Open Access Open Access  Restricted Access Subscription Access

NDSHA - The New Paradigm for RSHA - An Updated Review

J. Bela, G. F. Panza

Abstract


A New Paradigm (data driven and not like the currently model driven) is needed for Reliable Seismic Hazard Assessment RSHA. Neo-Deterministic Seismic Hazard Assessment (NDSHA) integrates earthquake geology, earthquake science, and particularly earthquake physics to finally achieve a New (and needed) Paradigm for Reliable Seismic Hazard Assessment RSHA.

Although observations from many recent destructive earthquakes have all confirmed the validity of NDSHA’s approach and application to earthquake hazard forecasting-nonetheless damaging earthquakes still cannot yet be predicted with a precision requirement consistent with issuing a red alert and evacuation order to protect civil populations. However, intermediate-term (time scale) and middle-range (space scale) predictions of main shocks above a pre-assigned threshold may be properly used for the implementation of low-key preventive safety actions, as recommended by UNESCO in 1997. Furthermore, a proper integration of both seismological and geodetic information has been shown to also reliably contribute to a reduction of the geographic extent of alarms and it therefore defines a New Paradigm for TimeDependent Hazard Scenarios: Intermediate-Term (time scale) and Narrow-Range (space scale) Earthquake Prediction.

 

Keywords


NDSHA, RSHA, earthquake prediction, time-dependent earthquake hazard, site effects warnings, Macroseismic Intensity, PGA

Full Text:

PDF

References


Abers G.A., 2020. Subduction Zones. In: Gupta H. (Ed) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. First online: 22 January 2020.

Adams C., 2002. The Vision of Buckminster Fuller. Spirit of Ma'at: "Living Off the Grid" - Vol. 2, April 2002.

AGU, 2014. Science Policy Conference - ePoster: https://agu.confex.com/agu/spc2014/webprogram/Paper1558.html.

Aki K., 2003. A perspective on the history of Strong Motion Seismology. Phys. Earth Planet. Int., 137(1-4), 5-11.

Aki K., Richards P.G., 2002. Quantitative Seismology. University Science Books, Sausalito, CA, USA. ISBN: 978-0935702965.

Al-Hussaini T., Chakraborty S., Chowdhury I.N., Vaccari F., Romanelli F., Magrin A., Panza G.F., 2017. Neo-Deterministic seismic hazard assessment research programs for Bangladesh. Proc. International Conference on Disaster Risk Mitigation Sept. 23-24, Dhaka, Bangladesh, pp.5. https://www.researchgate.net/publication/327940490.

Alvarado L., Rojas O., Carrasco-Jimenez J.C., Schmitz M., Rendon H., Alvarez L., 2020. Clustering of the synthetic response spectra of sh waves for barquisimeto and cabudare cities using machine learning techniques. Revista Facultad de Ingeniería 34(1). http://saber.ucv.ve/ojs/index.php/rev_fiucv/article/view/19296. https://www.researchgate.net/publication/343351106_Agrupamiento_de_los_espectros_de_respuesta_sinteticos_para_las_ondas_SH_en_las_ciudades_de_Barquisimeto_y_Cabudare_usando_tecnicas_de_aprendizaje_automatico.

Alvarez L., Garcia J., Vaccari F., Panza G.F., Gonzalez B., Reyes C., Fernandez B., Pico R., Zapata J.A., Arango E., 2004. Ground Motion Zoning of Santiago de Cuba: An Approach by SH Waves Modelling. Pure Appl. Geophys, 161, 1041-1059.

Alvarez L., Panza G.F., Vaccari F., Gonzalez B.E., 2001. Modelling of Seismic Ground motion in Santiago de Cuba City from Earthquakes in Oriente Fault Seismic Zone. Pure Appl. Geophys, 158, 1763-1782. https://doi.org/10.1007/PL00001242.

Alvarez L., Vaccari F., Panza G.F., Pico R., 2005. Seismic microzoning from synthetic ground motion parameters: case study, Santiago de Cuba. Soil Dynamics and Earthquake Engineering, 25, 383-401.

Ambraseys N., 1974. Notes on engineering seismology. In J. Solnes (Ed) Engineering Seismology and Earthquake Engineering, NATO Advanced study, 33-54. ISBN: 978-94-011-7576-0.

Anderson J.G., Brune J.N., 1998. “Non-ergodic probabilistic seismic hazard analysis (abstract)”, 1998 SSA Annual Meeting Mar. 16-18, 1998, Boulder, CO. Seis. Res. Lett., 69(2), 171-172. https://doi.org/10.1785/gssrl.69.2.127srl069002_0127.pdf (silverchair.com).

Bak P., Christensen K., Danon L., Scanlon T., 2002. Unified Scaling Law for Earthquakes. Phys. Rev. Lett., 88, 178501-178504.

Bard P.-Y., 1997. Local effects on strong ground motion: basic physical phenomena and estimation methods for microzoning studies. In SERINA - Seismic Risk: An Integrated Seismological, Geotechnical and Structural Approach. ITSAK (Ed.), Proceedings of the Advanced Study Course on Seismic Risk, 21-27 Sept. 1997, in Thessaloniki, Greece, 229-299. https://www.researchgate.net/publication/235623266_Local_effects_of_strong_ground_motion_Basic_physical_phenomena_and_estimation_methods_for_microzoning_studies.

Båth M., 1973. Introduction to Seismology, John Wiley, New York, pp.395. ISBN: 978-0470056608.

Båth M., 1979. Introduction to Seismology, Springer, Basel AG, pp. 394. ISBN 978-3764309565.

Båth M., 1981. Earthquake magnitude – recent research and current trends. Earth-Science Reviews, 17(4), 315-398. ISSN 0012-8252, https://doi.org/10.1016/0012-8252(81)90014-3.

Bela J., 2014. Too generous to a fault? Is reliable earthquake safety a lost art? Errors in expected human losses due to incorrect seismic hazard estimates. Earth’s Future, 2, 569-578. https://doi.org/10.1002/2013EF000225.

Bertero R.D., Vaquero S., Mussat J.M., Bertero A., 2018. Seismic hazard in Buenos Aires, Argentina: A preliminary study on the effects of long-distance earthquakes on tall buildings. Earthquake Engng. Struct. Dyn., 47, 2333-2339. https://doi.org/10.1002/eqe.3052.

Bertero V.V., 1996. State-of-the-art repoirt on: design criteria. Proc. 11WCEE, Acapulco, Mexico, June. Elsevier Science Lt. Osford, UK, pp.16. ISBN: 0 08 042822 3.

Bhatia S.C., Chetty T.R.K., Filimonov M., Gorshkov A., Rantsman E., Rao M.N., 1992. Identification of potential areas for the occurrence of strong earthquakes in Himalayan Arc Region. Proc. Indian Acad. Sci. (Earth Planet. Sci), 101, 369-385. https://doi.org/10.1007/BF02893012.

Bilham R., 2009. The seismic future of cities. Bull. Earthquake Eng., 7, 839-887. https://doi.org/10.1007/s10518-009-9147-0.

Bisignano D., Romanelli F., Peresan A., 2011. Modeling scenarios of earthquake-generated tsunamis for Vietnam coasts. Proceedings of The International Symposium on Grids and Clouds and the Open Grid Forum, Academia Sinica, Proceedings of Science. Taipei, Taiwan - March 19-25, pp.10. https://pos.sissa.it/133/078/pdf.

Blume J.A., 1965. Earthquake ground motion and engineering procedures for important installations near active faults. Proc. Third World Conf. on Eq. Engr. (New Zealand), IV-53. https://www.iitk.ac.in/nicee/wcee/article/vol3_IV-53.pdf.

Bodin P., 2020. Seismicity, Intraplate. In: Gupta H. (Ed) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. First online: 29 December 2019. https://doi.org/10.1007/978-3-030-10475-7_162-1.

Boore D. 2004a. Estimating Vs(30) (or NEHRP Site Classes) from Shallow Velocity Models (Depths30 m). Bull. Seismol. Soc. Am., 94, 591-597.

Boore D.M., 2004b. Can site response be predicted? Journal of Earthquake Engineering, 8(SI1), 1-41. https://doi.org/10.1080/13632460409350520. http://www.daveboore.com/pubs_online/rose_keynote_jee_2004.pdf.

Bormann P., 2020. Earthquake, Magnitude. In: Gupta H. (Ed) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. First online: 18 December 2019. https://doi.org/10.1007/978-3-030-10475-7_3-1.

Boyadzhiev G., Brandmayr E., Pinat T., Panza G.F., 2008. Optimization for non-linear inverse problems. Rendiconti Lincei, 19, 17-43. https://doi.org/10.1007/s12210-008-0002-z.

