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ABSTRACT  

The fuzzy rule based classification system (FRBCS) design methods, whose fuzzy rules are 
in the form of if-then sentences, have been being studied intensively during last years. One of 
the eminent FRBCS design methods utilizing an enlarged hedge algebras as a formal mechanism 
to design optimal linguistic terms integrated with their trapezoidal fuzzy sets has been proposed 
by Ho N. C. et. al. As the other methods, an entanglement of this approach needed to be solved 
is dealing with the high-dimensional and multi-instance datasets. This paper presents an 
approach to tackle the high-dimensional dataset problem for the FRBCS design method based on 
an enlarged hedge algebras by utilizing the feature selection algorithm proposed by Sun X. et. al. 
The experimental results over 8 high-dimensional datasets have shown that the proposed method 
allows saving much execution time than the original one, but retains the equivalent classification 
performance as well as the equivalent FRBCS complexity. 

Keywords: Hedge Algebras, fuzzy classification system, feature selection, high-dimensional 
dataset. 

1. INTRODUCTION 

The fuzzy rule based classification system (FRBCS) design problem is one of the concerned 
study trends in the data mining field and has achieved many successful results. The advantage of 
this model is that the end-users can use the high interpretability fuzzy rule based knowledge 
extracted automatically from numerical data as their knowledge.  

In the fuzzy set theory approaches for designing FRBCS [1 - 4], the fuzzy sets used to 
design the fuzzy partitions are pre-specified and the linguistic labels are intuitively assigned to 
the fuzzy sets, so there is not any constraint between the linguistic terms and their fuzzy sets. 
When necessary, a genetic fuzzy system is developed to adjust the fuzzy set parameters to 
achieve the optimal fuzzy partitions. Due to the separation between the term-meaning and their 
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fuzzy sets, the fuzzy sets are deformed after the learning processes. Therefore, it affects the 
interpretability of the fuzzy rule based systems of the classifiers. 

Hedge algebras (HAs) [5-9] take advantage of the algebraic approach that allows to model 
and design the linguistic terms integrated with their fuzzy sets for FRBCSs. It exploits the 
inherent semantic order of the linguistic terms allows to generate the semantic constraints 
between the terms and their integrated fuzzy sets. Based on this formalism, a method to design 
genetically linguistic terms along with their integrated triangular fuzzy sets to construct an 
effective fuzzy rule based classifier has been introduced in [10]. To answer the question if 
trapezoidal fuzzy sets can be used instead of triangular fuzzy sets in the above design method, 
the so-called enlarged hedge algebras (EnHAs) have been developed in [11], in which the 
concept of the semantic core of words was introduced. As fuzzy sets, the core of the trapezoids 
are interval-cores, which can present the core of the term semantics as the numeric values. The 
computer simulations have shown that the use of trapezoids outperforms the use of triangles in 
both the ordinary HAs based methodology and the fuzzy set approach. 

The time consuming of most of the FRBCS design method is the fuzzy rule generation 
processes. With the FRBCS design method based on HAs methodology, each feature space is 
partitioned to k-similarity fuzzy intervals, thus, all similarity fuzzy intervals of all features define 
the hypercubes. From each hypercube containing a data pattern, a fuzzy rule with the length n is 
generated, where n is the number of features. The total of this type of rule is |D|,  where |D| is the 
number of data patterns. To generate all fuzzy rules with the length from 1 to L less than n, a set 
of fuzzy combinations must be generated. The number of fuzzy combinations is ∑ ��

��
��� , leading 

to the maximum number of the generated candidate fuzzy rules is |
| � ∑ ��
��

��� . The candidate 
fuzzy rules are obtained after removing the inconsistent rules having identical antecedents but 
different consequence classes. The cardinality of the candidate fuzzy rule set depends on the data 
distributions and it is still quite high after removing the inconsistent rules. Thereby, the number 
of candidate fuzzy rules generated by the FRBCS design method based on HAs methodology 
does not depend on the number of used linguistic terms but still depends on the number of 
dataset features. Therefore, the main drawback of the FRBCS design method proposed in [11] 
which limits its application to the high-dimensional datasets is that the number of fuzzy 
combinations grows with the increase of the dataset features leading to the number of candidate 
fuzzy rules extensively increases. Ex., the maximum number of the generated fuzzy 
combinations is 36,050 and the maximum number of the generated candidate fuzzy rules is 
7,498,400 for the Sonar dataset (see section 4) with n = 60, |D| = 208 and L = 3. The number of 
fuzzy combinations is quite high, thus leading to a slow-running of the fuzzy rule generation 
process. Therefore, a quite good technique [12-15] needed to be applied to reduce a large 
amount of fuzzy combinations, but also tries to retain a suitable classification performance. For 
the example above, if the number of features is reduced to 9, by making all possible 
combinations, the number of fuzzy combinations is only 129, the number of generated fuzzy 
rules is 26,832 and after removing the inconsistent rules, the number of generated candidate 
fuzzy rules is 15,482. From the analysis above, the application of an feature reduction method 
for the high-dimensional datasets needs to be taken into account. 

