CORROSION INHIBITION OF CARBON STEEL BY LDH/GO HYBRID INTERCALATED WITH 2-BENZOTHIAZOLYLTHIO-SUCINIC ACID

Nguyen Thuy Dương¹, Tran Boi An², Phan Thanh Thao², Nguyen Anh Son¹, Vu Ke Oanh¹, Trinh Anh Truc¹, To Thi Xuan Hang¹*

¹Institute for Tropical Technology, Vietnam Academy of Science and Technology
18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam

²Institute of Chemical Technology, Vietnam Academy of Science and Technology
1 Mac Dinh Chi, District 1, Ho Chi Minh City

*Email: ttxhang60@gmail.com

Received: 30 August 2017; Accepted for publication: 6 October 2017

ABSTRACT

Layered double hydroxide/graphene oxide hybrid (LDH/GO) intercalated with corrosion inhibitor 2-benzothiazolylthio-succinic acid (BTSA) was prepared using co-precipitation method. The synthesized LDH/GO-BTSA was characterized by FTIR, XRD and SEM. The inhibitive action of LDH/GO-BTSA on carbon steel was evaluated and compared with LDH-BTSA by electrochemical measurement. It was shown that the GO and BTSA were intercalated in LDH structure. The obtained results showed that LDH/GO-BTSA is anodic corrosion inhibitors, and the inhibition efficiency was 94% at concentration of 1 g/l.

Keywords: layered double hydroxide, graphene oxide, corrosion inhibitor, carbon steel.

1. INTRODUCTION

Layered double hydroxides (LDHs) are known as anionic clays. They are composed of positively charged hydroxide layers similar to the brucite structure with intercalated anions and water molecules between the layers. LDHs with anion-exchange capability have been investigated as a container of corrosion inhibitors for corrosion protection of metals [1-6]. The corrosion inhibitors can be released from the LDH container by exchange reaction with aggressive anions Cl-. The LDH containers have two roles: absorbing the harmful anions and releasing the inhibiting anions [1, 7]. Graphene oxide is usually synthesized from the oxidation of graphite by strong oxidants. Graphene and graphene oxide have the reinforcing effect on mechanical, thermal and barrier properties of organic coatings based on different binders like polyurethane, polyacrylic, epoxy resin [8 - 13]. LDHs and graphene have lamellar structure and complementary properties, and hydrotalcite/graphene composites have been studied for application in different fields [14-16]. For organic coatings the combination of hydrotalcite and graphene has the synergistic effect on the fire retardation of materials [13, 17]. In our previous works, layered double hydroxides intercalated with 2-benzothiazolylthio-succinic acid (BTSA)
as a container of corrosion inhibitor was studied for corrosion protection of carbon steel [18-20]. ZnAl LDH intercalated with BTSA exhibits higher inhibiting performance than BTSA modified MgAl LDH. The presence of BTSA modified LDH improved corrosion protection, resistance to cathodic disbonding and the adhesion of the epoxy coating.

In this work, layered double hydroxide/graphene oxide hybrid intercalated with corrosion inhibitor 2-benzothiazolylthio-succinic acid (LDH/GO-BTSA) was prepared. The synthesized LDH/GO-BTSA was characterized by FTIR, XRD and SEM. The inhibition effect of LDH/GO-BTSA on carbon steel was evaluated and compared with LDH-BTSA by polarisation curves and electrochemical impedance spectroscopy.

2. EXPERIMENTAL

2.1. Materials

Sodium hydroxide, zinc nitrate hexahydrate, Zn(NO$_3$)$_2$.6H$_2$O, aluminum nitrate nonahydrate Al(NO$_3$)$_3$.9H$_2$O, Na$_2$MoO$_4$.2H$_2$O were purchased from Merck. Corrosion inhibitor, 2-benzothiazolylthio-succinic acid (BTSA) was obtained from Ciba Company.

2.2. Preparation of graphene oxide

Natural graphite was expanded in supercritical CO$_2$ environment at 50 °C, pressure of 15 MPa. Graphene oxide was synthesized from expended graphite powder by modified Hummer’s method. 2.0 g of the expended graphite and 7 g of KMnO$_4$ were gradually added into 50 mL concentrated H$_2$SO$_4$ at 2 °C. Then the temperature of the mixture was increased to 35 °C and kept for 2 hours. After that 300 mL distilled water was added in the mixture, stirred for 1 hours, then 10 mL 30 % H$_2$O$_2$ was added to the mixture. The precipitate was filtered, washed with distilled water and dried in vacuum at 50 °C for 24 hours.

