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ABSTRACT

This paper presents a study on synchronization vii@isain phase oscillator networks
where the oscillators are interconnected througlyeaeral nonlinear function and their
interconnections are bidirectional. Consequently investigate two contexts namely symmetric
and asymmetric couplings among oscillators. In bcdlses, we show that if the coupling
strengths are greater than some specific levefs ttiee frequencies of oscillators in the network
are synchronized. Furthermore, the synchronizatitmis pointed out. Lastly, several numerical
examples are presented to illustrate the theotetsalts.

Keywords:phase oscillator networks, collective synchron@atnonlinear coupled oscillators.

1. INTRODUCTION

Synchronization is a ubiquitous phenomenon thatigcin many real-world systems such
as circadian rhythms [1, 2], central pattern getoenaetworks [3], a group of crickets, a swarm
of fire flights or arrays of lasers [4]. In manyssgms, especially in biology, synchronization is
not only phenomenon but also a mechanism. Therefarderstanding the synchronization
behaviors in oscillator networks is an importanse@ch topic for decades. Furthermore,
throughout the synchronization analysis, we mayvdeuseful results for designing oscillator
networks in engineering applications.

Phase oscillator networks has been widely utilimechvestigate the oscillations in many
systems in different fields, for examples biologyaneuroscience [5], electrical and electronics
engineering [6], chemical engineering and physiis Under some assumptions, the ordinary
differential equations describing the processes lmarreduced to obtain the phase oscillator
models [5 - 7] which only concern about the phasesfrequencies of oscillations. Hitherto, the
phase oscillator models have been proved to be wseful in representing, explaining and
further exploring the oscillating phenomena in mdistinct systems. Particularly, the collective
synchronization of a set of interconnected oscitlais intensively studied since it is found in
many real applications.

Kuramoto model is a typical phase oscillator netntbat has been extensively investigated
where the couplings among oscillators are repredebly the sinusoidal function and each
oscillator is connected to every other. This typelmse oscillator networks has been applied to
explain and analyze a lot of oscillating networkks 7, 8, 9]. Nevertheless, there exist other
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classes of oscillator networks where the couplamgeng oscillators are not all-to-all. Moreover,

the coupling function would be other nonlinear filmas rather than the sinusoid. Thus, it is
emergent to investigate the phase oscillator nédsvevhose models are more general than
Kuramoto model. An application of these generalsghascillator networks model would be

found in the design of wireless sensor networks I1(.

Bearing those points in mind, we aim at studying ¢bllective synchronization behaviors
in phase oscillator networks whose coupling funtiare more general than sinusoidal function
and the interactions among oscillators are spameordingly, the contributions of this paper are
twofold. First, we propose a sufficient conditiaor the couplings among oscillators such that
their frequencies are synchronized as the intenagtamong oscillators are undirected. Second,
a sufficient condition is proposed for frequencyndyronization when the couplings among
oscillators are bidirectional and asymmetric. Inthba@ases, we figure out what are the
synchronized frequencies and speeds of synchraomizat

2. PROBLEM FORMULATION

Consider a network of heterogeneous phase oscillators, each oscillatapresented by
its phasef, and natural frequency, . The heterogeneity of oscillators here is dueh® t

difference on their natural frequencies. Suppoaeedhch oscillator in the network interacts with
some other oscillators then the network dynamicegcribed as follows,

0, =w, —> a,f(0,—0)k=1..n (2.1)
j=1

wherea,,k, j = 1,...,n is the coupling weight between tkéeh andj-th oscillators;a, . > 0 if
il i)

the k-th andj-th oscillators are connected, otherwi%e: 0; f is a nonlinear function which
represents how the oscillators are coupled.

Employing algebraic graph theory, we can descrilrenetwork of coupled phase oscillators
as follows. Denot@(v,ﬁ) a graph where each node Gnrepresents a phase oscillator and
each edge i represents a coupling between two correspondioijaiers, V is the set of all
nodes,€ is the set of all edges in the graph. Furthermtre,weights on the edges Gf are
equal toak]_,k:,j =1,...,n which are the coupling weights among oscillatareen denote

AOR™™ the adjacency matrix whose elements @re and D [] R™" the degree matrix in

n
which the k th element on the diagonal is equal Eakj,kz =1,...,n and all off-diagonal
J=1
elements aré). Accordingly, L = D — A is call the Laplacian matrix associated with thapg
g.

The following assumptions are employed in our paper
Al. G is undirected and connected.
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A2. f is continuous, bounded, odd.

