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ABSTRACT 

Our investigation aims at detecting network intrusions using decision tree algorithms. 

Large differences in prior class probabilities of intrusion data have been reported to hinder the 

performance of decision trees. We propose to replace the Shannon entropy used in tree induction 

algorithms with a Kolmogorov Smirnov splitting criterion which locates a Bayes optimal 

cutpoint of attributes. The Kolmogorov-Smirnov distance based on the cumulative distributions 

is not degraded by class imbalance. Numerical test results on the KDDCup99 dataset showed 

that our proposals are attractive to network intrusion detection tasks. The single decision tree 

gives best results for minority classes, cost metric and global accuracy compared with the 

bagged boosting of trees of the KDDCup’99 winner and classical decision tree algorithms using 

the Shannon entropy. In contrast to the complex model of KDDCup winner, our decision tree 

represents inductive rules (IF-THEN) that facilitate human interpretation. 

1. INTRODUCTION 

Nowadays the increasing pervasiveness of communication between computer networks and 

the development of the internet transform the way people live, work and play. In addition, the 

number of intrusions into computer systems is also growing. Therefore, security of computer 

networks plays a strategic role in modern computer systems. Many rule-based systems use their 

rule sets to detect network intrusions. Unfortunately, due to the huge volume of network traffic, 

coding the rules by security experts becomes difficult and time-consuming. Since machine 

learning techniques can build intrusion detection models adaptively, this kind of network 

intrusion detection has significant advantages over rule-based ones. Over the last several years, a 

growing number of research have applied machine learning techniques to intrusion detection. 

Our contribution aims at enhancing attacks detection tasks with decision tree algorithms. 

Due to the class imbalance problem of network intrusion data, we propose to replace Shannon 

entropy [1] used in tree induction algorithms with a Kolmogorov- Smirnov criteria which locates 

a Bayes optimal cutpoint of attributes. The Kolmogorov-Smirnov distance based on the 

cumulative distributions is not degraded by class imbalance. The proposal can improve minority 

class prediction. The numerical test results on the KDDCup99 dataset [2] showed that our 

proposals are suitable for network intrusion detection tasks. The single decision tree gives better 

results for minority classes, cost matrix and global accuracy versus the complex model, bagged 

boosting of trees of the KDDCup’99 winner and classical decision tree algorithms using the 

Shannon entropy. In addition, our tree model is more readily interpretable than the complex 

model of the KDDCup’99 winner. 
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The remainder of this paper is organized as follows. Section 2 presents related works in the 

network intrusion domain. Section 3 briefly introduces decision tree using the Kolmogorov-

Smirnov distance for classification. Section 4 presents numerical test results before the 

conclusion. 

2. RELATED WORKS 

Under the sponsorship of Defense Advanced Research Projects Agency (DARPA) and Air 

Force Research Laboratory (AFRL), MIT Lincoln Laboratory collected the dataset for the 

evaluation of computer network intrusion detection systems [3]. DARPA dataset is the most 

popular dataset used to test and evaluate a large number of intrusion dection systems. The 

KDDCup99 dataset [2] is a subset of DARPA dataset prepared by Sal Stofo and Wenke Lee [4]. 

The data were preprocessed by extracting 41 features from the tcpdump data in the 1998 

DARPA dataset. The DDCup99 dataset can be used without further time-consuming 

preprocessing and different intrusion detection systems can compare with each other by working 

on the same dataset. Therefore, researchers have carried out their experiments on the 

KDDCup99 dataset.  

In the report [2] of KDDCup99 contest, the winning entry [5] used a mixture of bagging 

and boosting of decision trees [6 - 8]. The standard sampling with replacement methodology of 

bagging was modified to put a specific focus on the smaller but expensive-if-predicted- wrongly 

classes. Second-place performance was achieved by Levin [9] from LLSoft, Inc. using the tool 

Kernel Miner. Third-place performance was achieved by Miheev et al. [10] of the company 

MP13, using a version of the Fragment algorithm originally invented at the IITP (Russian 

Academy of Science). For constructing a decision tree, the training sample was used to build the 

structure of a tree (with sufficient complexity). The testing sample was used to select a sub-tree 

having optimal complexity. Elkan [2] showed that only nine entries scored better than 1-nearest 

neighbor, of which only six were statistically significantly better. Compared to 1-nearest 

neighbor, the main achievement of the winning entry is to recognize correctly many “remote-to-

local” attacks. 

