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ABSTRACT

The fuzzy rule based classification system (FRB@3)gn methods, whose fuzzy rules are
in the form of if-then sentences, have been beindiad intensively during last years. One of
the eminent FRBCS design methods utilizing an gelduhedge algebras as a formal mechanism
to design optimal linguistic terms integrated wtieir trapezoidal fuzzy sets has been proposed
by Ho N. C. et. al. As the other methods, an enémegnt of this approach needed to be solved
is dealing with the high-dimensional and multi-arste datasets. This paper presents an
approach to tackle the high-dimensional datasdileno for the FRBCS design method based on
an enlarged hedge algebras by utilizing the feaealection algorithm proposed by Sun X. et. al.
The experimental results over 8 high-dimensionédskts have shown that the proposed method
allows saving much execution time than the origovad, but retains the equivalent classification
performance as well as the equivalent FRBCS coritpglex

Keywords: Hedge Algebras, fuzzy classification system, fiesatselection, high-dimensional
dataset.

1. INTRODUCTION

The fuzzy rule based classification system (FRB@&3jgn problem is one of the concerned
study trends in the data mining field and has asdenany successful results. The advantage of
this model is that the end-users can use the Hgrpretability fuzzy rule based knowledge
extracted automatically from numerical data asrtkeowledge.

In the fuzzy set theory approaches for designin®@€R [1 - 4], the fuzzy sets used to
design the fuzzy partitions are pre-specified dralinguistic labels are intuitively assigned to
the fuzzy sets, so there is not any constraint éetwthe linguistic terms and their fuzzy sets.
When necessary, a genetic fuzzy system is develtpeatijust the fuzzy set parameters to
achieve the optimal fuzzy partitions. Due to thpasation between the term-meaning and their
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fuzzy sets, the fuzzy sets are deformed after ¢éaening processes. Therefore, it affects the
interpretability of the fuzzy rule based systemshef classifiers.

Hedge algebras (HAs) [5-9] take advantage of thetahic approach that allows to model
and design the linguistic terms integrated withirttiezzy sets for FRBCSs. It exploits the
inherent semantic order of the linguistic termowl to generate the semantic constraints
between the terms and their integrated fuzzy 8stsed on this formalism, a method to design
genetically linguistic terms along with their intaged triangular fuzzy sets to construct an
effective fuzzy rule based classifier has beenothiced in [10]. To answer the question if
trapezoidal fuzzy sets can be used instead ofgwian fuzzy sets in the above design method,
the so-called enlarged hedge algebras (EnHAs) baem developed in [11], in which the
concept of the semantic core of words was introdués fuzzy sets, the core of the trapezoids
are interval-cores, which can present the cordeftérm semantics as the numeric values. The
computer simulations have shown that the use pe#@ids outperforms the use of triangles in
both the ordinary HAs based methodology and theyfset approach.

The time consuming of most of the FRBCS design owetis the fuzzy rule generation
processes. With the FRBCS design method based anrhithodology, each feature space is
partitioned tdk-similarity fuzzy intervals, thus, all similarityifzy intervals of all features define
the hypercubes. From each hypercube containingeapddtern, a fuzzy rule with the lengths
generated, whenmeis the number of features. The total of this tgpeule is P|, whereD] is the
number of data patterns. To generate all fuzzysruligh the length from 1 tb less tham, a set
of fuzzy combinations must be generated. The numbfizzy combinations &, €L, leading
to the maximum number of the generated candidaigyfrules igD| x ¥'¥_, Ci. The candidate
fuzzy rules are obtained after removing the incstesit rules having identical antecedents but
different consequence classes. The cardinalithetandidate fuzzy rule set depends on the data
distributions and it is still quite high after rewog the inconsistent rules. Thereby, the number
of candidate fuzzy rules generated by the FRBC&darethod based on HAs methodology
does not depend on the number of used linguistrogebut still depends on the number of
dataset features. Therefore, the main drawbackeoFRBCS design method proposed in [11]
which limits its application to the high-dimensibndatasets is that the number of fuzzy
combinations grows with the increase of the datiesdtires leading to the number of candidate
fuzzy rules extensively increases. Ex., the maximaommber of the generated fuzzy
combinations is36,050 and the maximum number of the generated candigaty rules is
7,498,400for the Sonar dataset (see section 4) with60, D| = 208 and. = 3. The number of
fuzzy combinations is quite high, thus leading tel@v-running of the fuzzy rule generation
process. Therefore, a quite good technique [12rEsded to be applied to reduce a large
amount of fuzzy combinations, but also tries tairet suitable classification performance. For
the example above, if the number of features isuged to 9, by making all possible
combinations, the number of fuzzy combinations ity d29, the number of generated fuzzy
rules is26,832and after removing the inconsistent rules, the bemof generated candidate
fuzzy rules is15,482 From the analysis above, the application of atui® reduction method
for the high-dimensional datasets needs to be taiteraccount.