Brandmayr E., Raykova R., Zuri M., Romanelli F., Doglioni C., Panza G.F., 2010. The lithosphere in Italy: Structure and seismicity. In: M. Beltrando, A. Peccerillo, M. Mattei, S. Conticelli and C. Doglioni (Eds.), The Geology of Italy, Journal of the Virtual Explorer, Electronic Edition, 36, 1, ISSN: 1441-8142. https://virtualexplorer.com.au/article/2010/224/lithosphere-structure-seismicity/index.html. https://doi.org/10.3809/jvirtex.2010.00224.

Brûlé S., Enoch S., Guenneau S., 2020. Emergence of seismic metamaterials: Current state and future perspectives, Physics Letters, A, 384(1), 126034. Part of SI: Physics Letters A-Perspective articles. ISSN: 0375-9601. https://doi.org/10.1016/j.physleta.2019.126034

Physics Letters A | Physics Letters A - Perspective articles ScienceDirect.com by Elsevier. https://arxiv.org/ftp/arxiv/papers/17 12/1712.09115.pdf.

Cancani A., 1904. Sur l'emploi d'une double échelle sismique des intensités, empirique et absolue. In Verh. II. Internat. Seismol. Konf. zu Straßburg, 24-28 July 1903, Gerlands Beiträge zur Geophysik, 2, 281-283.

Cao Dinh Trieu, G.F. Panza, A. Peresan, F. Vaccari, F. Romanelli, Nguyen Huu Tuyen, Pham Nam Hung, Le Van Dung, Mai Xuan Bach, Cao Dinh Trong, 2008b. Seismic hazard assessment of Viet Nam territory on the basis of deterministic approach. Dept. Geology & Minerals of Vietnam Journal of Geology, Series B(31-32), 220-230. https://www.researchgate.net/publication/335339914_seismic_hazard_assessment_of_viet_nam_terrttory_on_the_basis_of_deterministic_approach.

Cao Dinh Trieu, G.F. Panza, A. Peresan, F. Vaccari, F. Romanelli, Nguyen Huu Tuyen, Pham Nam Hung, Le Van Dung, Mai Xuan Bach, Thai Anh Tuan, Cao Dinh Trong, 2008a. Some new outcomes of the intermediate term earthquake prediction in Vietnam. Dept. Geology & Minerals of Vietnam Journal of Geology Series, B(31-32), 231-240. https://www.researchgate.net/publication/335338403_some_new_outcomes_of_the_intermediate_term_earthquake_prediction_in_Vie't_nam.

Caprio M., Tarigan B., Worden B., Wiemer S., Wald D.J., 2015. Ground motion to intensity conversion equations (GMICEs): a global relationship and evaluation of regional dependency. Bull. Seis. Soc. Am. 105(3), 1476-1490. https://doi.org/10.1785/0120140286.

Caputo M., Keilis-Borok V., Kronrod T., Molchan G., Panza G.F., Piva A., Podgaetskaja V., Postpischl D., 1973. Models of earthquake occurrence and isoseismals in Italy. Ann. Geofis., 26, 421-444. https://www.annales-geophysicae.net/. https://www.researchgate.net/publication/287114042_Models_of_earthquake_occurrence_and_isoseismals_in_Italy.

Caputo M., Keilis-Borok V., Oficerova E., Ranzman E., Rotwain I. and Solovjeff A., 1980. Pattern recognition of earthquake-prone areas in Italy. Phys. Earth Planet. Int., 21(4), 305-320. https://doi.org/10.1016/0031-9201(80)90135-1.

Caputo M., Keilis-Borok V.I., Kronrod T.I., Molchan G.M., Panza G.F., Piva A., Podgaetskaja V.M., Postpischl D., 1974. The estimation of seismic risk for central Italy. Ann. Geofis., 27(1-2), 349-365. https://doi.org/10.4401/ag-4928.

Caputo M., Keilis-Borok V.I., Kronrod T.L., Molchan G.M., Panza G., Piva A., Podgaezkaya V.M., Postpischl D., 1973. Seismic risk on the territory of Central Italy. In: Keilis-Borok, V.I. (Ed) Computational and Statistical Methods for Interpretation of Seismic Data (Computational Seismology), Nauka, Moscow, 6, 67-106 (in Russian).

Cara M., Alasset P.J., Sira C., 2008. Magnitude of Historical Earthquakes, from Macroseismic Data to Seismic Waveform Modelling: Application to the Pyrenees and a 1905 Earthquake in the Alps. In: Fréchet J., Meghraoui M., Stucchi M. (Eds) Historical Seismology. Modern Approaches in Solid Earth Sciences, Springer, Dordrecht, 2, 369-384. ISBNe: 978-1-4020-8222-1. https://doi.org/10.1007/978-1-4020-8222-1_18.

Carlson J.M., 1991. Time intervals between characteristic earthquakes and correlations with smaller events: An analysis based on a mechanical model of a fault. JGR: Solid Earth, 96(B3), 4255-4267. https://doi.org/10.1029/90JB02474.

Castanos H., Lomnitz C., 2002. “PSHA: is it science?” Engineering Geology, 66(3-4), 315-317. https://doi.org/10.1016/S0013-7952(02)00039-X.

Celebi M., Ghahari S.F., Haddadi H., Taciroglu E., 2020. Response study of the tallest California building inferred from the Mw7.1 Ridgecrest, California earthquake of 5 July 2019 and ambient motions, Earthquake Spectra, 36(3), 1096-1118. https://doi.org/10.1177/8755293020906836.

CEN EN-1990, 2002. https://www.phd.eng.br/wp-content/uploads/2015/12/en.1990.2002.pdf. https://standards.iteh.ai/catalog/standards/cen/be4b05f7-4c56-4e2e-a88d-56fce873fcbc/en-1990-2002.

Chakraborty S., 2017. Neo-Deterministic Studies for Scenario Earthquakes in Bangladesh. B.Sc. Engr. Thesis, Department of Civil Engineering, Bangladesh University of Engineering and Technology, Dhaka.

Chen Y., Liu M., Luo G., 2020. Complex Temporal Patterns of Large Earthquakes: Devil’s Staircases. Bull. Seismol. Soc. Am. 110(3), 1064-1076. https://doi.org/10.1785/0120190148.

Chiou P., Miao W., 2013. The distribution of annual maximum earthquake magnitude in Southern California. Journal of Probability and Statistical Science, 11(2), 199-210. https://www.researchgate.net/publication/259970636_The_Distribution_of_Annual_Maximum_Earthquake_Magnitude_in_Southern_California.

Chunga K., Michetti A., Gorshkov A., Panza G.F., Soloviev A., Martillo C., 2010. Identificacion de nudos sismogenicos capaces de generar potenciales terremotos de M>6 y M>6.5 en la Región costera y cadenas montanosas de los Andes Septentrionales del Ecuador. Revista ESPOL-RTE, 23(3), 61-89 (in Spanish). https://www.researchgate.net/publication/251236551_Identificacion_de_nudos_sismogenicos_capaces_de_generar_potenciales_terremotos_de_M6_y_M65_en_la_Region_costera_y_cadenas_montanosas_de_los_Andes_Septentrionales_del_Ecuador.

Cilia M., Mooney W., Robinson A., 2017. Earthquake and Tsunami, and a Comparison with Strong-Motion Data. Seis. Res. Lett., 88(5), 1232-1240. https://doi.org/10.1785/0220170030.

Cilia M.G., Baker L.M., 2015, 2018. Abstract: Empirical relationships between instrumental ground motions and observed intensities for two great Chilean subduction zone earthquakes. AGU Fall Meeting, Dec. 14-18, 2018, San Francisco, CA. https://agu.confex.com/agu/fm15/meetingapp.cgi/Paper/65471. https://www.seismosoc.org/wp-content/uploads/2018/06/SSA_2018_Poster_Final.pdf

Cimellaro G.P., Reinhorn A.M., D’Ambrisi A., De Stefano M., 2011. Fragility analysis and seismic record selection. J. Struct. Eng., 137(3), 379-390. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000115.

Cimellaro G.P., Tinebra A., Renschler C., Fragiadakis M., 2015. New Resilience Index for Urban Water Distribution Networks. J. Struct. Eng., 142(8), C4015014. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001433.

Cisternas A., Godefroy P., Gvishiani A., Gorshkov A., Kossobokov V., Lambert M., Rantsman E., Sallantin J., Saldano H., Soloviev A., Weber C., 1985. A dual approach to recognition of Earthquake Prone-Areas in the Western Alps. Ann. Geophys, 3(2), 249-270. https://www.researchgate.net/scientific-contributions/Weber-C-2005477307.