A3. There exists a real constanty >0 such that f(:z:)>0V:z:€(O,7] and

of <]
——=>0V 2 €e|—7|.
Ox [ 7 7]
The meaning of assumption A3 is to ensure than#tevork of heterogeneous phase oscillators
e - 0/ ()
can be synchronized since the synchronization doesccur If8— <0Vze [—'y, 'y] .
T

Denote)\2 (L) the algebraic connectivity of the Laplacian matkixwhich is the smallest

non-zero eigenvalue df. Let the undirected grapf be assigned with an arbitrary direction,
then denoteB U R"x‘g‘ the associated oriented incidence matrix in Wiﬁ;]h: 1 if the nodek
th is the sink node of the edgeh, Bkj = —1if the nodek th is the source node of the edgth,

and Bky_ =0 if otherwise;‘é" denotes the number of eIements&nConsequentIyBTH is a
vector including all the phase differences amongnnected oscillators and

L= Bdiag(akj) B”. In the following, we introduce some propertiestioé matrices

k,j=1,...

L,B.

(). L has asingle eigenvaluie with the associated eigenvectbr
(i). B'1 =0.

(). HBT =2

1 .
(v). L=1I ——1__inwhichL' isthe pseudo-inverse matrix &f, 1 is then by n

matrix whose elements are all equallto
Our problem is to study the collective synchronaatbehaviors in the oscillator network

(2.1). When the nonlinear functigf is sinusoidal, i.e.f(:z:) = sin(:z:) and each oscillator is
connected to all other ones, (2.1) becomes thédkrl Kuramoto model and there is a rich
collection of results for it. However, whefiis a general nonlinear function, very few results

are available. Thus, in the next sections, we @adhtribute sufficient conditions for frequency
synchronization of oscillators in two scenariose aa symmetric couplings and the other is
asymmetric couplings among oscillators, for a clafsthe nonlinear functionf in the

assumptions A2-A3.

3. SYNCHRONIZATION IN SYMMETRICALLY COUPLED OSCILLATOR
NETWORK
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Let us denoteA; (m) = {:n eR™: Hx”p < 7} where Hx , is the p-norm of a vectorr ;

T. Suppose that the frequencies of the oscillator oetw(2.1) are

1 n

synchronized awsym then

wsym:wk—Zakjf(ﬁk—%),kzl,...,n, (3.1)
=1

By summing up both sides of (3.1) with=1,...,n, we obtain

Wy, = Zwk — Zz%f (Hk — 9}.). (3.2)

k=1 j=1

Since the couplings among oscillators are symmetec a,, = a,, Vkj=1..n,andf is

an odd function,zn:i:akjf(ﬁk — 9j> = 0. As a result,

k=1 j=1

1 n
Vo = =D, (3.3)
n =1

This means if the synchronization occurs in thevoet (2.1) when the couplings are symmetric,
the synchronized frequency will be the averagellafiatural frequencies of oscillators. Denote

w. = lZwk , then subtracting both sides of (2.1) by , we have

ave
=1

9k W, T W, W, — i:akjf(@ — 9j>,k =1...,n. (3.4)
=1

Before showing a sufficient condition for synchmation, we introduce the following
lemma.

Lemma 1. Consider the oscillator network (2.1) where the pimgs among oscillators are
symmetric and the graph representing the interadrorestructure in the network is connected.
The following statements hold.

(1) The Jacobian matrii(@) of the oscillator network (2.1) is given by

J(G) = —Bdiag|a,, aj(;gj) B" (3.5)
z=0,—0

k0 Tk, j=1,..,n
(2) If there exists an equilibrium poidt such thatB"¢" € A™? (BT0> then
(i) —J(Q*) is a Laplacian matrix.

(i)  The equilibrium point is unique and locallyponentially stable.
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Proof:
This lemma can be considered as a generalizatidrewfma 3.2 in [8] and its proof is
similar to the proof in [8], so we ignore it hear brevity. [

Now, we present one of the main contributions @ fflaper in the following theorem.

Theorem 1.Consider the oscillator network (2.1) as in Lemindf the algebraic connectivity
satisfies

)\Z(L(BT0>)>M (3.6)
B p
where p is defined as follows,
/(=)
p = sup|~y min , (3.7)

5 TG(U ,] €T
then the following statements hold.
(1) The setA;’ (BT9> is positively invariant, i.e., if initial phased oscillators belongs to
A (BT9> then they will remain inside it.

(2) The frequencies of oscillators exponentially syociwe to the average frequengy, .

| . Of(a)
Furthermore, the sync rate is lower bounded\p&L)mf I‘I‘llna—.
<y x

Proof:
The equilibrium point of (3.4) is determined by floelowing equation.