To reduce the running time of the fuzzy rule getienaprocesses, a steady-state genetic
algorithm for extracting fuzzy classification ruléom data (SGERD) proposed in [12] is
applied to the FRBCS design method based on HAdadetogy in [13]. The SGERD
algorithm shows the efficiency of reducing the rgeneration time and has a good scalability
when applied to deal with the high-dimensional peois. Howerver, as shown in [14], this
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method is not good in comparison with the otherhmés$ in Friedman’s test with the results
obtained in the test data.

This paper presents an approach to reduce a langera of dataset features to tackle the
high-dimensional dataset problem for the methodo@sed in [11] by utilizing the feature
selection technique using dynamic weights propasdd5]. Feature selection is a technique to
select a small subset of relevant features hawiagrost discriminating information from the set
of original features because the data contain nmadyndant features. The advantage of this
feature selection technique is that it does noy aliiminate redundant features and select the
most relevant ones, but also tries to retain useftrinsic feature groups. By using two
fundamental information theory concepts, mutuabimfation (MI) and conditional mutual
information (CMI), a new scheme for feature reles@ninterdependence and redundancy
analysis has been introduced [15].

For the proposed method in this paper, the contisvalued features are partitioned into a
particular number of clusters by applying the fuzzsneans clustering technique together with
the PBMF cluster validity index function [15, 16jstead of discretizing them into multiple
intervals using MDL supervised discretization metiib7] used in [15].

The rest of this paper is organized as follows:tiBe is a short brief description of the
FRBCS design based on the EnHAs. Section 3 presiemtapplication of a feature selection
technique for the FRBCS design based on the Eni3Aastion 4 represents our experimental
results and discussion. Concluding remarks ateded in Section 6.

2. FUZZY RULE BASED CLASSIFIER DESIGN BASED ON THE ENLARED HEDGE
ALGEBRAS

The fuzzy rule based knowledge of FRBCS used mghper is the weighted fuzzy rules in
the following form [4, 10, 11]:

RuleRy: IF X;is Aq1 AND ... AND X, is A;n THEN G, with CF,, forg=1, ..., N (1)
whereX = {X, ] = 1, ..,n} is a set ofn linguistic variables corresponding tofeatures of the
dataseD, A,; is the linguistic terms of th& featureF;, C, is a class label, each dataset includes
M class labels, an@F, is the weight of rulé&,. The ruleR, can be written as the following short
form:

A, = C, with CF,, forg=1, ...,N 2

whereA, is the antecedent part of th&rule.

A FRBCS design probleft is defined as: a s&= {(d,, Cy) |d, 0D, C, OC,p=1, ...,
m;} of m patterns, wherd, = [dy 1, dy», ..., G, is the rowp™ of n data patterns; = {Cs|s = 1,
..., M} is the set oM class labels.

Solving the problen® is to extract fronP a setS of fuzzy rules in the form (1) such as to
achieve a FRBCS based 08 comes with high performance, interpretability and
comprehensibility. The FRBCS design method basetherenlarged hedge algebras comprises
two following phases [11]:

(1) Design automatically the optimal linguistic term$orey with their fuzzy-set-based
semantics (trapezoidal fuzzy sets) for each datiesdtire by applying an evolutionary
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multi-objective optimization algorithm in such aw#hat its outputs are the consequences
of the interacting between the semantics of thgulistic terms and the data.