To reduce the running time of the fuzzy rule generation processes, a steady-state genetic 
algorithm for extracting fuzzy classification rules from data (SGERD) proposed in [12] is 
applied to the FRBCS design method based on HAs methodology in [13]. The SGERD 
algorithm shows the efficiency of reducing the rule generation time and has a good scalability 
when applied to deal with the high-dimensional problems. Howerver, as shown in [14], this 
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method is not good in comparison with the other methods in Friedman’s test with the results 
obtained in the test data. 

This paper presents an approach to reduce a large amount of dataset features to tackle the 
high-dimensional dataset problem for the method proposed in [11] by utilizing the feature 
selection technique using dynamic weights proposed in [15]. Feature selection is a technique to 
select a small subset of relevant features having the most discriminating information from the set 
of original features because the data contain many redundant features. The advantage of this 
feature selection technique is that it does not only eliminate redundant features and select the 
most relevant ones, but also tries to retain useful intrinsic feature groups. By using two 
fundamental information theory concepts, mutual information (MI) and conditional mutual 
information (CMI), a new scheme for feature relevance, interdependence and redundancy 
analysis has been introduced [15].  

For the proposed method in this paper, the continuous valued features are partitioned into a 
particular number of clusters by applying the fuzzy c-means clustering technique together with 
the PBMF cluster validity index function [15, 16] instead of discretizing them into multiple 
intervals using MDL supervised discretization method [17] used in [15]. 

The rest of this paper is organized as follows: Section 2 is a short brief description of the 
FRBCS design based on the EnHAs. Section 3 presents the application of a feature selection 
technique for the FRBCS design based on the EnHAs. Section 4 represents our experimental 
results and discussion. Concluding  remarks are included in Section 6. 

2. FUZZY RULE BASED CLASSIFIER DESIGN BASED ON THE ENLARED HEDGE 
ALGEBRAS 

The fuzzy rule based knowledge of FRBCS used in this paper is the weighted fuzzy rules in 
the following form [4, 10, 11]: 

Rule Rq: IF X1 is Aq,1 AND ... AND Xn is Aq,n THEN  Cq with CFq,  for q=1, …, N         (1) 

where X = {Xj, j = 1, .., n} is a set of n linguistic variables corresponding to n features of the 
dataset D, Aq,j is the linguistic terms of the j th feature Fj, Cq is a class label, each dataset includes 
M class labels, and CFq is the weight of rule Rq. The rule Rq can be written as the following short 
form: 

qq CA ⇒  with CFq, for q=1, …, N          (2) 

where Aq is the antecedent part of the qth-rule. 

A FRBCS design problem P is defined as: a set P =  {(dp, Cp) | dp ∈ D, Cp ∈ C, p = 1, …, 

m;} of m patterns, where dp = [dp,1, dp,2, ..., dp,n] is the row pth of n data patterns, C = {Cs | s = 1, 
…, M} is the set of M class labels. 

Solving the problem P is to extract from P a set S of fuzzy rules in the form (1) such as to 
achieve a FRBCS based on S comes with high performance, interpretability and 
comprehensibility. The FRBCS design method based on the enlarged hedge algebras comprises 
two following phases [11]: 

(1) Design automatically the optimal linguistic terms along with their fuzzy-set-based 
semantics (trapezoidal fuzzy sets) for each dataset feature by applying an evolutionary 
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multi-objective optimization algorithm in such a way that its outputs are the consequences 
of the interacting between the semantics of the linguistic terms and the data. 

(2) Extract the optimal fuzzy rule set for FRBCS from the dataset in such a way as to achieve 
their suitable interpretability–accuracy tradeoff based on the optimal linguistic terms 
provided by the first phase. 