Cisternas M., Carvajal M., Wesson R., Ely L.L., Gorigoitia N., 2017. “Exploring the Historical Earthquakes Preceding the Giant 1960 Chile Earthquake in a Time-Dependent Seismogenic Zone.” Bull. Seismol. Soc. Am., 107(6), 2664-2675. https://doi.org/10.1785/0120170103.

Clemente-Chavez A., Zúñiga F.R., Lermo J., Figueroa-Soto A., Valdés C., Montiel M., Chavez O., Arroyo M., 2014. On the behavior of site effects in central Mexico (the Mexican volcanic belt - MVB), based on records of shallow earthquakes that occurred in the zone between 1998 and 2011. Nat. Hazards Earth Syst. Sci., 14(6), 1391-1406. https://doi.org/10.5194/nhess-14-1391-2014.

Cornell C.A., 1968. Engineering seismic risk analysis. Bull. Seismol. Soc. Am., 58, 1583-1606. (Received 2 Jan. 1967, Published 1 Oct. 1968). https://pubs.geoscienceworld.org/ssa/bssa/article/58/5/1583/116673/engineering-seismic-risk-analysis.

CPTI Working Group, 2004. Parametric Catalog of Italian Earthquakes (CPTI04). National Institute of Geophysics and Volcanology (INGV), Bologna. https://doi.org/10.6092/INGV.IT-CPTI04. https://emidius.mi.ingv.it/CPTI04/.

CPTI Working Group, 2015. Italian Parametric Earthquake Catalogue (CPTI15) - cited as Rovida A., Locati M., Camassi R., Lolli B., Gasperini P. (eds) (2019) Italian Parametric Earthquake Catalogue (CPTI15), version 2.0. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/CPTI/CPTI15.2.

Craig T.J., Calais E., Fleitout L., Bollinger L., Scotti O., 2016. Evidence for the release of long - term tectonic strain stored in continental interiors through intra-plate earthquakes. Geophys. Res. Lett., 43, 6826-6836. https://doi.org/10.1002/2016GL069359. https://agupubs.onlinelibrary.wiley.com/doi/10.1002/2016GL069359.

Crespi M., Kossobokov V., Panza G.F., Peresan A., 2019. Space-Time Precursory Features within Ground Velocities and Seismicity in North-Central Italy. Pure Appl. Geophys.

D’Amico V., Albarello D., Mantovani E., 1999. A distribution-free analysis of magnitude-intensity relationships: an application to the Mediterranean region. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 24(6), 517-521. https://doi.org/10.1016/S1464-1895(99)00064-2.

Dal Moro G., Alarif N., Moustafa S.R., 2019. On the efficient acquisition and holistic analysis of Rayleigh waves: Technical aspects and two comparative case studies. Soil Dynamics and Earthquake Engineering, 125, 105742. https://doi.org/10.1016/j.soildyn.2019.105742.

Danciu L., Giardini D., 2015. Global Seismic Hazard Assessment Program - GSHAP legacy. Annals Geophys., 58(1), S0109, pp.9. https://doi.org/10.4401/ag-6734.

Das S., 2019. Earthquake Rupture: The Inverse Problem. In: Gupta H. (Ed) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. First online: 23 August 2020. https://doi.org/10.1007/978-3-030-10475-7_142-1.

De Ferrari R., Ferretti G., Barani S., Spallarossa D., 2010. Investigating on the 1920 Garfagnana earthquake (Mw = 6.5): Evidences of site effects in Villa Collemandina (Tuscany, Italy). Soil Dynamics and Earthquake Engineering, 30(12), 1417-1429. https://doi.org/10.1016/j.soildyn.2010.07.004.

De Natale G., Petrazzuoli S., Romanelli F., Troise C., Vaccari F., Somma R., Peresan A., Panza G.F., 2019. Seismic risk mitigation at Ischia island (Naples, Southern Italy): an innovative approach to prevent catastrophic scenarios. Engineering Geology, 261, 105285. https://doi.org/10.1016/j.enggeo.2019.105285.

Decanini L., Gavarini C.E., Mollaioli F., 1995. Proposta di definizione delle relazioni tra intensita’ macrosismica e parametri del moto del suolo, Atti 70 Convegno L’ingegnaria sismica in Italia, 1, 63-72.

Deng Y., Zhang Z., Romanelli F., Ma T., Doglioni C., Wang P., Zhang X., Teng J., Panza G.F., 2014. Transition from continental collision to tectonic escape: a geophysical perspective on lateral expansion of the northern Tibetan Plateau. Earth, Planets and Space, 1-12. ISSN: 1880-5981. https://doi.org/10.1186/1880-5981-66-10.

Ding Z., Romanelli F., Chen Y.T., Panza G.F., 2004a. Realistic Modeling of Seismic Wave Ground Motion in Beijing City. Pure Appl. Geophys. 161, 1093-1106. https://doi.org/10.1007/s00024-003-2498-6.

Ding, Z., Chen, Y.T., Panza, G.F., 2004b. Estimation of Site Effects in Beijing City. Pure Appl. Geophys., 161, 1107-1123. https://doi.org/10.1007/s00024-003-2495-9.

Doglioni C., Carminati E., Petricca, Riguzzi F., 2015. Normal fault earthquakes or graviquakes. Nature: Scientific Reports, 5(12110), 1-12. https://doi.org/10.1038/srep12110.

Douglas J., 2020. Ground motion prediction equations 1964-2020. Dept. Civil Environ. Eng., Univ Strathclyde, Glaskow, UK, pp.670.

Dravinski M., Ding G., Wen K.-L., 1996. Analysis of spectral ratios for estimating ground motion in deep basins. Bull. Seism. Soc. Am., 86(3), 646-654. https://pubs.geoscienceworld.org/ssa/bssa/article/86/3/646/120084/Analysis-of-spectral-ratios-for-estimating-ground.

EC8 (1993, 2008) Eurocode 8: Structures in Seismic Regions - Design - Part 1 General and Building. EC8/EN 1998, Doc. TC250/SC8/N57A. https://eurocodes.jrc.ec.europa.eu/showpage.php?id=138. https://www.techstreet.com/standards/bs-en-1998-1-2004?product_id=1213749#jumps. https://eurocodes.jrc.ec.europa.eu/doc/EUR23563EN.pdf.

Egan T., 1989. Building Codes: Designs for Last Quake, Not Next. - Special to The New York Times, Published: October 22, 1989. https://www.nytimes.com/1989/10/22/us/building-codes-designs-for-last-quake-not-next.html.

ElGabry M., Hassan H.M., Vaccari F., Magrin A., Romanelli F., Panza G., 2021. Seismic Site Response Characterization for Suez Canal Region, Egypt. In Shehata H. and Badr M. (Eds) Advancements in Geotechnical Engineering. Sustainable Civil Infrastructures SUCI Book Series. SSIGE Official Publications 2020: Part 1. Proc. GeoMEast 2020 International, Congress, Cairo, Egypt November 8-12, 2020. Springer, Cham, 59-78, pp.338. https://doi.org/10.1007/978-3-030-62908-3_5.

ElGabry M.N., Hassan H.M., 2021. Updated Seismic Input for Next Generation of the Egyptian Building Code. In: Shehata H. and Badr M. (Eds) Sustainable Issues in Infrastructure Engineering. Sustainable Civil Infrastructures SUCI Book Series. SSIGE Official Publications 2020: Part 2. Proc. GeoMEast 2020 International Congress, Cairo, Egypt November 8-12, 2020. Springer, Cham, 55-79, pp.225. https://www.springerprofessional.de/en/sustainable-issues-in-infrastructure-engineering/18654490. https://www.issmge.org/events/sustainable-civil-infrastructures1.

El-Sayed A., Vaccari F., Panza G.F., 2001. Deterministic seismic hazard in Egypt. Geophys. J. Int., 144(3), 555-567. https://doi.org/10.1046/j.1365-246x.2001.01372.x.

EMS-98, 1998. European Macroseismic Scale 1998 (EMS-98). Grünthal G. (ed) Cahiers du Centre Européen de Géodynamique et de Séismologie 15, Centre Européen de Géodynamique et de Séismologie, Luxembourg, pp.99. ISBN: 2-87977-008-4. https://www.gfz-potsdam.de/en/section/seismic-hazard-and-risk-dynamics/data-products-services/ems-98-european-macroseismic-scale/.

Fasan M., Magrin A., Amadio C., Romanelli F., Vaccari F., Panza G.F., 2016. A seismological and engineering perspective on the 2016 Central Italy earthquakes. Int. J. Earthquake and Impact Engineering, 1(4), 395-420. ISSN-online: 2397-9380. https://doi.org/10.1504/IJEIE.2016.083253.