(2) Extract the optimal fuzzy rule set for FRBCS frdme dataset in such a way as to achieve
their suitable interpretability—accuracy tradeofisbd on the optimal linguistic terms
provided by the first phase.

In order to realize two phases mentioned aboveh fadeature of a specific dataset is
associated with an enlarged hedge algeldmjén . With the pre-specified values of,
comprising the fuzziness meastfing(c") of the primary ternt’, the fuzziness measuggh;;) of
the hedges and a positive intedgerfor limiting the designed term lengths i3F feature, the
fuzziness intervalSk(xj,l-),xj,i € X; . for all k < k and the interval quantifying mapping values
f(x,) are computed. By utilizing the generated vafligsr; ;) andf(x;), the trapezoidal-fuzzy-
set-based semantics of the tenfg, are computationally constructed. The set of texpg is
the union of the subsel, k = 1 tok;, and thek-intervals3 (X;,) of the terms in eack;y
constitute a binary partition of the feature refee space. For example, the trapezoidal fuzzy
sets of terms with; = 2 is denoted in Figure 1.

K=2 f ‘[
0, V¢ Lc Lc* vc' 12

04 c W ct 14
Figure 1 The trapezoidal fuzzy sets of terms in cask of2.

After the binary partitions of all dataset featuags constructed, the next step is to generate
fuzzy rules from the datas@ With a specific binary partition & level, there is a unique
fuzziness interveﬂskj(Xj,i(i)) compatible with the term;; containingj“‘-componentdm of d
pattern. Allk-intervals which contaiml; component defines a hyper-culg, and fuzzy rules
are only induced from this type of hyper-cube. Soaaic fuzzy ruldor the classC, of p, is
generated frord; in the following form:

IFX; is X1,i1) AND ... AND X, is Xn,i(n) THEN C, RI:O
Each data pattern generates only one basic fuzeywith the lengtn. To generate the fuzzy
rule with the lengtl, < n, so-called thesecondary rulessome techniques should be used for
generating fuzzy combinations, ex., generate akiide combinations or use search tree [14].

IFX'J1 |Sx]1‘1(]1) AND ... AND X]t ISx]t'l(]t) THEN Cq %nd)
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where 1< j; < ... < j; < n. The consequence cla€y of the ruleR, is determined by the
confidence measui@, = C,) of R;

Cq = argmax{c(A; = Cp)|h =1, ..., M} 3
The confidence measure is computed as:
c(Aq = Cp) = Xa,ec, Ha,(dp)/ Xp=1ta,(dp) 4)
WhereyAq (d) is the burning of patterd, for R; and commonly computed as:
pa,(dp) = IT=1 1,5 (dyp 7). 5)

The maximum of number fuzzy combinationgfsC/;, so the maximum of thgecondary
rulesism x Y¥CL.

There may be inconsistent rules which have the ticelnantecedents, but different
consequence classes generated fPoffhey are eliminated by confident measure anddbeof
rules are called theandidate fuzzy rulesTo eliminate the less important rules, a scregnin
criterion is used to select a subSgtvith NR, fuzzy rules from the candidate rule set, called an
initial fuzzy rule setThis process is done by a so-called initial fuzmje set generation
procedure IFRGL, P, NR, L) [4, 10], whereT is a set of the semantic parameter valued.asd
the maximum of rule length.

The different given values of the semantic pararsetgll generate the different binary
partition of the feature reference space leadinthéodifferent classification performance of a
specific dataset. Therefore, in order to get th&t bees for a specific dataset, an evolutionary
algorithm is used to find the optimal semantic paeter values for generatiigg The number of
the initial fuzzy ruledNR, is quite large, so an evolutionary algorithm ipiemented to find the
expected optimal solution. For more details, s€e I8].