2.3. Preparation of LDH-BTSA and LDH/GO-BTSA

The layered double hydroxides intercalated with BTSA (LDH-BTSA) were prepared using the co-precipitation method [21]. A mixture metal nitrate solution of 0.125 mol of Zn(NO$_3$)$_2$.6H$_2$O and 0.0625 mol of Al(NO$_3$)$_3$.9H$_2$O in 125 mL of degassed distilled water was added dropwise to a solution of 0.313 mol of BTSA with the molar equivalent. The pH of the solution was maintained at 8 - 9 by adding 1M NaOH solution. The mixture was stirred under an inert nitrogen atmosphere for 24 h at the temperature of 65°C. Then the sample was washed with large amounts of degassed distilled water by centrifugation before drying at 50 °C in a vacuum oven for 24 h.

The layered double hydroxide/GO hybrid intercalated with BTSA (LDH/GO-BTSA) was synthesized using the procedure described as the preparation of LDH-BTSA except for the solution of 0.313 mol of BTSA containing GO with GO/LDH ratio of 1/20.

2.5. Analytical characterizations

The FTIR spectra of GO, LDH-BTSA and LDH/GO-BTSA were obtained using the KBr method on a Nexus 670 Nicolet spectrometer operated at 1 cm$^{-1}$ resolution in the 400–4000 cm$^{-1}$ region.
Powder X-ray diffraction patterns of GO, LDH-BTSA and LDH/GO-BTSA were taken using a Siemens diffractometer D5000 with CuKα radiation (1.5406 Å) at room temperature under air conditions.

The particle size and morphology of LDH-BTSA and LDH/GO-BTSA were determined by field emission scanning electron microscope using Hitachi 4800 equipment.

2.6. Electrochemical characterization

For the electrochemical measurements, a three-electrode cell was used with a platinum auxiliary electrode, a saturated calomel reference electrode (SCE) and a working electrode with an exposed area of 1 cm² for the bare carbon steel. Anodic and cathodic polarization curves, in the presence and absence of hydrotalcites, were obtained after 2 h of immersion at a scan rate of 1 mV s⁻¹ starting from the corrosion potential. The electrochemical impedance measurements were performed using a VSP 300 Bio-logic by EC-Lab over a frequency range of 100 kHz–10 mHz with six points per decade using 5 mV peak-to-peak sinusoidal voltage. The corrosive medium was prepared from distilled water by adding NaCl (reagent grade); the NaCl solution concentration was 0.1 M.

3. RESULTS AND DISSCUSION

3.1. Characterization of LDH/GO-BTSA

The FT-IR spectra of GO, LDH-BTSA and LDH/GO-BTSA are presented in Fig.1. The FT-IR spectrum of GO presents bands characteristic of C=O at 1406 cm⁻¹ and 1717 cm⁻¹ respectively [22]. The band at 1621 cm⁻¹ is attributed to C=C vibration [23]. In the FT-IR spectrum of LDH-BTSA, it is observed the bands characteristic of Zn-O and Al-O at 430 cm⁻¹ and 615 cm⁻¹, respectively [24]. The band at 1575 cm⁻¹ is attributed to COO⁻ group [25]. This indicates the presence of BTSA in the form of carboxylate in the LDH-BTSA. The FT-IR spectrum of LDH/GO-BTSA presents the characteristic bands of LDH-BTSA at 427 cm⁻¹, 618 cm⁻¹ and 1577 cm⁻¹ [25]. The band characteristic of GO at 1618 cm⁻¹ is also observed. These results indicate that GO and BTSA are present in LDH structure.

The XRD patterns of GO, LDH-BTSA and LDH/GO-BTSA are shown in the Fig.2. For GO it is observed a strong peak at 11.2° corresponding to interlayer distance of 0.79 nm. This confirms the complete oxidation of graphite to the GO [26]. The XRD pattern of LDH-BTSA shows typical peaks of LDH structure and the (003) reflection corresponding to the basal spacing of 0.82 nm and 1.65 nm which are higher than the one of LDH [27]. The increase of d-spacing values indicates the intercalation of BTSA in the interlayer domain of LDH. For LDH/GO-BTSA, it is observed also the similar diffraction peaks like those of LDH-BTSA and the (003) reflection corresponding to the basal spacing of 0.81 nm and 1.66 nm which are close to the ones of LDH-BTSA. The reflection corresponding to the basal spacing of 0.81 nm is overlapping with characteristic peak of GO.