W, — W, = Za f( ) =1,.

Sw-w 1 = Bdlag( r(o;—e) /(o o )) Ty, (3.8)

J

where §° = [91 0

* T *
: Qn] . DenoteL( 0) the Laplacian matrix corresponding to

Bdiag(a, (6, —0)/(6; —0))B" and (570"}

the pseudo-inverse dﬁ(BTQ ) Next,
multiplying to the left of both sides of (3.7) WiTBTL(BT0*> gives us
B'L(B"0) (w—w,,)=B"L(B"0) L(B"0")0",
= BT [In o l1n><71]9*7
L
= B0, (3.9)
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Note that (3.9) is a continuous and convex equaifoBTG* . Employing Brouwer's fixed point
theorem [12], there exits an equilibrium point

B0 € A} (B0)={B"0.0 < R": |56 <

if and only if ‘ <~y for al B'0 €A (BTH). Denote

BTL(BTQ*)T (w—wl,)
2

ave n

0" = B"0" then there exists an equilibrium poifit € A] (BT§> if and only if

B'L(B'G) (w—w,,)

ave n

max
0'cay(s")

<. (3.10)

Since

L(B'0) (w- wl)” = 2HL(BT§*)T (w—wpel,)
2

ave n

BT (BTg*)T (w —w 1 )H < HBTH
) o

2

inequality (3.10) is satisfied if

29*!2;?;9) L(BTHN*)T (w —w, 1 >H2 <. (3.11)
Moreover, L(BT53F>T (w —w, 1 )H < HI/(BTé*)T (w — waveln>H2, hence (3.11) is true if
2 2
~e\ T
2H(w — waveln) , é*iﬁﬁ?a) L(BTH ) 2 <. (3.12)

e\ T
On the other hand, it can be shown tVNaﬁ(BTQ*)

= /)\2 (L(BTé*)) since all
2
s\ -
eigenvalues ofL(BTG ) exceptO are the inverse of eigenvaluesbeTH*). Furthermore,

A](B0) € A7 (B"0), hence (3.12) is satisfied f

1
max ————— <. (3.13)

Qé*eA;(BTe))\Z (L(BTé*)) >

2H(w —w_1

ave n )

0
Since f is an odd function, L*)zo is an even function. Moreover,
0

0 )
% >0V 0 e [—7,7] due to assumption A3, therefore

L(BTH*) > min MBdiag(ak]_)BT = min —)L. (3.14)

zeA] (1) €T T€AT (.1:) €T

Accordingly, (3.13) is satisfied if
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ZH(W N wa"e1”> 2 A (L> TgAliI(lr) f(;) <7
1)
< QH(W o wave]'n) Yy min ——= < )\2 (L)’ (3.15)

2 mEA;(m) €T
Let us denotep as in (3.7) then it can be seen that (3.15) isfsad if (3.6) is satisfied. Thus,
by employing Lemma 1, the equilibrium poiit such thatB"6 A (BTQ) is locally stable

if the condition (3.6) is satisfied. Furthermotteg sync rate is lower bounded by

. : 7\ min 22
V(oo a7 2
> A (L) min (9f(33)
J’EA;(J') ax
- (L)igf ?1;{‘1 (3]; (:) (3.16)
|

Theorem 1 shows that the algebraic connectivity tbé graph representing the
interconnection structure in the network shouldgbeater than a value specified by the natural
frequencies of oscillators and the nonlinear furctf such that the frequency synchronization

can occur. Since the algebraic connectivity isteeldo the coupling strengths among oscillators,
this means the oscillators should be strongly amenected enough to achieve the frequency
synchronization.

Example 1.Consider a network 050 phase oscillators representing the circadian lasmib
whose autonomous frequencies of oscillators angnaesd to be slightly different and around the

frequency of daily light-dark cycle, i.é;r/24. In particular,

w, zﬁ—l—ak,k:l,...,SO, (3.17)

wheree, is a random variable described by the standardhalodistribution. The coupling
function f is hyperbolic tangent functiomanh . Then, we can easily find that = 1.
Therefore, the sufficient condition (3.6) becomes

A\ (L) > 2fw - w g (3.18)
where L is the Laplacian matrix of the graph representing symmetric interconnections
among oscillators. We first randomly generateas in (3.17) then compuB#w —w_1

ave n

1
ave n

2
Next, we randomly generate the Laplacian mattixand verify the condition (3.18). The

simulation results are displayed in Figure 1 whbeeupper and lower plots show the phase and
frequency responses of oscillators, respectivelye ¥&n observe that the frequencies of
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oscillators are synchronized. Moreover, the synaizesl frequency is approximateiByr/24. In

this simulation,Qch—cumlnu2 =1.2134 and AZ(L) =1.8162, so we can see that the
condition (3.18) is satisfied.