Fault behavior and characteristic earthquakes: Examples from the Wasatch and San Andreas Fault Zones - Schwartz, 1984. Journal of Geophysical Research: Solid Earth - Wiley Online Library.

FEMA 65, 2005. Federal Guidelines for Dam Safety: Earthquake Analyses and Design of Dams, May 2005, pp.45, Appendices A-C: pp.26. https://www.ferc.gov/sites/default/files/2020-04/fema-65.pdf.

FEMA P-749, 2010. “Earthquake-Resistant Design Concepts: An Introduction to the [2009 Edition] NEHRP Recommended Seismic Provisions for New Buildings and Other Structures” - A Companion Guide to the 2009 Edition of the NEHRP Recommended Seismic Provisions for New Buildings and Other Structures (FEMA P-750), by Hamburger, R. and Mahoney, M., Prepared for the Federal Emergency Management Agency FEMA of the U. S. Department of Homeland Security by the National Institute of Building Sciences Building Seismic Safety Council BSSC, DC, USA, pp.110. https://www.fema.gov/media-library-data/20130726-1759-25045-5477/fema_p_749.pdf.

Ferraes S.G., 1967. Test of Poisson process for earthquakes in Mexico City. J. Geophys Res., 72(14), 3741-3742. 06 Dec. 2012 online. https://doi.org/10.1029/JZ072i014p03741.

Field E.H. and the SCEC Phase III Working Group, 2000. Accounting for Site Effects in Probabilistic Seismic Hazard Analyses of Southern California: Overview of the SCEC Phase III Report. Bull. Seismol. Soc. Am., 90(6B), S1-S31. https://doi.org/10.1785/0120000512.

Field E.H., 1996. Spectral amplification in a sediment-filled valley exhibiting clear basin-edge-induced waves. Bull. Seism. Soc. Am., 86(4), 991-1005. https://pubs.geoscienceworld.org/ssa/bssa/article/86/4/991/120109/Spectral-amplification-in-a-sediment-filled-Valley.

Field E.H., Jackson D.D., Dolan J.F., 1999. A mutually consistent seismic-hazard source model for Southern California. Bulletin of the Seismological Society of America, 89(3), 559-578. - A mutually consistent seismic-hazard source model for southern California|Bulletin of the Seismological Society of America|GeoScienceWorld.

Field E.H., Jacob K.H., 1995. A comparison and test of various site-response estimation techniques, including three that are not reference-site dependent. Bull. Seism. Soc. Am., 85(4), 1127-1143. https://pubs.geoscienceworld.org/ssa/bssa/article/85/4/1127/102625/A-comparison-and-test-of-various-site-response.

Foulger G.R., Wilson M.P., Gluyas J.G., Julian B.R., Davies R.J., 2018. Global review of human-induced earthquakes. Earth-Science Reviews, 178, 438–514. https://doi.org/10.1016/j.earscirev.2017.07.008.

Fracassi U., Valensise G., 2007. Unveiling the sources of the catastrophic 1456 multiple earthquake: Hints to an unexplored tectonic mechanism in Southern Italy. Bull. Seism. Soc. Am., 97(3), 725-748. https://doi.org/10.1785/0120050250.

Freymueller J.T., 2020. GPS, Tectonic Geodesy. In: Gupta H. (Ed) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. First online: 05 December 2019. https://doi.org/10.1007/978-3-030-10475-7_77-1.

Furuya M., 2020. SAR Interferometry. In: Gupta H.K. (Ed) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. First online: 08 September 2020. https://doi.org/10.1007/978-3-030-10475-7_97-2.

Gelfand I.M., Guberman S., Keilis-Borok V.I., Knopoff L., Press F., Ranzman E. Ya, Rotwain I.M., Sadovsky A.M., 1976. Pattern recognition applied to earthquake epicenters in California. Phys. Earth Planet. Int., 11(3), 227-283. https://doi.org/10.1016/0031-9201(76)90067-4.

Gelfand I.M., Guberman Sh.A., Zhidkov M.P., Kaletzkaya M.S., Keilis-Borok V.I., Ranzman E.Ya., Rotwain I.M., 1974a. Recognition of Earthquake-Prone Areas. II. Four regions of Minor Asia and South-Eastern Europe. In: Keilis-Borok V.I. (ed), Computer Analysis of Digital Seismic Data, Computational Seismology, 7, 3-40, Nauka, Moscow (in Russian).

Gelfand I.M., Guberman Sh.A., Zhidkov M.P., Keilis-Borok V.I., Ranzman E.Ya., Rotwain I.M., 1974b. Recognition of Earthquake-Prone Areas. III. Disjunctive nodes with unknown boundaries. In: Keilis-Borok V.I. (ed), Computer Analysis of Digital Seismic Data, Computational Seismology, 7, 41-64, Nauka, Moscow (in Russian).

Gelfand I.M., Guberman Sh.I., Izvekova M., Keilis-Borok V.I., Rantsman E.Ja., 1972. Criteria of high seismicity determined by pattern recognition. In: A.R. Ritsema (Ed), The Upper Mantle. Developments in Geotectonics, 13(4), 415-422.

Geller R.J., Mulargia F., Stark P.B., 2016. “Why we need a new paradigm of earthquake occurrence”. In G. Morra, D.A. Yuen, S.D. King, S.-M. Lee and S. Stein (Eds.), Subduction Dynamics: From Mantle Flow to Mega Disasters, Geophysical Monograph, 211, American Geophysical Union, Washington, D.C., USA, 183-191. ISBN: 9781118888858. https://doi.org/10.1002/9781118888865.ch10.

Gerstenberger M.C. et al., 2020. Probabilistic seismic hazard analysis at regional and national scales: State of the art and future challenges. Reviews of Geophysics 58, e2019RG000653, pp.49. https://doi.org/10.1029/2019RG000653.

Gholami V., Hamzehloo H., La Mura C., Ghayamghamian M.R., Panza G.F., 2014. Simulation of selected strong motion records of the 2003 Mw = 6.6 Bam earthquake (SE Iran), the modal summation-ray tracing methods in the WKBJ approximation, Geophysical Journal International, 1 Feb. 2014, 196(2), 924-938 (Published 7 Nov. 2013). https://doi.org/10.1093/gji/ggt405.

Gholami V., La Mura C., Hamzehloo H., Panza G.F., 2012. 3- Dimensional Modal Summation simulation of 2003 Mw = 6.6 Bam Earthquake South Eastern Iran. Proc. 15th World Conference on Earthquake Engineering. Lisbon, Portugal. 24-28 September 2012, pp.10. https://www.iitk.ac.in/nicee/wcee/article/WCEE2012_0602.pdf.

Gilbert G.K., 1909. Earthquake Forecasts. Presidential Address to the American Association of Geographers, read at Baltimore, Md., Jan. 1, 1909. Science, 29(734), 121-136. https://doi.org/10.1126/science.29.734.121.

Godano C., Lippiello E., de Arcangelis L., 2014. Variability of the b value in the Gutenberg-Richter distribution, Geophysical Journal International, 199(3), 1765-1771. https://doi.org/10.1093/gji/ggu359.

Gomez-Capera A.A., D’Amico M., Lanzano G., Locati M., Santulin M., 2020 Relationships between ground motion parameters and macroseismic intensity for Italy. Bull Earthquake Eng., 18, 5143-5164. https://doi.org/10.1007/s10518-020-00905-0.

Gonzalez O., Alvarez J.L., Moreno B., Panza G.F., 2012a. S-Wave Velocities of the Lithosphere-Asthenosphere System in the Caribbean Region. Pure Appl. Geophys., 169, 101-122. https://doi.org/10.1007/s00024-011-0321-3.

Gonzalez O., Alvarez L., Guidarelli M., Panza G.F., 2007. Crust and Upper Mantle Structure in the Caribbean Region by Group Velocity Tomography and Regionalization. Pure Appl. Geophys., 164(10), 1985-2007. https://doi.org/10.1007/s00024-007-0259-7.

Gonzalez O., Clouard V., Tait S., Panza G.F., 2018. S-wave velocities of the lithosphere-asthenosphere system in the Lesser Antilles from the joint inversion of surface wave dispersion and receiver function analysis. Tectonophysics, 734-735, 1-15. https://doi.org/10.1016/j.tecto.2018.03.021.

Gonzalez O., Moreno B., Romanelli F., Panza G.F., 2012b. Lithospheric structure below seismic stations in Cuba from the joint inversion of Rayleigh surface waves dispersion and receiver functions. Geophysical Journal International, 189(2), 1047-1059. https://doi.org/10.1111/j.1365-246X.2012.05410.x.