It can be seen that GO has layer structure with wrinkled large surface. LDH-BTSA presents a typical plate-like morphology of hydrotalcite with the particle size in the range of 50-200 nm. LDH/GO-BTSA has also layer structure with lower crystallinity and particle size in the same order of LDH-BTSA. It is not observed the GO structure in the SEM image of LDH/GO-BTSA. These results can be explained by the formation of LDH-BTSA on GO surface. This result is similar to the results in the literature [28].
Figure 1. FTIR spectra of GO, LDH-BTSA and LDH/GO-BTSA.

Figure 2. XRD patterns of (a) GO, (b) LDH-BTSA and (c) LDH/GO-BTSA.

SEM images of GO, LDH-BTSA and LDH/GO-BTSA are shown in Fig. 3.

Figure 3. SEM images of (a) GO, (b) LDH-BTSA and (c) LDH/GO-BTSA.

3.2. Corrosion inhibition effect of LDH/GO-BTSA

Figure 4. Polarization curves obtained for electrode after 2 h of immersion in 0.1 M NaCl solution (o) without inhibitor, (◊) with 1 g/l LDH-BTSA and (●) with 1 g/l LDH/GO-BTSA.

Figure 5. Electrochemical impedance diagrams obtained for electrode after 2 h immersion in 0.1 M NaCl solution (a) without inhibitor, (b) with 1 g/l LDH-BTSA and (c) with 1 g/l LDH/GO-BTSA.

The polarization curves obtained for electrode after 2 h of immersion in 0.1 M NaCl solution without hydrotalcite, with LDH-BTSA and LDH/GO-BTSA at concentration of 1 g/l are presented in Fig. 4. In the presence of LDH-BTSA and LDH/GO-BTSA a shift of the corrosion potential toward more positive values and lower anodic current densities and cathodic current densities can be observed. The corrosion potential obtained with LDH/GO-BTSA is
more positive than this value of LDH-BTSA and the anodic current densities are lower than the one of LDH-BTSA. The polarization curves show that the LDH-BTSA and LDH/GO-BTSA are anodic inhibitors of the carbon steel. Fig. 5 shows the impedance diagrams obtained for the carbon steel electrode after 2 h of immersion in 0.1 M NaCl solution at the corrosion potential without inhibitor and with LDH-BTSA and LDH/GO-BTSA at concentration of 1 g/l.

The value of the polarization resistance can be used to evaluate the inhibition efficiency:
\[E\% = \frac{(R_p - R_{p0})}{R_p} \times 100 \]
where \(R_p \) and \(R_{p0} \) are the polarization resistances in the presence and absence of inhibitor, respectively.

The \(R_{p0} \) value obtained without inhibitor is about 170 \(\Omega \cdot \text{cm}^2 \). The \(R_p \) value obtained in the presence of LDH-BTSA is 1170 \(\Omega \cdot \text{cm}^2 \) and the calculated inhibition efficiency is 85.5 \%. The \(R_p \) value obtained in the presence of LDH/GO-BTSA is 2960 \(\Omega \cdot \text{cm}^2 \) and the inhibition efficiency is 94.2 \%, which is much higher than this value of LDH-BTSA. This result indicates that the presence of GO in LDH/GO-BTSA improved the corrosion inhibition of LDH-BTSA. The higher corrosion efficiency of LDH/GO-BTSA compared with LDH-BTSA can be explained by the barrier effect of GO in LDH/GO-BTSA.

4. CONCLUSIONS

Layered double hydroxide/graphene oxide hybrid intercalated with corrosion inhibitor 2-benzothiazolylthio-succinic acid was successfully synthesized using the coprecipitation method. The polarization curves obtained on carbon steel show that LDH-BTSA and LDH/GO-BTSA are anodic corrosion inhibitors and their efficiencies at the concentration of 1 g/l were 85.5 \% and 94.2 \%, respectively. The presence of GO improved corrosion inhibition effect of LDH/GO-BTSA.

Acknowledgments. The authors gratefully acknowledge the financial support of Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 104.01-2016.06.

REFERENCES

Corrosion inhibition of carbon steel by LDH/GO hybrid intercalated with 2-benzothiazolythio-succinic

19. Andreas Edenharter, Patrick Feicht, Bashar Diar-Bakerly, Günter Beyer, Josef Breu - Superior flame retardant by combining high aspect ratio layered double hydroxide and graphene oxide, Polymer 91 (2016) 41-49

