 2

k k

K K K k kP
K K k k

k k

 
 

   = =   
   

 
 

 

the feedback linearization controller (3) for the controlled system (10) with parameters: 

 2
1 29.8 / , 1 , 2.5 , 0.5 , 0.5g m s m kg kg l m l mθ= = = = =  

becomes 

   ( )( )2
2 1 2 1 22

2

1 ˆ0 ,  0 ,  -  ,  - /  
ˆ( )

e
l f af af c b f P

ec b l
θ θ

θ
 

= + +  
+  

⌢ɺ

ɺ
 (11) 

where 1 2 1 2,  ( , ) ,  ( , )T r r T

r r
e q q q qϕ ϕ ϕ ϕ= − = =  denotes the tracking deviation and 

− 1u  is the  torque which produces the angle 1ϕ  

− 2u  is the  torque which produces the angle 2ϕ  

− θ  is the mass  which is not exactly measurable. 

− 9.81 2
g m s=  is the acceleration of gravity 

2ϕ  
2l  

g

θ

m

1l

1ϕ
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  1 2
2

12

ˆ ˆ 2 ( )
2

ˆ ˆ r

c b a d d m h f
u q ke ke

e fa l

θ θ ϕ ϕ θ θ
ϕ θθ θ

 +  − − + + +  = + + +      +  

⌢ ⌢
ɺ ɺ

ɺɺ ɺ ⌢
ɺ

 (12) 

with 

 2
2 1 2 2

2
1

2
1

cosa l l l

b l a

c ml

ϕ= +

= +

=

, 1 2 2 2

1 2 1 2

sin

sin

d l l

e l l

ϕ ϕ
ϕ ϕ

=
=

ɺ ɺ

ɺ

, 2 1 2

1 1

cos( )

cos

f gl

h gl

ϕ ϕ
ϕ

= +
=

 

and 

 1 1 2 1 2
2

2 1 2 2 1

2f b a d d h f

f a l e

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

= + − − + +

= + + +

ɺɺ ɺɺ ɺ ɺ

ɺɺ ɺɺ ɺ

 

Figure 3 and Fig. 4 depict angle and velocity simulation results obtained with 3,  10k k= =  
and 30k =  respectively. In this simulation, the input noises applying in two links are considered 
to be depend on velocities of the links as below: 

  
1 1 1 1 2 2

2 2 2 2 1 1

( ) 3 ( ) 0.5 ( ) 5 (1,1)

( ) 5 ( ) 0.32 ( ) 5 (1,1)

n t sign sign rand

n t sign sign rand

ϕ ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ ϕ

= + +

= + +

ɺ ɺ ɺ ɺ ɺ

ɺ ɺ ɺ ɺ ɺ
 (13) 

The Fig. 4 shows that the response angles of the robot arm track to the set points after the 
transient period in 7.5 seconds. There is 0.113 rad of maximum angle errors which reduce to 
2.55×10-3 rad by using 10k =  and 5.3×10-4 rad by 30k =  as showing in the Fig. 5. The more k  
increases, the more angle errors and velocity errors reduce.   

 

 
Figure 3. Desired angles, simulated angles (a) and desired velocities, simulated velocities (b) of first link 

and second link with 3,  10k k= =  and 30k = . 
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Figure  4. Angle errors(a) and velocities errors (b) of first link and second link with 3,  10k k= =  and 

30k = . 

 
Figure 5. Input noise of the first link (a) and Input noise of the second link (b) with 3,  10k k= =  and 

30k = . 
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Figure 6. The torques apply to the first link and second link with 3,  10k k= =  and 30k = . 

In the Fig. 6 there are input torques computed by the adaptive controller to get the tracking 
of the links, the maximum amplitudes of input torques is 60 N.m with 3k =  and 200 N.m with 

30k = .     
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Figure 7. The adaptive parameter θ̂  with 3,  10k k= =  and 30k = . 
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Figure 8. The responses of angle and velocity with changing of the mass of the end-effector.   
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Figure 9. The adaptive parameter θ̂  with changing of the mass of  the end-effector.   

The adaption of the parameter θ̂  with 3,  10k k= =  and 30k =  are depicted in the Fig. 7. 
It changes strongly when the arm robot is effected by input noises and it reached to the real 
value of the mass of the end-effector when the input noises are zero. The Fig. 8 shows that the 
angle and velocity responses by changing of the mass at the end-effector with 2 1m kg= , 

2 2.5m kg=  and 2 5m kg=  are not quite different. It means that the influence of  2m  to the 

angles and velocities has been attenuated by the adaptation of  θ̂  as showing in Fig. 9. Finally, 
all obtained simulation results above have concluded that any desired robustness for the control 
of systems with unknown parameters and input noises (4), will be always satisfied with the 
feedback linearization controller (3). 
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3. CONCLUSIONS 

This paper refers to robustness of the fully actuated mechanical system which is considered 
by Euler – Lagrange forced model with input disturbances and contains constant uncertain 
parameters. By giving and proofing a theorem we conclude that the outputs of the system 
controlled by the adaptive feedback linearization controller will track to the desired trajectories 
for any arbitrary precision with appropriately chosen controller parameters. The adaptive 
controller is proposed in this paper not only keeps the tracking of the outputs in the presence of 
the uncertain parameters but also attenuates the influence of the input noises to the system. For 
more details, the adaptive controller is applied to the tracking problem of the two-link planar 
elbow arm robot with unknown mass of the end-effector and the influences of the noises to the 
input torques, the simulation results show that we can get the arbitrary precision of the angles 
and velocities of the links. The proof of the convergence of adaptive parameters to real values of 
unknown parameters and applying this control method to the practice are our further researches. 
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Bài báo này đưa ra một định lí và khẳng định tính bền vững tùy ý cho hệ cơ khí đầy đủ cơ 
cấu chấp hành có các tham số bất định và nhiễu đầu vào mô tả dưới dạng mô hình Euler- 
Lagrange được điều khiển bằng bộ điều khiển tuyến tính hóa phản hồi thích nghi. Bộ điều khiển 
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tuyến tính hóa phản hồi thích nghi với các tham số được chọn một cách phù hợp sẽ điều khiển 
đầu ra của hệ bám theo quỹ đạo mong muốn với độ chính xác yêu cầu mà không phụ thuộc vào 
nhiễu đầu vào. Bộ điều khiển được áp dụng cho hệ robot khuỷu tay hai thanh nối với khối lượng 
điểm cuối không biết trước và có mô men đầu vào chịu ảnh hưởng của các lực ma sát nhớt và 
các thành phần ma sát Coulomb. Kết quả mô phỏng cho thấy rằng độ chính xác tùy ý của sai 
lệch bám quỹ đạo luôn luôn được đảm bảo.        

Từ khóa: tuyến tính hóa phản hồi, điều khiển phản hồi thích nghi bề vững, các hệ bất định, hệ 
phi tuyến Euler-Lagrange. 

 

 

 