In order to realize two phases mentioned above, each j th feature of a specific dataset is 
associated with an enlarged hedge algebras �
�

�� . With the pre-specified values of Л, 

comprising the fuzziness measure fmj(c
−) of the primary term c−, the fuzziness measure µ(hj,i) of 

the hedges and a positive integer kj for limiting the designed term lengths of jth feature, the 

fuzziness intervals �����,��, ��,� ∈ 
�,� for all k ≤ kj and the interval quantifying mapping values 

f(xj,i) are computed. By utilizing the generated values �����,�� and f(xj,i), the trapezoidal-fuzzy-

set-based semantics of the terms Xj,(kj) are computationally constructed. The set of terms Xj,(kj) is 
the union of the subsets Xj,k, k = 1 to kj, and the kj-intervals ����
�,�� of the terms in each Xj,kj 

constitute a binary partition of the feature reference space. For example, the trapezoidal fuzzy 
sets of terms with kj = 2 is denoted in Figure 1. 

 

 
Figure 1. The trapezoidal fuzzy sets of terms in case of kj = 2. 

After the binary partitions of all dataset features are constructed, the next step is to generate 
fuzzy rules from the dataset P. With a specific binary partition at kj level, there is a unique 
fuzziness interval ����
�,����� compatible with the term xj,i(j) containing j th-component dj,l of dl 

pattern. All kj-intervals which contain dj,l component defines a hyper-cube ��, and fuzzy rules 
are only induced from this type of hyper-cube. So a basic fuzzy rule for the class Cl of pl is 
generated from �� in the following form: 

      IF X1 is x1,i(1) AND … AND Xn is xn,i(n) THEN Cl                                        (Rb) 

Each data pattern generates only one basic fuzzy rule with the length n. To generate the fuzzy 
rule with the length � � �, so-called the secondary rules, some techniques should be used for 
generating fuzzy combinations, ex., generate all possible combinations or use search tree [14].  

      IF 
�� is ���,����� AND … AND 
�  is �� ,��� � THEN Cq                            (Rsnd)  
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where 1 ≤ j1 ≤ … ≤ j t ≤ n. The consequence class Cq of the rule Rq is determined by the 
confidence measure �!" ⇒ �$� of Rq: 

�" % &'()&�*+�!" ⇒ �$�|, % 1, … , /0                                  (3) 

The confidence measure is computed as: 

 +�!" ⇒ �$� % 	∑ 1!2�34�/∑ 1!2�34�64��37∈89                          (4) 

where 1!2�34� is the burning of pattern dp for Rq and commonly computed as: 

1:2�34� % ∏ 1",��34,������ .                                                    (5) 

The maximum of number fuzzy combinations is ∑ ����� , so the maximum of the secondary 

rules is ) �∑ ����� . 

There may be inconsistent rules which have the identical antecedents, but different 
consequence classes generated from P. They are eliminated by confident measure and the rest of 
rules are called the candidate fuzzy rules. To eliminate the less important rules, a screening 
criterion is used to select a subset S0 with NR0 fuzzy rules from the candidate rule set, called an 
initial fuzzy rule set. This process is done by a so-called initial fuzzy rule set generation 
procedure IFRG(Л, P, NR0, L) [4, 10], where Л is a set of the semantic parameter values and L is 
the maximum of rule length. 

The different given values of the semantic parameters will generate the different binary 
partition of the feature reference space leading to the different classification performance of a 
specific dataset. Therefore, in order to get the best ones for a specific dataset, an evolutionary 
algorithm is used to find the optimal semantic parameter values for generating S0. The number of 
the initial fuzzy rules NR0 is quite large, so an evolutionary algorithm is implemented to find the 
expected optimal solution. For more details, see [10, 18]. 

3. AN APPLICATION OF A FEATURE SELECTION TECHNIQUE FOR THE                 
FRBCS DESIGN BASED ON THE ENALRGED HEDGE ALGEBRAS 

3.1. Some Concepts of Information Theory 

This subsection presents a short brief description of some basic concepts of information 
theory [15]: entropy and mutual information used to measure the uncertainty of random 
variables and the information shared by them. Suppose X is a discrete random variable, the 
entropy H(X) of X is defined as: 

=�
� % >∑ ?��� log�?���C∈D �.                               (6) 

where p(x) = Pr(X = x) is the probability distribution function of X. 