Ben-Amor et al. [11] studied intrusion detection using naive Bayes and decision trees. The 

experimental results showed that naive Bayes, with their simple structure and despite their 

strong assumptions, can be very competitive and the performance difference with respect to 

decision trees is not significant. 

Stein et al. [12] used a genetic algorithm to select a subset of input features for decision tree 

classifiers, with the goal of increasing the detection rate and decreasing the false alarm rate in 

network intrusion detection. They reported the results on the KDDCUP 99 dataset. The 

experiments illustrated that the resulting decision trees can have better performance than those 

built with whole features. 

Zhang and Zulkernine [13] applied random forests algorithm [14] for network intrusion 

detection. They tried to make a balanced training set using down-sampling the majority classes 

and over-sampling the minority ones. The results showed that the proposed approach provides 

better performance compared to the best results from the KDDCup99 contest. 

Giacinto et al. [15] combined multiple one-class classifiers using K-means algorithm [16]. 

Each one-class classifier is trained in order to discriminate between a specific attack and all other 

traffic patterns. Their method outperforms the KDDCup 1999 winner in terms of the false 

negatives rate and of the new attacks detection rate although the proposal performs worse in 
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terms of the percentage of false positives and of the overall cost. Perdisci et al. [17] also deal 

with attack detection tasks using an ensemble of one-class support vector classifiers [18]. 

Bouzida and Cuppens [19] proposed to modify the decision tree algorithm C4.5 [8] for 

discovering known and unknown attacks. In the KDDCup99 dataset, the different attacks 

presenting in the testing set but not being in the training set cannot be easily classified into their 

appropriate class and will be classified in the class that has a form close to theirs, generally to the 

normal class. Due to this problem, they introduced the following principle: A default class 

denoted new class is assigned to any new class that does not have a corresponding class in the 

training set. Therefore, if any new instance does not match any of the rules generated by the 

decision tree then this instance is classified as a new class instead of assigning it to the default 

class. However, their experiment setup (called the learning data set coherence) was inverted 

because they used the testing set for training and reported the results on the subset (10%) of the 

training data. 

Bouzida and Cuppens [20] applied both neural networks and decision trees into the notion 

of intrusion detection. The results showed that while neural networks are highly successful in 

detecting known attacks, decision trees are more interesting to detect new attacks. 

Xiao et al. [21] aimed at building an ensemble of support vector machines [22] to predict 

network intrusions. Experimental results illustrated the applicability of the approach for this kind 

of problems. 

Engen et al. [23] proposed an evolutionary neural network, in which several evaluation 

functions are examined. However, when employing evaluation functions that calculate the 

fitness proportionally to the instances of each class, thereby avoiding the bias towards the 

majority classes in the data set, significantly improving true positive rates are obtained whilst 

maintaining a low false positive rate. 

Although there are many researches for this problem over the past several years, almost 

existing approaches can not achieve the best results obtained by the KDDCup99 winner. 

3. DECISION TREE USING THE KOLMOGOROV-SMIRNOV DISTANCE 

Our investigation aims at detecting network intrusions using decision tree algorithms. The 

proposal is to build a single decision tree that gives best results for minority classes, cost matrix 

and global accuracy versus the complex model, bagged boosting of trees of the KDDCup’99 

winner. We propose to replace the Shannon entropy [1] used in tree induction algorithms by the 

Kolmogorov-Smirnov distance. No algorithmic changes are required from the classical decision 

tree algorithm C4.5 [8] other than the modification of the split function (using the Kolmogorov-

Smirnov metric instead of the Shannon entropy). The rest of the original decision tree methods 

are kept.  

We first recall basic considerations on Shannon’s entropy and then present briefly the 

Kolmogorov-Smirnov distance in the boolean case and mention the results in the general case. 

3.1. Usual measures based on Shannon’s entropy 

Many induction tree algorithms on categorical variables use predictive association 

measures based on the entropy of Shannon. Let us consider a class variable  having  

modalities,  being the vector of frequencies of , and a categorial predictor 

(attribute)  having modalities. The joint relative frequency of the couple  is denoted 
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, . What is more, we denote by  the a priori 

Shannon’s entropy of  and by the conditional expectation of the 

entropy of  with respect to . 