3. AN APPLICATION OF A FEATURE SELECTION TECHNIQUE FOR THE
FRBCS DESIGN BASED ON THE ENALRGED HEDGE ALGEBRAS

3.1. Some Concepts of Information Theory

This subsection presents a short brief descriptibeome basic concepts of information
theory [15]: entropy and mutual information used nteasure the uncertainty of random
variables and the information shared by them. Ssgpois a discrete random variable, the
entropyH(X) of X is defined as:

H(X) = = Xxexp(x) log(p(x)). (6)
wherep(x) = Pr(X =x) is the probability distribution function of.
XandY is a pair of discrete random variables, the jemtropyH(X, Y) is defined as:
HX,Y) = = Xxex Xyer p(x, y)log(p(x, y)) ()

where p(x, y) is a joint probability distribution which modetke relationships between the
variables.

When the entropy of the variabkeconditioned on the variabM we have the conditional
entropyH(X|Y) defined as:
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HX|Y) = = Yxex Lyey p(x, )log(p(x|y)) 8
Mutual information (MI) of two random variables andY is a measure of their mutual
dependence and is defined as:
1(6;Y) = Brex Zyer P )log(Eo2) (9)
The above expression can be re-expressed in tdrjogiband conditional entropies, so it
is equivalent to as the following:

1(X;Y) = H(X) —H(X]Y) = H(Y) —H(Y]X) (10)
Thus, the MI betweelX andY can be interpreted as the reduction in uncertaibtyutX
after observing.

Conditional mutual information (CMI) is defined &8 amount of information shared by
variables X and Y, when Z is known. It is formatigfined by:
- = P(@2)p(r.y.z)
I(X;Y|Z) = Ysez ZyEY Yxexp(x,y, Z)log(p(x‘z)p(y'z)) (11)
CMI can also be interpreted as the reduction inuheertainty ofX due toY whenZ is
known.

3.2. Feature Selection Technique Using Dynamic Weights

Feature selection is a way helps to reduce a kamgaunt of dataset features by selecting a
small subset of relevant features from the sethef driginal ones in order to improve the
performance of the learning algorithms. This sutisecpresents the feature technique using
dynamic weight proposed in [15]. This technique sdoet only eliminate redundant features
which are highly correlated with the selected oassother techniques, but also consider
interdependent features which are weak as indilsdibait have strong discriminatory power as
a group by introducing a new scheme for featurevesice, interdependence and redundancy
analyses.

Relevance analysis is used to overcome the drawdfatkitual information which tends to

favor features with more values by using the symica@tmeasure and it is defined as:
. 1(X;Y)

The redundancy and the interdependence of the datedifeatures are evaluated by
combining Ml and CMI. A feature which has one orrmmther features correlated with is
considered to be redundant and the relevance tof tihe target class can be reduced by the
knowledge of any one of the correlated featuresisTh featurd is considered to be redundant
with the featurd; if the hereafter in-equation is satisfied:

I(fi; class|fj) < I(f;; class) (13)
The relative Redundancy Ratio between two featRiS, j) represents the reduction ratio
of relevance between the featfirand the target class due to the feafuaed is defined as:
I1(ficlass|f j)—1(ficlass)
H(f{)+H(class)

Two featuresf; and f; are interdependent on each other if the hereaftequation is
satisfied:

RR(i,j) = 2 x

(=1 < RR(i,j) < 0) (14)

I(fi; class|fj) = I(f;; class) (15)
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The interdependent ratilR(i, j) betweenf; andf; which denotes the increase’s ratio of
relevance betwedhand the target class by new feature joining isnéefas:

C N I1(ficlass|f j)-I1(ficlass) .
IR(i,j) =2 X% HO ) H(class) (0<IR(i,j)<1) (16)

Both RR(, j) andIR(i, j) are unified as correlation rat@eR(i, j):
CRGj) = {IR(i,j),I(ﬁ;class|fj) > I(f;; class)
' RR(i,j),I(ﬁ;class|fj) < I(fj; class)
It is obviously that-1 < CR(i,j) < 1.
Based on the above information metrics, a dynamgigkting-based feature selection

algorithm for ranking features, abbreviated as DW#S been proposed in [15]. Hereafter is the
pseudo code of the algorithm described in details:

17)

Algorithm 1. DWFS: the adapted algorithm proposed in [15].
Input: A training sampld with feature spacE and the target.
Output: The subseb selected frond features
Initialize parameterk=1,5 = @;
Initialize the weightw(f) for each featuréin F to 1 equally;
Calculate the value &f(f, class) for each featufén F;
While k < 6 do
For each candidate featufee F do
Calculatg(f) = R(f,class) x w(f);
End;
Choose the candidate featfneith the largesd(f);
Addf into the selected subset= S U {f;};
F=F\{f}
For each candidate features F do
Calculate the Correlation ra@é(i, j);
Updatev(i) byw(i) = w(i) x (1 + CR(i,J)));
End;
k=k+1;
End.