X and Y is a pair of discrete random variables, the joint entropy H(X, Y) is defined as: 

=�
, E� % >∑ ∑ ?��, F�log	�?��, F��G∈HC∈D                (7) 

where p(x, y) is a joint probability distribution which models the relationships between the 
variables. 

When the entropy of the variable X conditioned on the variable Y, we have the conditional 
entropy H(X|Y) defined as: 



 
 

Pham Dinh Phong  

588 

=�
|E� % >∑ ∑ ?��, F�log	�?��|F��G∈HC∈D                (8) 

Mutual information (MI) of two random variables X and Y is a measure of their mutual 
dependence and is defined as: 

I�
; E� % ∑ ∑ ?��, F�log	� 4�C,G�
4�C�4�G��G∈HC∈D                     (9) 

The above expression can be re-expressed in terms of joint and conditional entropies, so it 
is equivalent to as the following: 

I(X; Y) = H(X) – H(X|Y) = H(Y) – H(Y|X)                     (10) 

Thus, the MI between X and Y can be interpreted as the reduction in uncertainty about X 
after observing Y. 

Conditional mutual information (CMI) is defined as the amount of information shared by 
variables X and Y, when Z is known. It is formally defined by: 

I�
; E|K� % ∑ ∑ ∑ ?��, F, L�log	�4�M�4�C,G,M�4�C,M�4�G,M��C∈DG∈HM∈N        (11) 

CMI can also be interpreted as the reduction in the uncertainty of X due to Y when Z is 
known. 

3.2. Feature Selection Technique Using Dynamic Weights 

Feature selection is a way helps to reduce a large amount of dataset features by selecting a 
small subset of relevant features from the set of the original ones in order to improve the 
performance of the learning algorithms. This subsection presents the feature technique using 
dynamic weight proposed in [15]. This technique does not only eliminate redundant features 
which are highly correlated with the selected ones as other techniques, but also consider 
interdependent features which are weak as individuals, but have strong discriminatory power as 
a group by introducing a new scheme for feature relevance, interdependence and redundancy 
analyses.  

Relevance analysis is used to overcome the drawback of mutual information which tends to 
favor features with more values by using the symmetrical measure and it is defined as: 

O�
, E� % 2 � Q�D;H�
R�D�SR�H�   (0 � O�
, E� � 1)               (12) 

The redundancy and the interdependence of the candidate features are evaluated by 
combining MI and CMI. A feature which has one or more other features correlated with is 
considered to be redundant and the relevance of it to the target class can be reduced by the 
knowledge of any one of the correlated features. Thus, a feature fi is considered to be redundant 
with the feature fj if the hereafter in-equation is satisfied: 

I�U�; +V&WWXU�� � I�U�; +V&WW�                            (13) 

The relative Redundancy Ratio between two features RR(i, j) represents the reduction ratio 
of relevance between the feature fi and the target class due to the feature fj and is defined as: 

YY�Z, [� % 2 � Q�\];^�_``X\��aQ�\];^�_``�
R�\]�SR�^�_``�     �>1 � YY�Z, [� � 0�    (14) 

Two features fi and fj are interdependent on each other if the hereafter in-equation is 
satisfied:  

I�U�; +V&WWXU�� b I�U�; +V&WW�                            (15) 
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The interdependent ratio IR(i, j) between fi and fj which denotes the increase’s ratio of 
relevance between fi and the target class by new feature joining is defined as:  

IY�Z, [� % 2 � Q�\];^�_``X\��aQ�\];^�_``�
R�\]�SR�^�_``�     �0 � IY�Z, [� � 1�    (16) 

Both RR(i, j) and IR(i, j) are unified as correlation ratio CR(i, j): 

�Y�Z, [� % cIY�Z, [�, I�U�; +V&WWXU�� d I�U�; +V&WW�		
YY�Z, [�, I�U�; +V&WWXU�� � I�U�; +V&WW�             (17) 

It is obviously that >1 � �Y�Z, [� � 1. 