Gorshkov A.I., Hassan H.M., Novikova O., 2018. Seismogenic Nodes (M ≥ 5.0) in Northeast Egypt and Implications for Seismic Hazard Assessment. Pure Appl. Geophys., 176, 593-610. https://doi.org/10.1007/s00024-018-2012-9.

Gorshkov A.I., Kossobokov V., Soloviev A., 2003. Recognition of Earthquake-Prone Areas. In: Keilis-Borok V.I., Soloviev A.A. (Eds), Nonlinear Dynamics of the Lithosphere and Earthquake Prediction Chpt., 6, 239-310, Springer Series in Synergetics. Springer-Verlag, Berlin-Heidelberg. ISBN: 978-3-642-07806-4. https://www.springer.com/gp/book/9783540435280#. https://doi.org/10.1007/978-3-662-05298-3_6.

Gorshkov A.I., Kossobokov V.G., Rantsman E.Ya, Soloviev A.A., 2005. Recognition of Earthquake-Prone Areas: Validity of Results Obtained from 1972 to 2000. In: Chowdhury D.K., Nyland, E., Odom, R., Sen, M., Keilis‐Borok , V.I., Levshin, A.L., Molchan, G.M., Naimark, B.M. (Eds), Computational Seismology and Geodynamics, 7, 37-44. AGU, Wash. DC, USA. Selected Papers From Volume 32 of Vychislitel'naya Seysmologiya. https://doi.org/10.1029/CS007p0037.

Gorshkov A.I., Kuznetsov I., Panza G.F., Soloviev A., 2000. Identification of future earthquake sources in the Carpatho-Balkan orogenic belt using morphostuctural criteria. Pure Appl. Geophys., 157, 79-95. https://doi.org/10.1007/PL00001101.

Gorshkov A.I., Mokhtari M., Piotrovskaya E., 2010. The Alborz region: identification of seismogenic nodes with morphostructural zoning and pattern recognition. J. Seismol. Earthquake Eng. Spring 2009, 1(1), 1-15. https://www.researchgate.net/publication/234841594_110_Gorshkov_A_Mokhtari_M_Piotrovskaya_E_2010_The_Alborz_region_identification_of_seismogenic_nodes_with_morphostructural_zoning_and_pattern_recognition_JSEE_Vol1_No_1_Spring_2009_1-15.

Gorshkov A.I., Novikova O., 2018. Estimating the validity of the recognition results of Earthquake-Prone Areas using the ArcMap. Acta Geophysica, 66, 843-853. ISSN: 1895-7455. https://doi.org/10.1007/s11600-018-0177-3.

Gorshkov A.I., Panza G.F., Soloviev A.A., Aoudia A., 2002. Morphostructural Zonation and preliminary recognition of seismogenic nodes around the Adria Margin in peninsular Italy and Sicily. J., Seismol. Earthquake Eng., 4(1), 1-24.

Gorshkov A.I., Panza G.F., Soloviev A.A., Aoudia A., 2004. Identification of seismogenic nodes in the Alps and Dinarides. Bollettino della Società Geologica Italiana, 123, 3-18. https://www.researchgate.net/publication/234841610_90_Gorshkov_AI_Panza_GF_Soloviev_AA_Aoudia_A_2004_Identification_of_seismogenic_nodes_in_the_Alps_and_Dinarides_Bolletino_della_Societa_Geologica_Italiana_123_3-18.

Gorshkov A.I., Soloviev A.A., Jiménez M.J., García-Fernández M., Panza G.F., 2010. Recognition of earthquake-prone areas (M ≥ 5.0) in the Iberian Peninsula. Rendiconti Lincei - Scienze Fisiche e Naturali, 21, 131-162. https://doi.org/10.1007/s12210-010-0075-3.

Gorshkov A.I., Zhidkov M., Rantsman E., Tumarkin A., 1991. Morphostructures of the Lesser Caucasus and locations of earthquakes, M ≥ 5.5. Izvestyia USSR. Request PDF (researchgate.net).

Grünthal G. (ed), 1998. European Macroseismic Scale 1998 (EMS-98). Cahiers du Centre Européen de Géodynamique et de Séismologie 15, Centre Européen de Géodynamique et de Séismologie, Luxembourg. ISBN: 2-87977-008-4. https://www.gfz-potsdam.de/en/section/seismic-hazard-and-risk-dynamics/data-products-services/ems-98-european-macroseismic-scale/.

Grünthal G., 2004. The history of historical earthquake research in Germany. Annals of geophysics=Annali di geofisica, 47(2-3), 631-643. https://doi.org/10.4401/ag-3328.

Grünthal G., Musson R.M.W., 2020. Earthquakes, Intensity. In: Gupta H. (Ed) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. First online: 15 February 2020.

Gumbel E.J., 1958. “Extreme Value Statistics”, Columbia Univ. Press, New York - (2004) “Extreme Value Statistics”, Dover Publications, Mineola, NY: unabridged re-publication of 1958 edition, pp.400. ISBN: 0-486-43604-7.

Gupta H., Ed, 2020. Encyclopedia of Solid Earth Geophysics Living Edition. Encyclopedia of Earth Sciences Series (EESS), 2nd Edition. Number of Entries: 255. Springer, Cham. Online, ISBN: 978-3-030-10475-7.

Gupta I.N., 1980. A note on correlation of Modified Mercalli intensity with peaks of far-field ground motion. Bull Seismol Soc Am., 70(3), 925-932.

Gutenberg B., Richter C.F., 1956. Magnitude and energy of earthquakes. Annali di Geofisica, 9, 7-12. https://doi.org/10.4401/ag-5590. https://www.annalsofgeophysics.eu/index.php/annals/article/view/5590.

Gutenberg B., Richter F., 1949. Seismicity of the Earth and associated phenomena, 273pp., Princeton Univ. Press, Princeton. https://doi.org/10.1111/j.2153-3490.1950.tb00313.x.

Gutenberg R., C.F. Richter, 1944. Frequency of earthquakes in California, Bull. Seismol. Soc. Am., 34(4), 185-188. ISSN: 0037-1106. https://resolver.caltech.edu/CaltechAUTHORS:20140731-150249818.

Gvishiani A., Gorshkov A., Kossobokov V., Cisternas A., Philip H., Weber C., 1987. Identification of seismically dangerous zones in the Pyrenees. Annales Geophysicae, 5B(6), 681-690. https://www.researchgate.net/publication/234841582_29_Gvishiani_A_Gorshkov_A_Kossobokov_V_Cisternas_A_Philip_H_Weber_C_1987_Identification_of_Seismically_Dangerous_Zones_in_the_Pyrenees_Annales_Geophysicae_5_B6_pp681-690.

Gvishiani A.D., Gorshkov A.I., Ranzman E.Ya., Cisternas A., Soloviev A.A., 1988. Prediction of Earthquake-Prone Areas in Regions of Moderate Seismicity. Prognozirovanie mest zemletryasenii v regionakh umerennoi seismichnosti. Nauka, Moscow, Russia, pp.187. https://www.researchgate.net/publication/236160746_Prediction_of_Earthquake-Prone_Areas_in_Regions_of_Moderate_Seismicity.

Gvishiani A.D., Soloviev A.A., 1984. Recognition of places on the Pacific coast of the South America where strong earthquakes may occur. Earthquake Predict. Res., 2(4), 237-243.

Gvishiani A.D., Soloviev A.A., Dzeboev B.A., 2020. Problem of Recognition of Strong-Earthquake-Prone Areas: a State-of-the-Art Review. Izvestiya, Physics of the Solid Earth, 56, 1-23. https://doi.org/10.1134/S1069351320010048.

Gvishiani A.D., Zhidkov M.P., Soloviev A.A., 1984. On application of the criteria of high seismicity of Andean mountain belt to Kamchatka. Izv. Akad. Nauk SSSR, Fiz. Zemli, 1, 20-33.

Hamburger R.O., 2016. “Seismic Design Value Maps: Past, Present and Future”, STRUCTURE magazine, March 2016, 14-17.

Hanks T.C., 1997. Imperfect Science, Uncertainty, Diversity, and Experts. Eos, Sept. 2, 1997, 78(35), 369-377. https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/97EO00236.

Harbi A., Maouche S., Vaccari F., Aoudia A. Oussadou, Panza G.F., Benouar D., 2007. Seismicity, seismic input and site effects in the Sahel-Algiers region (North Algeria). Soil Dynamics and Earthquake Engineering, 27(5), 427-447. https://doi.org/10.1016/j.soildyn.2006.10.002.

Hasegawa A., 2020. Seismicity, Subduction Zone. In: Gupta H.K. (Ed) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. First online: 17 March 2020. https://doi.org/10.1007/978-3-030-10475-7_14-1.