The complexity of DWFS algorithm @(n x &) as already proofed in [15], whereis the
number of original features aiads the number of selected features.

3.3. The Application of the DWFS for the FRBCS Design Bsed on the EnHAS

The FRBCS design based on the enlarged hedge atgetethodology proposed in [11] is
an efficient way to extract the fuzzy rule basesdtams from a given numerical dataset for the
fuzzy rule based classifier. However, as describethe first section, dealing with the high-
dimensional datasets is still a critical issue eeei be considered. This subsection presents an
approach to tackle the high-dimensional dataseteider the FRBCS design based on the
enlarged hedge algebras by utilizing the DWFS #lgor described in the previous subsection.
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Hence, the extended method proposed in this papeprises three phases by inserting the

feature selection preprocessing mechanism intotiiggnal method as the first phase:

(1) For a given dataset, the continuous valued featnmepartitioned into a particular number
of clusters by applying the fuzzy c-means clustgtiechnique together with the PBMF
cluster validity index function [16, 19] and theppdy the DWFS algorithm to select a
subset of the most discriminating features.

(2) Design automatically the optimal linguistic term$orey with their fuzzy-set-based
semantics (trapezoidal fuzzy sets) for each feattitbe subset of the dataset having only
the features selected by the first phase, so-ctiledelected training set.

(3) Extract the optimal fuzzy rule set for the FRBC&nirthe selected training set.

In the first phase, the continuous valued featwes clustered by the fuzzy c-means
clustering technique. After the clustering procebs, real-valued data is partitioned inte> O
clusters produced by the process and each clustessigned a sequence number in order to
achieve the discrete values of the processed &eatur

C Begin )
-

Initialize the number of clusters v=2

Do the fuzzy c-means for the designated
feature by optimizing J, objective

v

Compute the PBMF index v=v+1

-l

he index is
maximized
orv>30?

i Yes
C End )

Figure 2.The flow chart of the fuzzy c-means clusterindhtéque together with the PBMF index

validation.
Let Y = {y, ..., Ym} be the dataset of"-feature. Fuzzy c-means clustering technique
optimizes the following objective function:
2
Jo =20 i ufillyi — vl 1 < a <o, (18)

wherev is the number of clusterg; ; is the membership degree wfin the clustey, VJ is the
centroid of the cluster; > 1 is the fuzzifier exponent which make the partiianore or less
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fuzzy. The membership degrgg; and the cluster centroid updated by the optimization
process:
1

Hij = 7 (19)
v <||yi—"j||>°‘_1
k=1\lyi—vill
m a
i=1 HijXVi
V, = ——— 20
J XL, u; (0)
The optimization process stops when the numbertavhtions reaches the maximum
number or|]§k+1) —Jk| < &, where0 < £ < 1 andk is the current number of iterations.

The PBMF index method [16, 19] is used for optimigzithe number of clusters and it is
defined as:

1_E 2
Vepmr = (; X i X Zv) (21)

whereE; = Y7, ||y; — e|| with eis the dataset's centroid adgl = max/;_, ||v; — vj].

The flow chart of the fuzzy c-means clustering régbe together with the PBMF index
validation is denoted in Figure 2.

After the clustering processes, all real-valueduiess are discretized for the input of the
feature selection process using the DWFS algoritbstribed above.

The two last phases are the two phases of the FREGIgn based on the enlarged hedge
algebras proposed in [11], except the trainingsstite selected set instead of the original one.