Based on the above information metrics, a dynamic weighting-based feature selection 
algorithm for ranking features, abbreviated as DWFS, has been proposed in [15]. Hereafter is the 
pseudo code of the algorithm described in details: 

Algorithm 1 . DWFS: the adapted algorithm proposed in [15]. 
Input : A training sample D with feature space F and the target C. 
Output : The subset S selected from e features 
   Initialize parameters: k = 1, f	 % ∅; 
   Initialize the weight w(f) for each feature f in F to 1 equally; 
   Calculate the value of U(f, class) for each feature f in F; 
   While h � e do 
       For each candidate feature U	 ∈ 	i do 
           Calculate j�U� 	% 	Y�U, +V&WW� 	� 	k�U�; 
       End; 
       Choose the candidate feature fj with the largest J(f); 
       Add f into the selected subset f	 % 	f	 ∪ 	*U�0; 
       F = F \ { fj}; 
       For each candidate feature Z	 ∈ 	i do 
          Calculate the Correlation ratio CR(i, j); 
          Update w(i) by k�Z� 	% 	k�Z� 	� 	�1	 m 	�Y�Z, [��; 
       End; 
       k = k + 1; 
   End. 

The complexity of DWFS algorithm is n�� � e� as already proofed in [15], where, n is the 
number of original features and e is the number of selected features. 

3.3.  The Application of the DWFS for the FRBCS Design Based on the EnHAs 

The FRBCS design based on the enlarged hedge algebras methodology proposed in [11] is 
an efficient way to extract the fuzzy rule based systems from a given numerical dataset for the 
fuzzy rule based classifier. However, as described in the first section, dealing with the high-
dimensional datasets is still a critical issue needed to be considered. This subsection presents an 
approach to tackle the high-dimensional dataset issue for the FRBCS design based on the 
enlarged hedge algebras by utilizing the DWFS algorithm described in the previous subsection. 
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Hence, the extended method proposed in this paper comprises three phases by inserting the 
feature selection preprocessing mechanism into the original method as the first phase: 

(1) For a given dataset, the continuous valued features are partitioned into a particular number 
of clusters by applying the fuzzy c-means clustering technique together with the PBMF 
cluster validity index function [16, 19] and then apply the DWFS algorithm to select a 
subset of the most discriminating features. 

(2) Design automatically the optimal linguistic terms along with their fuzzy-set-based 
semantics (trapezoidal fuzzy sets) for each feature of the subset of the dataset having only 
the features selected by the first phase, so-called the selected training set. 

(3) Extract the optimal fuzzy rule set for the FRBCS from the selected training set. 

In the first phase, the continuous valued features are clustered by the fuzzy c-means 
clustering technique. After the clustering process, the real-valued data is partitioned into v > 0 
clusters produced by the process and each cluster is assigned a sequence number in order to 
achieve the discrete values of the processed feature.  

 

Figure 2. The flow chart of the fuzzy c-means clustering technique together with the PBMF index 
validation. 

Let Y = {y1, …, ym} be the dataset of j th-feature. Fuzzy c-means clustering technique 
optimizes the following objective function: 

jo % ∑ ∑ 1�,�o pF� > q�pr, 1 s t s ∞u���6��� ,                (18) 

where v is the number of clusters, 1�,� is the membership degree of yi in the cluster j, VJ is the 
centroid of the cluster, t d 1 is the fuzzifier exponent which make the partitions more or less 
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fuzzy. The membership degree 1�,�  and the cluster centroid vj  updated by the optimization 
process:  

1�,� % �
∑ vwx]yz�wpx]yz{p|

}∝y�z{��
              (19) 

q� % ∑ �],���]�� �G]
∑ �],���]��

               (20) 

The optimization process stops when the number of iterations reaches the maximum 

number or  |jo��S�� > jo�| s �, where 0 s � s 1 and k is the current number of iterations.  

The PBMF index method [16, 19] is used for optimizing the number of clusters and it is 
defined as:  

����� % ��u � ��
�� � Ku�

r
          (21) 

where �� % ∑ pF� > �p6���  with e is the dataset’s centroid and Ku % )&��,���u pq� > q�p. 

The flow chart of the fuzzy c-means clustering technique together with the PBMF index 
validation is denoted in Figure 2. 

After the clustering processes, all real-valued features are discretized for the input of the 
feature selection process using the DWFS algorithm described above. 