Hassan H.M., Fasan M., Sayed M.A., Romanelli F., ElGabry M.N., Vaccari F., Hamed A., 2020. Site-specific ground motion modeling for a historical Cairo site as a step towards computation of seismic input at cultural heritage sites. Engineering Geology, 268, 105524.

Hassan H.M., Romanelli F., Panza G.F., ElGabry M.N., Magrin A., 2017. Update and sensitivity analysis of the neo-deterministic seismic hazard assessment for Egypt. Engineering Geology, 218, 77-89. https://doi.org/10.1016/j.enggeo.2017.01.006.

Hays W.W., 1980. Procedures for estimating Earthquake Ground Motions, U.S. Geol. Surv., Prof. Paper, 1114, pp.77. https://pubs.usgs.gov/pp/1114/report.pdf.

Heaton T., 2007. “Will performance-based earthquake engineering break the power law?” Seismol. Res. Lett., 78(2), 183-185. http://dx.doi.org/10.1785/gssrl.78.2.183. https://resolver.caltech.edu/CaltechAUTHORS:20121121-131441532.

Hough S.E., Page M., 2016. Potentially Induced Earthquakes during the Early Twentieth Century in the Los Angeles Basin. Bull. Seismol. Soc. Am., 106(6), 2419-2435.

Housner G.W., Jennings P.C., 1977. Earthquake design criteria for structures, Calif. Inst. of Tech. Caltech EERL 77-06, Pasadena, CA, Nov., pp.52. https://core.ac.uk/download/pdf/4891324.pdf777.

Housner G.W., Jennings P.C., 1982. Earthquake design criteria, Earthquake Engineering Research Institute EERI, Oakland, CA USA, pp.140. ISBN: 1593701578. https://www.eeri.org/products-page/monographs/earthquake-design-criteria-3/.

Howath H., 2015. Human exposure to wind-induced motion in tall buildings: and assessment of guidance in ISO 6897 and ISO 10137. Conf. Paper - 50th United Kingdom Conference on Human Responses to Vibration, held at ISVR, University of Southampton, Southampton, England, 9-10 September 2015, pp.11. http://www.gmpe.org.uk/gmpereport2014.pdf.

http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-02832015000100003 - Boletín de Geología - Home Page (scielo.org.co). https://www.researchgate.net/publication/282823246_Simulation_of_seismic_wave_propagation_and_amplitude_and_period_characteristics_for_the_seismic_microzoning_of_guarenas_and_guatire_cities.

http://www.xeris.it/resources/Vademecum/ProvinciaTS_Vademecum_verifica_sismica_luglio2015_ENG.pdf.

https://arxiv.org/ftp/arxiv/papers/1709/1709.02945.pdf.

https://doi.org/10.1007/978-3-030-10475-7.

https://doi.org/10.1007/978-3-030-10475-7.

https://doi.org/10.1007/978-3-030-10475-7_23-1.

https://doi.org/10.1007/s00024-003-2500-3.

https://doi.org/10.1007/s00024-004-2531-4.

https://doi.org/10.1007/s00024-019-02297-y.

https://doi.org/10.1007/s10518-020-00818-y.

https://doi.org/10.1016/0013-7952(94)00060-F.

https://doi.org/10.1016/B978-0-12-380938-4.00003-3.

https://doi.org/10.1016/B978-0-12-394848-9.00012-2.

https://doi.org/10.1016/B978-0-444-41015-3.50028-8.

https://doi.org/10.1016/j.enggeo.2020.105524.

https://doi.org/10.1016/j.gr.2012.07.010.

https://doi.org/10.1016/j.soildyn.2005.02.006.

https://doi.org/10.1016/S0031-9201(03)00004-9.

https://doi.org/10.1029/2012EO510009.

https://doi.org/10.1088/1755-1315/56/1/012007.

https://doi.org/10.1093/gji/ggy355.

https://doi.org/10.1103/PhysRevLett.88.178501; Erratum Phys. Rev. Lett. 90, 109901 (2003).

https://doi.org/10.1126/science.185.4157.1124.

https://doi.org/10.1130/2012.2493(13).

https://doi.org/10.1504/IJEIE.2016.10000979.

https://doi.org/10.1785/0220140022.

https://doi.org/10.18814/epiiugs/2002/v25i3/002.

https://www.osti.gov/etdeweb/servlets/purl/20305549.

https://doi.org/10.2113/gseegeosci.IV.4.425.

https://doi.org/10.3133/ofr7667.

https://earthquake.usgs.gov/earthquakes/events/1906calif/18april/reid.php.

https://journals.sagepub.com/doi/pdf/10.1193/1.1586057.

https://journals.sagepub.com/doi/pdf/10.1193/1.1586058.

https://link.springer.com/article/10.1007/BF00305619.

https://link.springer.com/article/10.1007/BF01614064.

https://onlinelibrary.wiley.com/doi/pdf/10.1002/eqe.765.

https://physicstoday.scitation.org/doi/10.1063/1.1387590.

https://pubs.geoscienceworld.org/ssa/bssa/article/34/4/185/101140/Frequency-of-earthquakes-in-California.

https://pubs.geoscienceworld.org/ssa/bssa/article-abstract/70/3/925/102047/A-note-on-correlation-of-Modified-Mercalli?redirectedFrom=fulltext.

https://resolver.caltech.edu/CaltechAUTHORS:20140804-143558638.

https://spiritofmaat.com/archive/apr2/bucky.htm.

https://www.amazon.com/Statistics-Extremes-Dover-Books-Mathematics-ebook/dp/B008TVM18G.

https://www.google.com/books/edition/Terratr%C3%A8mols_i_temporals_de_llevant/TUSyma50ViMC?hl=en&gbpv=1.

https://www.iitk.ac.in/nicee/wcee/article/11_2005.PDF.

https://www.inderscience.com/info/inarticletoc.php?jcode=ijeie&year=2016&vol=1&issue=1/2. http://dx.doi.org/10.1504/IJEIE.2016.080038.

https://www.ldeo.columbia.edu/~richards/Aki_Richards.html.

https://www.nehrp.gov/pdf/Project17PlanningReport.pdf

https://www.researchgate.net/publication/281212369_Normalized_Response_Spectrum_of_Ground_Motion.

https://www.researchgate.net/publication/299450220_Human_exposure_to_wind-induced_motion_in_tall_buildings_and_assessment_of_guidance_in_ISO_6897_and_ISO_10137.

https://www.researchgate.net/publication/342734498_Supplementary_material_to_NDSHA_A_new_paradigm_for_reliable_seismic_hazard_assessment.

https://www.sid.ir/en/journal/ViewPaper.aspx?id=29380.

https://www.springer.com/gp/book/9781852331153.

https://www.springer.com/gp/book/9783034852852.

https://www.springer.com/gp/book/9789401175760.

https://www.springer.com/us/book/9783540435280.

https://www.stat.berkeley.edu/~stark/Preprints/611.pdf.

https://www.structuremag.org/wp-content/uploads/2016/02/C-CS-Hamburger-Mar161.pdf.

Irwandi I., 2017. Advantages of Realistic Model Based on computational method: NDSHA versus Standard PSHA. IOP Conf. Ser.: Earth and Environ. Sci. 56. 10th Aceh International Workshop and Expo on Sustainable Tsunami Disaster Recovery (AIWEST-DR2016) 22-24 Nov. 2016, Banda Aceh, Indonesia, 10pp.

Irwandi I., Umar M., Khaizal J., Asrurifak M., Usama F., Ridwan M., 2020. The Neo-Deterministic Seismic Hazard map (NDSHA) of Sumatra compared with official 2010 and 2017 derived from PSHA method. IOP Conf. Ser.: Mater. Sci. Eng. 712, 012017, 3rd National Conference on Wind & Earthquake Engineering and International Seminar On Sustainable Construction Engineering 12-13 July 2019, Kuala Lumpur, Malaysia, 8pp. https://doi.org/10.1088/1757-899X/712/1/012017. ISBN: 84-7283-679-7.

ISBN-978-1-63439-120-7. https://www.semanticscholar.org/paper/A-Review-on-Pattern-Recognition-Techniques-for-Mridula-Sinhval/7ab92279e9d5a8afecf06c041073aea47f9b91eb. Doi: 03.AETS.2013.3.4_1 © Association of Computer. https://doi.org/03.AETS/3.4_1.

Ismail-Zadeh A., Kossobokov V., 2020. Earthquake Prediction, M8 Algorithm. In: Gupta H. (Ed) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series, 2nd Edition. Springer, Cham. First Online: 30 May 2020. https://doi.org/10.1007/978-3-030-10475-7_157-1.