4. EXPERIMENTAL RESULTS AND DISCUSSION

This section presents the experimental resultsppfyang the feature selection technique
described in the above sections as a preprocessstigod to the FRBCS design based on the
enlarged hedge algebras methodology proposed Jnrfldomparison with the original method
over some real world high-dimensional datasets tisat be found on the KEEL-Dataset
repository: http://sci2s.ugr.es/keel/datasets.ptl the implementations for validating have
been implemented using C#, and all the experimeate been performed using an Intel Core
i3-550, 3.2GHz CPU with 2 GB of memory and runnMgrosoft Windows XP 32-bit. The 8
high dimensional datasets used to validate ingtoidy are listed in the Table 1.

Table 1 The high dimensional datasets used in this study.

No. | Dataset name| Number of attributes | Number of clsses| Number of patterns

1 | Bands 19 2 365

2 | Dermatology 34 6 358

3 | Hepatitis 19 2 80

4 | lonosphere 34 2 351

5 | Sonar 60 2 208

6 | Spambase 57 2 4597

7 | Spectfheart 44 2 267

8 | Wdbc 30 2 569
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Table 2.The number of selected features of vididateddatasets

No. Dataset name Number of attributes S, Son

1 Bands 19 6 8
2 Dermatology 34 7 10
3 Hepatitis 19 6 8
4 lonosphere 34 7 10
5 Sonar 60 9 12
6 Spambase 57 9 12
7 Spectfheart 44 8 11
8 Wdbc 30 7 9

First of all, the feature selection preprocesseunhique is applied to each dataset to select

the most discriminating feature subset. Two fesugeantities ofvn| + 1 and[v2n| + 1 are

used to validate, whereis the number of the original dataset, for congroe, named &3, and

Sh respectively. The feature’s quantity of the oraidataset is named &b After this phase,
the number selected features of the validated dstase listed in the Table 2.

The subsets of data with the selected featureseo€orresponding validated datasets after
applying the feature selection preprocessing akentanto account. The santen-folds cross
validation method is applied to every subset of the validai@adsets and the original ones, i.e.,
each of them is randomly partitioned into 10 folRi$plds for the training phase and one fold for
the testing phase. Three trials of the FRBCS desigthod based on HAs are executed for each
of ten folds and, hence, it permits to extract3@3 t{imes x 10 folds) FRBCSs from the data.

To limit the searching space in the learning precése same constraints on the semantic
parameter values is applied as examined in [14], we have: the number of both negative
hedge and positive hedge is 1, and assume thaetisive hedge is and the positive hedge is

V; 0.00001 < fm(0), fm(1) < 0.01; 0.2< fm(c’)< 0.6; 0.0001 < fmW) < 0.2;
0.2< (L)< 0.€ 0.0001< z(hy)< 0.fandlsk, <3.

The optimization algorithm used in this study i timulti-objective particle swarm
optimization with fithess sharing proposed in [2B]is an efficient algorithm as presented in
[18].

The semantic parameter optimization process [1H baen run with the following
parameters: the number of generations = 250, thee ses examined in [11]; the number of
particles of each generation = 600; Inertia coigffit= 0.4; the self cognitive factor = 0.2; the
social cognitive factor = 0.2; the number of iHitfazzy rules is equal to the number of
attributes; the maximum of rule length is 1.

The fuzzy rule selection process [11] has been with the same parameters of the
semantic parameter optimization process, excepttiheber of generations = 1000; the number
of particles of each generation = 600; the numifenital fuzzy rules $| = 300 x number of
classesthe maximum of rule length = 3.

The running time in thBh:mm:ssformat of the initial fuzzy rule generation proses from
the validated datasets with and without applyirgfdature selection preprocessing are listed in
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the Table 3, where noted tHa? andL3 are the running times in case the maximum of funby
length is 2 and 3, respectively.

Table 3.The comparison of the running times of the initiedzy rule generation processes.