Shannon’s entropy , is a real positive function of  to , verifying 

notably interesting properties for machine learning purposes [24]: 

-  is invariant by permutation of the modalities of ; 

-  reaches its maximum  log2(q) when the distribution of  is uniform (each 

modality of  has a frequency of ); 

-  reaches its minimum 0 when the distribution of  is sure (centered on one modality 

of  and the others modalities being of null frequency); 

-  is a strictly concave function. 

The behavior of Shannon’s entropy is illustrated in Fig. 1 in the boolean case. As example 

of measures based on Shannon’s entropy, one can mention: 

- The entropic gain  [25]; 

- The gain-ratio  [26] which relates the entropic gain of  to the entropy of , 

rather than to the a priori entropy of  in order to discard the predictors having many modalities. 

For more measures and details one can refer to Wehenkel [27] and Loh and Shih [28]. 

The particularity of these coefficients is that Shannon’s entropy of a distribution reaches its 

maximum when this distribution is uniform. That is to say that the reference value corresponds 

to the uniform distribution of classes. This characteristic could be a major problem especially in 

case of highly imbalanced classes, or when the classification costs differ largely. It would seem 

more logical to evaluate  and  used in the above measures on a scale for which 

the reference value is centered on the independence situation i.e. on the a priori distribution of 

classes. 

 

Figure 1. Shannon entropy function 
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3.2. Kolmogorov-Smirnov distance 

The Kolmogorov-Smirnov splitting criterion has been used by Friedman [29] for a binary 

partition in decision rule algorithms. The Kolmogorov-Smirnov distance is to measure the 

separability of two distribution functions. It naturally allows separating a population into two 

homogeneous groups. 

Let us consider the case of a class variable  made of  modalities (positive and 

negative classes). Two probability density functions on a continuous predictor  for two classes 

are denoted by  and , respectively, as shown in figure 2. 

Then an optimal cutpoint α (α = 8) is to minimise the Bayes risk of misclassification for 

positive and negative classes. This is accomplished through the greatest distance between the 

two cumulative distribution functions (denoted by   and , as shown in figure 3) 

that correspond to by  and . That maximum distance is the well-known 

Kolmogorov-Smirnov distance. However, these cumulative distribution functions are not known 

in practice, but we can consider approximations (empirical functions, denoted by   and 

) 

With a continuous predictor , a cutpoint α separates a population into two homogeneous 

groups as following: 

1.  (left partition) 

2.  (right partition) 

The distance  between two empirical cumulative distribution functions  

 and  is: 

      

 

 

Figure 2. Probability density functions 
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Figure 3. Cumulative distribution functions 

For a discrete predictor  having the modalities , a cutpoint  splits a 

population into two homogeneous groups as following: 

1.  X = ν (left partition);  

2.  X ≠ ν (right partition).  

The distance Dist(X = ν ) between two empirical functions  and 

 is: 

. 

Thus the Kolmogorov-Smirnov distance  between two empirical functions 

 and  is:  

. 

Let us consider an example of class imbalance using the Kolmogorov-Smirnov distance. 

Assume further that the data distribution on an attribute X with a minority class (positive) and a 

majority class (negative) is following table 1. Firstly, two empirical cumulative distributions of 

classes are calculated as shown in table 2.  

Table 1.  Example of class imbalance 

Attribute X 1 2 3 4 5 6 7 8 9 10 

#ind. of posotive (minority) 2 2 2 2 1 1 0 0 0 0 

#ind. of negative (majority) 0 0 0 10 0 20 40 10 10 10 

The optimal cutpoint (α = 5.5) found by the Kolmogorov-Smirnov splitting criterion (the 

maximum distance between the two empirical cumulative distribution functions) compromises 

between the minority class and the majority one1. Then the Kolmogorov-Smirnov splitting 

                                                           
1 While the splitting criterion using the Shannon entropy cuts at α = 3.5 without respect to the minority class loss. 
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criterion based on the distance between two empirical cumulative distribution functions does not 

lose the minority class prediction in class imbalance.  