ISO: 10137, 2007. International Organization for Standardization. Bases for design of structures-serviceability of buildings and walkways against vibration. Standard ISO 10137:2007, Geneva, International Organization for Standardization. https://www.iso.org/standard/37070.html.

Iturrarán-Viveros U., Sánchez-Sesma F.J., 2020. Seismic Wave Propagation in Real Media: Numerical Modeling Approaches. In: Gupta H. (Ed) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. First online: 29 March 2020. https://doi.org/10.1007/978-3-030-10475-7_6-1.

Jackson D.D., Kagan Y.Y., 2020. Characteristic Earthquakes and Seismic Gaps. In: Gupta H. (Ed) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. First Online 28 December 2019. https://doi.org/10.1007/978-3-030-10475-7_181-1.

Jamtveit B., Ben-Zion Y., Renard F., Austrheim H., 2018. Earthquake-induced transformation of the lower crust. Nature, 556, 487-491. https://doi.org/10.1038/s41586-018-0045-y.

Junbo J., 2017. Modern Earthquake Engineering: Offshore and Land-based Structures. Springer-Verlag GmbH Germany, pp.848. ISBN: 978-3-642-31853-5. ISBN: 978-3-642-31854-2 (eBook). https://doi.org/10.1007/978-3-642-31854-2.

Kagan Y.Y., Jackson D.D., Geller R.J., 2012. Characteristic earthquake model, 1884-2011, R.I.P. Editorial Nov. 1, 2012, Seismol. Res. Lett., 83(6), 951-953. https://doi.org/10.1785/0220120107.

Kahneman D., 2011. Thinking, Fast and Slow. Farrar, Straus and Giroux, New York, pp.512. ISBN: 978-0374275631 (see also Obrien, 2012; Sunstein and Thaler, 2016). https://www.amazon.com/Thinking-Fast-Slow-Daniel-Kahneman/dp/0374533555.

Kanamori H., 1981. “The Nature of Seismicity Patterns Before Large Earthquakes”, In: Simpson, D.W. and Richards, PG. (eds.) Earthquake Prediction: An International Review, Maurice Ewing Series, American Geophysical Union Washington, D.C., 4, 1-19. ISBN: 9780875904030. https://doi.org/10.1029/ME004p0001. http://resolver.caltech.edu/CaltechAUTHORS:20141111-150708151.

Kanamori H., 2004. The diversity of the physics of earthquakes. Proceedings of the Japan Academy, Series B, 80(7), 297-316. https://doi.org/10.2183/pjab.80.297.

Kárník V., Algermissen S.T., 1978. Seismic zoning. In: The assessment and mitigation of earthquake risk, 11-47. United Nations Educational, Scientific and Cultural Organization UNESCO 1, 75700 Paris, Printed by NICI, Ghent. ISBN: 92-3-101451-X French edition: 92-3-201451-3. https://www.abebooks.it/products/isbn/9789231014512?cm_sp=bdp-_-ISBN10-_-PLP.

Kato T., 2020. Slow Earthquake. In: Gupta H. (Ed) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. First online: 29 December 2019. https://doi.org/10.1007/978-3-030-10475-7_20-1.

Keilis-Borok V.I., 2018. Prediction of Extreme events in Nature and Society. A.A. Soloviev (Ed.), Ori Books, pp.520. ISBN: 1940076447. https://doi.org/10.28935/9781940076447. https://www.amazon.com/Prediction-Extreme-Events-Nature-Society/dp/1940076447.

Keilis-Borok V.I., Soloviev A.A. (Eds), 2003. Non-linear dynamics of the lithosphere and earthquake prediction. Springer, Heidelberg, Germany, pp.337. ISBNe: 978-3-662-05298-3.

Kijko A., 2004. Estimation of the Maximum Earthquake Magnitude, mmax. Pure Applied Geophys., 161, 1655-1681.

Kijko A., 2020. Seismic Hazard. In: Gupta H. (Ed) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. First online: 15 December 2019. https://doi.org/10.1007/978-3-030-10475-7_10-1.

Kim Y., Hwang W., 2019. High-Cycle, Low-Cycle, Extremely Low-Cycle Fatigue and Monotonic Fracture Behaviors of Low-Carbon Steel and Its Welded Joints. Materials, 12(24), 4111, pp.23. https://doi.org/10.3390/ma12244111.

Klügel J.-U., 2008. Seismic Hazard Analysis - Quo Vadis? Earth-Science Reviews, 88(1-2), 1-32. https://doi.org/10.1016/j.earscirev.2008.01.003.

Klügel J.-U., Mualchin L., Panza G.F., 2006. A scenario-based procedure for seismic risk analysis. Engineering Geology, 88(1-2), 1-22. https://doi.org/10.1016/j.enggeo.2006.07.006.

Klügel J-U., 2015. Lessons not yet learned from the Fukushima disaster. Acta Geod Geophys, 50, 5-19. https://doi.org/10.1007/s40328-014-0084-2.

Konno K., Ohmachi T., 1998. Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor, Bull. Seism. Soc. Am., 88(1), 228-241. https://pubs.geoscienceworld.org/ssa/bssa/article/88/1/228/102764/Ground-motion-characteristics-estimated-from.

Korzybski A., 1931. “The Map is not the Territory.” In 1931 Alfred Korzybski gave a presentation at a meeting of the American Association for the Advancement of Science in New Orleans where he used the phrase “the map is not the territory.” Korzybski used this phrase to mean that people in general do not have access to absolute knowledge of reality, but merely possess a subset of that knowledge that is then tinted through the lenses of their own experience. He further added that it is important for people to know that their understanding of things, “the map”, is not a true representation of reality itself or everything represented by reality, or “the territory”. https://www.solutionsiq.com/resource/blog-post/map-territory-agile-teams-know-difference/.

Korzybski A., 1931. A non-aristotelian system and its necessity for rigour in mathematics and physics, Paper presented before the American Mathematical Society at the New Orléans, Louisiana Meeting of the American Association for the Advancement of Science A.A.A.S., Dec. 28, 1931. Reprinted in Science and Sanity: An Introduction to Non-Aristotelian Systems and General Semantics, International Non-Aristotelian Library Publishing Company, 1933, 747-761.

Kossobokov V.G., 2003. The Physics of Earthquakes, Seismic Occurrence and its Prediction. In: A.M. Correig (Ed). Terratrèmols i Temporals de Llevant: Dos Exemples de Sistemes Complexos: Jornades Científiques de l'Institut d'Estudis Catalans, Secció de Ciències i Tecnologia (Sèrie Jornades Científiques: 15). Institut d'Estudis Catalans (IEC), Barcelona, 71-90. https://www.google.com/books/edition/Terratr%C3%A8mols_i_temporals_de_llevant/TUSyma50ViMC?hl=en&gbpv=1.

Kossobokov V.G., 2004. Earthquake prediction: Basics, achievements, perspectives. Acta Geodaetica et Geophysica Hungarica, 39(2-3), 205-221. https://doi.org/10.1556/ageod.39.2004.2-3.6.

Kossobokov V.G., 2017. Seismic Roulette: Earthquake Prediction Problem in a Big Data World. http://school2017.gcras.ru/doc/KossobokovV_1.pdf.

Kossobokov V.G., Mazhkenov S.A., 1994. On similarity in the spatial distribution of seismicity, In: Chowdhury, D.K. et al. (Eds). Computational Seismology and Geodynamics. AGU, The Union, Washington DC, 1, 6-15. First Publ. 1992. https://doi.org/10.1029/CS001p0006.

Kossobokov V.G., Shebalin P., 2003. 4. Earthquake Prediction. In: Keilis-Borok, V.I., A.A. Soloviev (Eds). Nonlinear Dynamics of the Lithosphere and Earthquake Prediction, 141-207. Springer Series in Synergetics. Springer, Berlin, Heidelberg. ISBN: 978-3-642-07806-4. https://doi.org/10.1007/978-3-662-05298-3_4. https://www.springer.com/us/book/9783540435280.

Krinitzsky E., 1998. The Hazard in Using Probabilistic Seismic Hazard Analysis for Engineering. Environmental and Engineering Geoscience, IV(4), 425-443.

Krinitzsky E.L., 1993a. Earthquake probability in engineering - Part 1: The use and misuse of expert opinion. The Third Richard H. Jahns Distinguished Lecture in Engineering Geology. Engineering Geology, 33(4), 257-288. https://doi.org/10.1016/0013-7952(93)90030-G.

Krinitzsky E.L., 1993b. Earthquake probability in engineering - Part 2: Earthquake recurrence and the limitations of Gutenberg-Richter b-values for the engineering of critical structures. The Third Richard H. Jahns Distinguished Lecture in Engineering Geology. Engineering Geology, 36(1-2), 1-52. https://doi.org/10.1016/0013-7952(93)90017-7.