No. | Dataset nam 2 N 3 2 S L3 2 Son 3

1 |Bands 00:00:18 00:22:45 00:00:000:00:01| 00:00:00| 00:00:04
2 | Dermatology 00:02:54 09:17:00 00:00:000:00:00| 00:00:00| 00:00:07
3 | Hepatitis 00:00:02 00:01:12 00:00:000:00:00| 00:00:00| 00:00:00
4 | lonosphere 00:13:43 38:34:11 00:00;0m:00:03| 00:00:03| 00:00:31
5 | Sonar 01:53:48 - 00:00:0100:00:08| 00:00:04| 00:01:23
6 | Spambase 04:05:01 - 00:00:100:01:25| 00:00:29| 00:13:45
7 | Spectfheart 00:11:27 66:12:07 00:00;0m:00:03| 00:00:01| 00:00:28
8 |Wdbc 00:07:16 10:37:12  00:00:0@0:00:02| 00:00:00| 00:00:15

As shown in the Table 3, the running time of thiiahfuzzy rule generation processes
after applying the feature selection to the oribtetasets are reduced very much, especially, in
case the fuzzy rule length is 3 (in caselL8fas in the Table 3). Ex., the initial fuzzy rule
extraction time from the original Dermatology d&as case ofL3 is 09:17:00 or 33,420
seconds, which is greater than 33,420 and 4,77dstim case of the feature’s quantities of

[Vn] + 1 (0 seconds) anfd/2n| + 1 (07 seconds) respectively. The “-“ values meart tha
fuzzy rule generation processes are too slow tlatesults cannot be obtained. That while we
usually limit the maximum of rule length to 2 withe datasets having the number of features
greater than and equal to 30 in the previous studie

The experimental results of the classification gerniance of the application of the feature
selection technique presented in the above sefdrahe FRBCS design are shown in the Table
4, where note thatRt #C and#R*#C are the number of fuzzy rules, the nhumber of domh
and the complexity of the extracted fuzzy rulersspectivelyP, := the performance in the
training phase an®, := the performance in the testing phase; Th&C and+#Pte columns
represent the differences of the complexities dmedperformances of the compared methods
respectively. Specifically, the average resultsttod three validated methods are not much
different. Therefore, the final conclusion shoudtirupon the statistic studies given in the Table
5 and the Table 6 in which the Wilcoxon's signedkréests [21] have been applied to test the
complexities and performances of the fuzzy ruleebaesxtracted by three methods respectively.
It is assumed that the two compared versions atistatally equivalent (null-hypothesis).

Table 4. The comparison of the classification performarafgbe original datasets and their subsets of
[V2n] + 1 and[vn] + 1 features.

Dataset N S, Son
NO-| ‘name |#R#HC| P, | P, |#R*C| P, | Po | 70 PP lgremc] P, | P, | 7O PP
1 Bands | 58.2078.1973.46 51.7873.08 7052 6.42 2.94 52.3673.077035 584 3.11
2 |Dermato. | 182.84 96.37 94.40 269.04 90.37 89.18-86.20 5.22 328.91 95.94 94.14.146.07 0.26

593



Pham Dinh Phong

3 |Hepatitis | 25.53 93.68 89.28 20.52 93.52 88.51 5.01 0.77 23.3295.8189.60 221 -0.32

4 |lonosphere 88.03 94.69 91.56 81.7593.7491.65 6.28 -0.09 76.04 94.84 92.98 11.98 -1.42

5 |Sonar 49.31 87.59 78.61 41.61 86.96 79.66 7.70 -1.05 49.98 89.39 81.79 -0.67 -3.18

6 Spambase 17.28 85.6284.94 30.28 87.52 86.93-13.00 -1.99 36.00 87.68 87.01 -18.72 -2.07

7 |Spectfheart 22.07 82.06 79.42 21.3283.59 81.55 0.75 -2.13 25.32 84.74 82,55 .3.25 -3.13

8 |Wdbc 25.04 97.08 96.78 31.1597.12 96.20 -6.11 0.58 29.1597.06 96.43 _4.11 0.35
Mean 58.54 89.41 86.06 68.43 88.2385.53 77.64 89.82 86.86

The abbreviation terms used in the Table 5 and$Scdumn is the list of the name of the
method which we want to compare with; E. is Exd&ctis Asymptotic; Inte. is Interval and
Conf. is Confidence.