The two last phases are the two phases of the FRBCS design based on the enlarged hedge 
algebras proposed in [11], except the training set is the selected set instead of the original one. 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

This section presents the experimental results of applying the feature selection technique 
described in the above sections as a preprocessing method to the FRBCS design based on the 
enlarged hedge algebras methodology proposed in [11] in comparison with the original method 
over some real world high-dimensional datasets that can be found on the KEEL-Dataset 
repository: http://sci2s.ugr.es/keel/datasets.php. All the implementations for validating have 
been implemented using C#, and all the experiments have been performed using an Intel Core 
i3-550, 3.2GHz CPU with 2 GB of memory and running Microsoft Windows XP 32-bit. The 8 
high dimensional datasets used to validate in this study are listed in the Table 1. 

Table 1. The high dimensional datasets used in this study. 

No. Dataset name Number of attributes Number of classes Number of patterns 
1 Bands 19 2 365 
2 Dermatology 34 6 358 
3 Hepatitis 19 2 80 
4 Ionosphere 34 2 351 
5 Sonar 60 2 208 
6 Spambase 57 2 4597 
7 Spectfheart 44 2 267 

8 Wdbc 30 2 569 
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Table 2. The number of selected features of the validated datasets. 

No. Dataset name Number of attributes Sn S2n 
1 Bands 19 6 8 

2 Dermatology 34 7 10 

3 Hepatitis 19 6 8 

4 Ionosphere 34 7 10 

5 Sonar 60 9 12 

6 Spambase 57 9 12 

7 Spectfheart 44 8 11 

8 Wdbc 30 7 9 

First of all, the feature selection preprocessing technique is applied to each dataset to select 
the most discriminating feature subset. Two feature’s quantities of �√�� m 1 and �√2�� m 1 are 
used to validate, where n is the number of the original dataset, for convenience, named as Sn and 
S2n respectively. The feature’s quantity of the original dataset is named as N. After this phase, 
the number selected features of the validated datasets are listed in the Table 2. 

The subsets of data with the selected features of the corresponding validated datasets after 
applying the feature selection preprocessing are taken into account. The same ten-folds cross 
validation method is applied to every subset of the validated datasets and the original ones, i.e., 
each of them is randomly partitioned into 10 folds, 9 folds for the training phase and one fold for 
the testing phase. Three trials of the FRBCS design method based on HAs are executed for each 
of ten folds and, hence, it permits to extract 30 (= 3 times × 10 folds) FRBCSs from the data. 

To limit the searching space in the learning process, the same constraints on the semantic 
parameter values is applied as examined in [11]. i.e., we have: the number of both negative 
hedge and positive hedge is 1, and assume that the negative hedge is L and the positive hedge is 

V; 0.00001 ≤ fm(0), fm(1) ≤ 0.01; ( )–0.2 0.6fm c≤ ≤ ; 0.0001 ≤ fm(W) ≤ 0.2; 

( )0.2 0.6Lµ≤ ≤ ; ( )00.0001 0.5hµ≤ ≤  and 1 3jk≤ ≤ . 

The optimization algorithm used in this study is the multi-objective particle swarm 
optimization with fitness sharing proposed in [20]. It is an efficient algorithm as presented in 
[18]. 

The semantic parameter optimization process [11] has been run with the following 
parameters: the number of generations = 250, the same as examined in [11]; the number of 
particles of each generation = 600; Inertia coefficient = 0.4; the self cognitive factor = 0.2; the 
social cognitive factor = 0.2; the number of initial fuzzy rules is equal to the number of 
attributes; the maximum of rule length is 1. 

 The fuzzy rule selection process [11] has been run with the same parameters of the 
semantic parameter optimization process, except the number of generations = 1000; the number 
of particles of each generation = 600; the number of initial fuzzy rules |S0| = 300 × number of 
classes; the maximum of rule length = 3. 

The running time in the hh:mm:ss format of the initial fuzzy rule generation processes from 
the validated datasets with and without applying the feature selection preprocessing are listed in 
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the Table 3, where noted that L2 and L3 are the running times in case the maximum of fuzzy rule 
length is 2 and 3, respectively.  

Table 3. The comparison of the running times of the initial fuzzy rule generation processes. 