Table 2.  Empirical cumulative distribution 

Attribute X 1 2 3 4 5 6 7 8 9 10 

(minority) 0.2 0.4 0.6 0.8 0.9 1 1 1 1 1 

(majority) 0 0 0 0.1 0.1 0.3 0.7 0.8 0.9 1 

The Kolmogorov-Smirnov splitting criterion can be extended to handle more than two 

classes (a class variable Y having more than 2 modalities, i.e. q > 2). Friedman [29] proposed to 

build one tree for each class. An alternative approach is to construct a single tree with the two 

cumulative distribution functions for two super classes grouped by the q prior classes. Due to the 

problem of computational cost, we also propose to build a single tree using the method one-

against-all during the splitting process. At each node having q classes, this method finds q 

Kolmogorov-Smirnov distances where the ith distance separates the ith class from the rest and 

finally it picks the greatest distance. 

Table 3.  Partitions obtained by the Kolmogorov-Smirnov splitting criterion 

Cutpoint (α = 5.5) on attribute X Left partition Right partition 

#ind. of positive (minority) 9 1 

#ind. of negative (majority) 10 90 

4. NUMERICAL TEST RESULTS 

In order to evaluate the effectiveness of our proposal, we add the Kolmogorov-Smirnov 

distance (denoted by KS) to the free source code of decision tree algorithm C4.5 [8]. No 

algorithmic changes are required from the classical decision tree. All the benefits of the original 

decision tree methods are kept.  

In this section, we summarize our experimental results for intrusion detection over the 

KDDCup99 datasets [2]. We first describe the experiment setup and then the classification 

results of the decision tree algorithm C4.5 using the Shannon entropy, the Kolmogorov-Smirnov 

splitting criterion. We are also interested in comparing the performance of our proposal to that of 

the winning entry of the KDDCup99 contest. 

4.1.  Experiment setup 

The experimental setup uses the KDDCup99 datasets with 41 features including duration, 

protocol type, service, num failed logins, etc. The full training set has 4898431 connections. The 

10% training set has 494021 connections. The attacks in the dataset fall into four categories: 

DoS (Denial of Service), R2L (unauthorized access from a remote machine), U2R (unauthorized 

access to root privileges), and probing. The 10% training set contains all the minority classes 
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(Probe, U2R and R2L) of the full training set and part of the majority classes. It is down-

sampling the majority classes (Normal, DoS). Therefore, we just use the 10% training dataset to 

build tree models in our experiments. The task of the KDDCup99 contest was to build classifier 

capable of distinguishing among four kinds of intrusions and normal traffic numbered as one of 

five classes (c.f. table 4). The testing set with 311029 connections is used to evaluate 

classification models.  

We start with the pre-processing step. Individual attack types are placed in the five classes 

using a categorization awk script [2]. We try to reduce the bias of class distribution in training 

set, we under-sample the Normal and DoS classes by randomly selecting 10% of connections 

belonging to these classes from the original dataset. We also over-sample Probe, U2R and R2L 

by replicating their connections. The balanced training set with 69166 connections is much 

smaller than the original one. 

Table 4.  Numbering of the attack categories 

No Class Training set Testing set 

0 Normal 97278 60593 

1 Probe 4107 4166 

2 DoS 391458 229853 

3 U2R 52 228 

4 R2L 1126 16189 

4.2.  Results 

A tree model with 175 nodes obtained by orginal algorithm C4.5 (using the Shannon 

entropy, denoted by SE) gives the classification results in table 5. 

Table 5.  Classification results of the decision tree C4.5 using SE 

Predicted as ⇒ 0 (Normal) 1 (Probe) 2 (DoS) 3 (U2R) 4 (R2L) 

0 (Normal) 60111 286 81 17 98 

1 (Probe) 48 3935 182 1 0 

2 (DoS) 6161 239 223453 0 0 

3 (U2R) 63 133 0 19 13 

4 (R2L) 14945 558 3 27 656 

The decision tree algorithm C4.5 using the Kolmogorov-Smirnov distance produces a 

single tree which has 211 nodes and achieves the prediction results in table 6. 
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Table 6.  Classification results of the decision tree C4.5 using KS 

Predicted as ⇒ 0 (Normal) 1 (Probe) 2 (DoS) 3 (U2R) 4 (R2L) 

0 (Normal) 59467 257 745 26 98 

1 (Probe) 47 3939 132 0 48 

2 (DoS) 6334 528 222980 0 11 

3 (U2R) 50 133 0 18 27 

4 (R2L) 12812 76 3 28 3270 

 

In order to the comparative study we turn back the KDDCup99 winning entry in table 7. 