As shown in the Table 5, the complexities of theBESs extracted from the original
datasetsn( features) are compared with the complexities os¢hextracted from the datasets

with the subsets of selected features in both cabélse feature’s quantities pfn| + 1 and

[\/ﬂ] + 1 using the Wilcoxon’s signed-rank test at lewet 0.05. Since alR values which are
the sum of the ranking results of the FRBCSs etdthérom the original datasets are greater
than the critical value of Wilcoxon distribution [22] associated with the noen of datasetsslys

= 8 andp = 0.05, where the critical value is 5, all the l#ylpotheses cannot be rejected.
Therefore, we do not need to take the complexitytref FRBCS into account in the
comparisons.

Table 5.The comparison result of the fuzzy rule complesitiusing the Wilcoxon'’s signed rank test at

levela = 0.05.
VS R" | R | E.P-value | A. P-value Conf. Inte. Exact. Conf. | Hypothesis
Son 23 | 13| =02 | 0441209  [-74.66,5.84] 0.96094 | Not rejected
S, 18 | 18 | >0.2 | 0.944183| [-42.725,6.42] 0.96094| Not rejected

The comparison of the extracted FRBCS performansig Wilcoxon'’s signed-rank test at
level o = 0.05 is shown in the Table 6. All the null-hyjpeses cannot be rejected, so we can
state that both the feature’s quantitieg\dt| + 1 and[v2n| + 1 do not affect the classification
performance of the FRBCS design based on the edahgdge algebras methodology. To
reduce the running time of the fuzzy rule generapoocess of the FRBCS design based on the
enlarged hedge algebras methodology for the higtesional datasets, the proposed feature
selection preprocessing should be applied.

Table 6 The comparison result of the fuzzy rule basedsifation performances using the Wilcoxon'’s
signed rank test at level= 0.05.

VS R" | R |E.P-value| A. P-value | Conf.Inte. | Exact. Conf| Hypothesis

Son 10 26| =02 1 [-2.625,1.395] 0.96094 | Not rejected

S

20| 16| =02 0.726286 | [-1.59, 2.94] 0.96094| Not rejected

594



An application of feature selection for the fuzzy rule based classifier design based on an ...

5. CONCLUSION

This paper presents an application of a featurecdeh technique as the preprocessing
mechanism for the fuzzy rule based classifier desigsed on the enlarged hedge algebras
methodology for the high-dimensional datasets. #izing this technique, the extended method
for the fuzzy rule based classifier design basedthen enlarged hedge algebras has been
proposed to tackle the high-dimensional datasetspdsing three phases by inserting the
feature selection preprocessing mechanism intootiginal method as the first phase. The
experimental results over 8 high-dimensional dasakave shown that the proposed method
allows saving much execution time than the origovad, but retains the equivalent classification
performance as well as the equivalent FRBCS coritglex
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Cac phrong phap thit ké hé¢ phan bp dra trén ldt mo dang if-thendd vadang duoc
nghién @u rong rai trong niing rim gan day. Mot trong cac phong phap thit ké hé phan bp
dwa trén ldt mo xut sic St dung phrong phap lén dai sb gia tir mé rong lam @ ché hinh thic
cho vigc thiét ké toi uu cac tr ngdbn ng cung 6i ngir ngHa dra trén cacap mo hinh thang ga
chingda duoc dé xuat boi nhom tac gi Nguyén Cat Hb. Ciing gidng nhr cac tép cin khac, not
trong nhirng khé kiin én phii khic phuc ddi vai tiép cin nay |a x I cac fip di liéu miu c6 $
chiéu lon va nhéu miu di ligu. Bai béo trinh bay &t tiép cin dé giai bai toan phandp voi tap
dir ligu c6 $ chiéu lon d6i véi phuong Pphap thit ké h¢ phan ép dya trén ldt mo sir dung
phuong phap lan dai sb gia tr m& rong king viéc ap ding gii thuat lua cton déc trung duoc dé
xuit boi nhom tac gi Xin Sun. K&t qua thuc nghim vi 8 tp dit liéu mau cé $ chiéu Ion cho
thiy phrong phapduoc dé xuit cho phép gim dang K thoi gian thrc thi nhing vin dam bao
duoc hiéu suit phan ép ding nhr do phac tap cia k¢ phan &p thuduoc.

Tir khoa:dai sb gia tr, hé phan &p mo, lya cton dic trang, 6p di liéu cé $ chidu 16n.
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