No. Dataset name 
N Sn S2n 

L2 L3 L2 L3 L2 L3 
1 Bands 00:00:18 00:22:45 00:00:00 00:00:01 00:00:00 00:00:04 

2 Dermatology 00:02:54 09:17:00 00:00:00 00:00:00 00:00:00 00:00:07 

3 Hepatitis 00:00:02 00:01:12 00:00:00 00:00:00 00:00:00 00:00:00 

4 Ionosphere 00:13:43 38:34:11 00:00:00 00:00:03 00:00:03 00:00:31 

5 Sonar 01:53:48 - 00:00:01 00:00:08 00:00:04 00:01:23 

6 Spambase 04:05:01 - 00:00:11 00:01:25 00:00:29 00:13:45 

7 Spectfheart 00:11:27 66:12:07 00:00:00 00:00:03 00:00:01 00:00:28 

8 Wdbc 00:07:16 10:37:12 00:00:00 00:00:02 00:00:00 00:00:15 

As shown in the Table 3, the running time of the initial fuzzy rule generation processes 
after applying the feature selection to the original datasets are reduced very much, especially, in 
case the fuzzy rule length is 3 (in case of L3 as in the Table 3). Ex., the initial fuzzy rule 
extraction time from the original Dermatology dataset in case of L3 is 09:17:00 or 33,420 
seconds, which is greater than 33,420 and 4,774 times in case of the feature’s quantities of 
�√�� m 1 (0 seconds) and �√2�� m 1 (07 seconds) respectively. The “-“ values mean that the 
fuzzy rule generation processes are too slow that the results cannot be obtained. That while we 
usually limit the maximum of rule length to 2 with the datasets having the number of features 
greater than and equal to 30 in the previous studies. 

The experimental results of the classification performance of the application of the feature 
selection technique presented in the above section for the FRBCS design are shown in the Table 
4, where note that #R, #C and #R*#C are the number of fuzzy rules, the number of conditions 
and the complexity of the extracted fuzzy rule set respectively; Ptr ≔ the performance in the 
training phase and Pte ≔ the performance in the testing phase; The ≠C and ≠Pte columns 
represent the differences of the complexities and the performances of the compared methods 
respectively. Specifically, the average results of the three validated methods are not much 
different. Therefore, the final conclusion should rely upon the statistic studies given in the Table 
5 and the Table 6 in which the Wilcoxon’s signed-rank tests [21] have been applied to test the 
complexities and performances of the fuzzy rule bases extracted by three methods respectively. 
It is assumed that the two compared versions are statistically equivalent (null-hypothesis). 

 Table 4. The comparison of the classification performances of the original datasets and their subsets of 
�√��� m   and �√�� m   features. 

No. 
Dataset 
name 

N Sn 
≠C ≠Pte 

S2n 
≠C ≠Pte 

#R*#C Ptr Pte #R*#C Ptr Pte #R*#C Ptr Pte 
1 Bands 58.20 78.19 73.46 51.78 73.05 70.52 6.42 2.94 52.36 73.07 70.35 5.84 3.11 

2 Dermato. 182.84 96.37 94.40 269.04 90.37 89.18 -86.20 5.22 328.91 95.94 94.14 -146.07 0.26 
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3 Hepatitis 25.53 93.68 89.28 20.52 93.52 88.51 5.01 0.77 23.32 95.81 89.60 2.21 -0.32 

4 Ionosphere 88.03 94.69 91.56 81.75 93.74 91.65 6.28 -0.09 76.04 94.84 92.98 11.98 -1.42 

5 Sonar 49.31 87.59 78.61 41.61 86.96 79.66 7.70 -1.05 49.98 89.39 81.79 -0.67 -3.18 

6 Spambase 17.28 85.62 84.94 30.28 87.52 86.93 -13.00 -1.99 36.00 87.68 87.01 -18.72 -2.07 

7 Spectfheart 22.07 82.06 79.42 21.32 83.59 81.55 0.75 -2.13 25.32 84.74 82.55 -3.25 -3.13 

8 Wdbc 25.04 97.08 96.78 31.15 97.12 96.20 -6.11 0.58 29.15 97.06 96.43 -4.11 0.35 

Mean 58.54 89.41 86.06 68.43 88.23 85.53   77.64 89.82 86.86   

The abbreviation terms used in the Table 5 and 6: VS column is the list of the name of the 
method which we want to compare with; E. is Exact; A. is Asymptotic; Inte. is Interval and 
Conf. is Confidence. 