Phase

Frequency

Figure 1.Time plot of a symmetrically coupled oscillatortwerk.

4. OSCILLATOR NETWORKS WITH ASYMMETRIC COUPLINGS

In the previous section, we have studied the symihation in the oscillator network (2.1)
with bidirectional, symmetric couplings among odstdrs. Nonetheless, the interactions among
oscillators may be asymmetric due to the unceregntdisturbances, or noises in the
communication links. Therefore, we investigate his tsection the scenario of asymmetrically
coupled oscillator networks and accordingly propassufficient condition for synchronization
as well as the value of synchronized frequencythadync rate.

Suppose that the coupling weight from every otbscillator to thek-th oscillator is

perturbed by a same quantity, k = 1,...,n . Consequently, the oscillator network model is
6. :wk—Zakjc‘ikf(@—9j>,k::1,...,n. (4.1)
j=1

DenoteX = diag(6k> , we can rewrite (4.1) as follows,

k=1...

N =N - zfli(BlT 9)9, (4.2)

wheref = [9

T
| Qn] is the vector of oscillators’ phaseB; is the incidence matrix of the

graph representing the interconnection matrix enrtatwork; and
L(B[0) = Bdiag(a,f(0, -0 )/(0, ~0))B]".

680



On the synchronization of heterogeneous phase oscillator networks

Let w ., be the synchronized frequency in the oscillatotwoek (4.1) with asymmetric
ym

couplings. Subsequently, we obtain the followingapns from (4.2)
W 1, = 3w =2 'L(B0)6,
ym n 1
= w TN =178 - 1:2—%(3{ 9)(9,
= 1:2%;,
Tslq \ Tl
= W= (1n2 1n) 1y w. (4.3)
Equation (4.3) shows how we can compute the symered frequency as the synchronization
occurs in the oscillator network (4.1). Then, aiilg the same approach as in the previous
section, we obtain the following result on a suéfit condition for synchronization in
asymmetrically coupled oscillator networks.

Theorem 2. Consider the oscillator network (4.1) where theapyr representing the
interconnections in the network is connected. Treguencies of all oscillators synchronize to

w___if the algebraic connectivity of the Laplacian maassociated with the graph satisfies
asym

QHXflw —w. ¥

asym n

2, (4.4)

A (5 (B6)) >

P
Example 2. Consider the same oscillator network as in Examiplbut the couplings among
oscillators are perturbed to be asymmetric. Thietine algebraic connectivity of the undirected
graph associated with the Laplacian maﬁ]?(lf/(BlTQ) is sufficiently large as shown in (4.4),

the frequencies of oscillators are synchronizeitlietrated in Figure 2.

Phase

Frequency

Figure 2.Time plot of an asymmetrically coupled oscillat@twork.
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5. CONCLUSIONS

We have presented in this paper some new resultseosynchronization of nonlinearly coupled
phase oscillator networks which reveal that thepting strengths among oscillators should be
stronger than some determined values such thatfréggiency synchrony occurs. Several
numerical examples were introduced to demonstiagetheoretical results. The next works
would consider more complex situations where tirkays exists in the couplings, or the models
of phase oscillators are of higher orders.

10.

11.

12.
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TOM TAT
NGHIEN CUU SU PONG BO CUA MANG CAC PHAN TU DAO BONG PHA CO TAN SO
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Bé moéndiéu khien tir dong, Pai hoc Bach khoa Ha Bl, 1 Dai Co Viét, Ha Nji
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Bai bao nay trinh bay #h nghién &u V& cacdic tinhdong b héa trong mang daodong
gom céc phn tir daodong phaduoc két ndi qua mdt ham phi tugn ng quéat vas két ndi gita
cac phn tir daodong la hai chéu. Tiép d6, tac gh nghién @u hai tuong hyp bao @m céac Kt
no| doi xung va phiddi xung gira cac phn tir daodong. Trong & hai trrong hop, tac gi chi ra
rang réu do 16n cia cac Kt ndi 1a I6n hon mot gia ti nhat dinh thi tn s caa cac phn tr dao
dong <€ duoc dong . Hon nira, tc do dong B héa d@ing duoc ch ra. Cuwi cung, ndt sH vi du
dugc gisi thigu dé minh hpa cac Kt qua Ii thuyét.

Tir khéa:mang daodong pha, 8 ddng b héa, cac pin tir daodong phi tuyén dugc két nbi.
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