We use the cost matrix as table 8 published in KDDCup99 to evaluate the performance of our 

decision tree.  denotes the number of individuals in class  classified as class , and  

indicates the corresponding cost in the cost matrix. Let  be the total number of the individuals. 

The cost metric that indicates the average damage of misclassification for each connection is 

computed as: 

. 

Table 7.  Classification results of the KDDCup99 winning entry 

Predicted as ⇒ 0 (Normal) 1 (Probe) 2 (DoS) 3 (U2R) 4 (R2L) 

0 (Normal) 60262 243 78 4 6 

1 (Probe) 511 3471 184 0 0 

2 (DoS) 5299 1328 223226 0 0 

3 (U2R) 168 20 0 30 10 

4 (R2L) 14527 294 0 8 1360 

Table 8. Cost matrix 

Predicted as ⇒ 0 (Normal) 1 (Probe) 2 (DoS) 3 (U2R) 4 (R2L) 

0 (Normal) 0 1 2 2 2 

1 (Probe) 1 0 2 2 2 

2 (DoS) 2 1 0 2 2 

3 (U2R) 3 2 2 0 2 

4 (R2L) 4 2 2 2 0 
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According to the cost metric, the decision tree using the Kolmogorov-Smirnov splitting 

criterion achieves 0.2172 in terms of the cost that is smaller than the winning entry of 

KDDCup99 (cost = 0.2331) and the decision using the Shannon entropy (cost = 0.2414). 

Table 9.  Comparison of results obtained by C4.5 using SE, KS and Bagged 

boosting tree of the KDDCup99 winning entry 

 C4.5-SE (%) C4.5-KS (%) KDDCup99 winning (%) 

0:Normal 99.20 98.14 99.45 

1:Probe 94.46 94.55 83.32 

2:DoS 97.22 97.01 97.12 

3:U2R 8.33 7.9 13.16 

4:R2L 4.05 20.20 8.40 

Overall 92.65 93.13 92.71 

Cost 0.2414 0.2172 0.2331 

 

For details of results, the tree model using the Kolmogorov-Smirnov distance gives 93.13% 

in terms of the overall accuracy against 92.65% of the Shannon entropy and 92.71% of the 

winning entry. Table 9 shows that our decision tree based on the KolmogorovSmirnov splitting 

criterion outperforms the winner’s bagged boosting of trees and the classical C4.5 with the 

Shannon entropy for predicting two minority classes (1:Probe and 4:R2L). The tree using the 

Kolmogorov-Smirnov significantly improves the minority class prediction without penalizing 

too much the majority class accuracy. Furthermore, our results are obtained by one single 

decision tree which is simpler compared with the bagged boosting of trees of the KDDCup’99 

winner. It allows extracting inductive rules (IF-THEN) that facilitate human interpretation. 

5. CONCLUSION 

We present a decision tree algorithm using the Kolmogorov-Smirnov distance for detecting 

network intrusions. In order to deal with imbalanced classes of intrusion data, we propose to use 

the Kolmogorov-Smirnov distance for learning induction trees instead of the Shannon entropy. 

A Bayes optimal cutpoint of attributes found by a Kolmogorov-Smirnov splitting criterion based 

on the cumulative distribution is not degraded by class imbalance. Numerical test results on the 

KDDCup99 dataset showed that our proposals improve network intrusion detection tasks. Our 

single decision tree is simple and gives better results for minority classes, cost metric and global 

accuracy in comparison to the bagged boosting of trees of the KDDCup’99 winner and classical 

decision tree algorithms using the Shannon entropy. Futhermore, the attractiveness of one tree is 

due to the fact that, in contrast to ensemble-based methods, a decision tree represents inductive 

rules (IF-THEN) that facilitate human interpretation.  

We intend to provide more empirical test on a large benchmark of imbalanced datasets in 

the near future. Comparisons with other split functions should also be done.   
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