As shown in the Table 5, the complexities of the FRBCSs extracted from the original 
datasets (n features) are compared with the complexities of those extracted from the datasets 
with the subsets of selected features in both cases of the feature’s quantities of �√�� m 1 and 

�√2�� m 1 using the Wilcoxon’s signed-rank test at level α = 0.05. Since all R- values which are 
the sum of the ranking results of the FRBCSs extracted from the original datasets are greater 
than the critical value of T Wilcoxon distribution [22] associated with the number of datasets Nds 
= 8 and p = 0.05, where the critical value is 5, all the null-hypotheses cannot be rejected. 
Therefore, we do not need to take the complexity of the FRBCS  into account in the 
comparisons. 

Table 5. The comparison result of the fuzzy rule complexities using the Wilcoxon’s signed rank test at 
level α = 0.05. 

VS R+ R- E. P-value A. P-value Conf. Inte. Exact. Conf. Hypothesis 
S2n 23 13 ≥ 0.2 0.441209 [-74.66 , 5.84] 0.96094 Not rejected 

Sn 18 18 ≥ 0.2 0.944183 [-42.725 , 6.42] 0.96094 Not rejected 

The comparison of the extracted FRBCS performances using Wilcoxon’s signed-rank test at 
level α = 0.05 is shown in the Table 6. All the null-hypotheses cannot be rejected, so we can 
state that both the feature’s quantities of �√�� m 1 and �√2�� m 1 do not affect the classification 
performance of the FRBCS design based on the enlarged hedge algebras methodology. To 
reduce the running time of the fuzzy rule generation process of the FRBCS design based on the 
enlarged hedge algebras methodology for the high dimensional datasets, the proposed feature 
selection preprocessing should be applied. 

Table 6. The comparison result of the fuzzy rule based classification performances using the Wilcoxon’s 
signed rank test at level α = 0.05. 

VS R+ R- E. P-value A. P-value Conf. Inte. Exact. Conf. Hypothesis 
S2n 10 26 ≥ 0.2 1 [-2.625 , 1.395] 0.96094 Not rejected 

Sn 20 16 ≥ 0.2 0.726286 [-1.59 , 2.94] 0.96094 Not rejected 
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5. CONCLUSION 

This paper presents an application of a feature selection technique as the preprocessing 
mechanism for the fuzzy rule based classifier design based on the enlarged hedge algebras 
methodology for the high-dimensional datasets. By utilizing this technique, the extended method 
for the fuzzy rule based classifier design based on the enlarged hedge algebras has been 
proposed to tackle the high-dimensional datasets comprising three phases by inserting the 
feature selection preprocessing mechanism into the original method as the first phase. The 
experimental results over 8 high-dimensional datasets have shown that the proposed method 
allows saving much execution time than the original one, but retains the equivalent classification 
performance as well as the equivalent FRBCS complexity. 
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Các phương pháp thiết kế hệ phân lớp dựa trên luật mờ dạng if-then đã và đang được 
nghiên cứu rộng rãi trong những năm gần đây. Một trong các phương pháp thiết kế hệ phân lớp 
dựa trên luật mờ xuất sắc sử dụng phương pháp luận đại số giá tử mở rộng làm cơ chế hình thức 
cho việc thiết kế tối ưu các từ ngôn ngữ cùng với ngữ nghĩa dựa trên các tập mờ hình thang của 
chúng đã được đề xuất bởi nhóm tác giả Nguyễn Cát Hồ. Cũng giống như các tiếp cận khác, một 
trong những khó khăn cần phải khắc phục đối với tiếp cận này là xử lí các tập dữ liệu mẫu có số 
chiều lớn và nhiều mẫu dữ liệu. Bài báo trình bày một tiếp cận để giải bài toán phân lớp với tập 
dữ liệu có số chiều lớn đối với phương pháp thiết kế hệ phân lớp dựa trên luật mờ sử dụng 
phương pháp luận đại số gia tử mở rộng bằng việc áp dụng giải thuật lựa chọn đặc trưng được đề 
xuất bởi nhóm tác giả Xin Sun. Kết quả thực nghiệm với 8 tập dữ liệu mẫu có số chiều lớn cho 
thấy phương pháp được đề xuất cho phép giảm đáng kể thời gian thực thi nhưng vẫn đảm bảo 
được hiệu suất phân lớp cũng như độ phức tạp của hệ phân lớp thu được. 

Từ khóa: đại số gia tử, hệ phân lớp mờ, lựa chọn đặc trưng, tập dữ liệu có số chiều lớn. 

 

 

 