Krinitzsky E.L., 1993c. The Hazard of Using Probabilistic Seismic Hazard Analysis. Civil Engineering, New York. November 1993, 63(11), 1-52. https://trid.trb.org/view/383477.

Krinitzsky E.L., 1995. Problems with logic trees in earthquake hazard evaluation. Engineering Geology, 39, 1-3.

Krinitzsky E.L., 2003. How to combine deterministic and probabilistic methods for assessing earthquake hazards, Engineering Geology, 70(1-2), 157-163. https://doi.org/10.1016/S0013-7952(02)00269-7.

Kulhanek O., Persson L., 2020. Seismogram Interpretation. In: Gupta H. (Ed) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. First online: 09 December 2019. https://doi.org/10.1007/978-3-030-10475-7_219-1.

La Mura C., Yanovskaya T.B., Romanelli F., Panza G.F., 2011. Three-Dimensional Seismic Wave Propagation by Modal Summation: Method and Validation. Pure Appl. Geophys., 168, 201-216. First Online: 22 May 2010. https://doi.org/10.1007/s00024-010-0165-2.

Lachet C., Bard P.-Y., 1994. Numerical and theoretical investigations on the possibilities and limitations of Nakamura’s technique. J. Phys. Earth, 42(5), 377-397. https://doi.org/10.4294/jpe1952.42.377.

Lee W.H.K., 2020. Seismology, Rotational. In: Gupta H. (Ed) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. First online: 28 December 2019. https://doi.org/10.1007/978-3-030-10475-7_17-1.

Li S., Chen Y., Yu T., 2020. Comparison of macroseismic-intensity scales by considering empirical observations of structural seismic damage. Earthquake Spectra, 10(2), 357-379. https://doi.org/10.1177/8755293020944174.

Lliboutry L., 2000. Quantitative geophysics and geology, Springer-Verlag, London, UK, pp.XV, 480. ISBN: 978-1-85233-115-3.

Lucia Luzi, Francesca Pacor, Rodolfo Puglia, Giovanni Lanzano, Chiara Felicetta, Maria D’Amico, Alberto Michelini, Licia Faenza, Valentino Lauciani, Iunio Iervolino, George Baltzopoulos, Eugenio Chioccarelli, 2017. The Central Italy Seismic Sequence between August and December 2016: Analysis of Strong‐Motion Observations. Seismological Research Letters, 88(5), 1219-1231. https://doi.org/10.1785/0220170037.

Madariaga R., 2020. Earthquake Source Theory. In: Gupta H. (d) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. First online: 19 February 2020. https://doi.org/10.1007/978-3-030-10475-7_62-1.

Magrin A., Gusev A.A., Romanelli F., Vaccari, F., Panza G.F., 2016. Broadband NDSHA computations and earthquake ground motion observations for the Italian territory. Int. J. Earthquake and Impact Engineering IJEIE, 1(1/2), 131-158. ISSN online: 2397-9380.

Magrin A., Peresan A., Kronrod T., Vaccari F., Panza G.F., 2017. Neo-deterministic seismic hazard assessment and earthquake occurrence rate. Engineering Geolology, 229, 95-109. https://doi.org/10.1016/j.enggeo.2017.09.004.

Malhotra P.K., 2015. Normalized Response Spectrum of Ground Motion, The Bridge and Structural Engineer, 45(1), 1-11.

Marku S., Panza G., Ormeni R., 2014. The necessity of an anti-seismic law in Albania based on NDSHA method of risk calculation. Bul. Shk. Gjeol. 1/2014 - Special Issue. Proceedings of XX CBGA Congress, Tirana, Albania, 24-26 September 2014, 462-465. https://www.academia.edu/43151518/Beqiraj_A_Ionescu_C_Christofides_G_Uta_A_Beqiraj_Goga_E_and_Marku_S_Proceedings_XX_Congress_of_the_Carpathian_Balkan_Geological_Association_September_24_26_2014_Tirana_Albania_Special_Issue_Vol_1_2014_Special_Sessions.The full volume with abstracts may be downloaded from: www.fgjm.edu.al/cbga.

Martelli A., Clemente P., De Stefano A., Forni M., Salvatori A., 2014. Recent Development and Application of Seismic Isolation and Energy Dissipation and Conditions for Their Correct Use. In: Ansal, A. (Ed) Perspectives on European Earthquake Engineering and Seismology. Geotechnical, Geological and Earthquake Engineering, Springer, Cham, 34, 449-488. https://doi.org/10.1007/978-3-319-07118-3_14.

Martin S.S., Szeliga W., 2010. A catalog of felt intensity data for 570 earthquakes in India from 1636 to 2009. Bull. Seismol. Soc. Am., 100(2), 562-569. https://doi.org/10.1785/0120080328.

McCaffrey R., 2020. Earthquakes and Crustal Deformation. In: Gupta H. (Ed) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. First online: 28 December 2019. https://doi.org/10.1007/978-3-030-10475-7_2-1.

McCann M.W., Sauter F., Shah H.C. Shah, 1980. A technical note on PGA-intensity relations with applications to damage estimation. Bull. Seismol. Soc. Am., 70(2), 631-637. A technical note on PGA-intensity relations with applications to damage estimation Bulletin of the Seismological Society of America.

McGuire R., 2001. Deterministic vs Probabilistic Earthquake Hazards and Risks, Soil Dynamics and Earthquake Engineering, 21(5), 377-384. https://doi.org/10.1016/S0267-7261(01)00019-7.

McGuire R.K., 1976. “Fortran computer program for seismic risk analysis”, U.S. Geological Survey Open-file Rpt., 76-67.

McGuire R.K., 1992. Perceptions of earthquake risk. Bull. Seismol. Soc. Am., 82, 1977-1992. https://pubs.geoscienceworld.org/ssa/bssa/article/82/4/1977/119698/perceptions-of-earthquake-risk.

McGuire R.K., 1995. “Probabilistic seismic hazard analysis and design earthquakes: Closing the loop”, Bull. Seismol. Soc. Am., 85(5), 1275-1284. https://pubs.geoscienceworld.org/ssa/bssa/article-standard/85/5/1275/119907/probabilistic-seismic-hazardanalysis-and-design.

McGuire R.K., 2004. Seismic Hazard and Risk Analysis. Earthquake Engineering Research Institute EERI Monograph. Oakland, CA., pp.221. https://www.eeri.org/products-page/monographs/seismic-hazard-and-risk-analysis-3/.

McGuire R.K., 2008. “Probabilistic seismic hazard analysis: Early history”, Earthquake Engng. Struct. Dyn., 37, 329-338. Published online 19 October 2007 in Wiley InterScience (www.interscience.wiley.com).

Meletti C., Patacca E., Scandone P., 2000. Construction of a seismotectonic model: the case of Italy. In: G.F. Panza, M. Radulian and C. Trifu (Eds) Seismic Hazard of the Circum-Pannonian Region. Pure Appl. Geophys. - Topical Volume, 157, 11-35. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8415-0_2.

Milkova K., Dumova-Jovanoska E., Drogreshka K., Chernih, 2018. Region specific application of Neo-deterministic analysis for reliable seismic hazard assessment. Proc. 16th European Conference on Earthquake Engineering - 16ecee 18-21 June 2018, Thessaloniki, Greece. ID: 11201. http://papers.16ecee.org/files/16ecee2018%20NeoDeterministicAnalysis.pdf. https://www.researchgate.net/publication/345777511_region_specific_application_of_neo-deterministic_analysis_for_reliable_seismic_hazard_assessment.

Miranda E., 1996. Strength Reduction Factors in Performance-Based Design. EERC-CUREe Symposium in Honor of Vitelmo V. Bertero, January 31 - February 1, 1997, Berkeley, California. https://tarjomefa.com/wp-content/uploads/2015/11/3241-English.pdf.

Miranda E., Bertero V.V., 1994. Evaluation of Strength Reduction Factors for Earthquake-Resistant Design. Earthquake Spectra, 10(2), 357-379. https://doi.org/10.1193/1.1585778.

Mohanty W.K., Verma A.K., Vaccari F., Panza G.F., 2013. Influence of epicentral distance on local seismic response in Kolkata City, India. J Earth Syst Sci., 122, 321-338. https://doi.org/10.1007/s12040-013-0275-1.

Molchan G., Kronrod T., Panza G.F., 1997. Multi-scale seismicity model for seismic risk. Bull. Seismol. Soc. Am., 87(5), 1220-1229. https://pubs.geoscienceworld.org/ssa/bssa/article/87/5/1220/120232/Multi-scale-seismicity-model-for-seismic-risk.

Molchan G., Kronrod T., Panza G.F., 2011. Hot/Cold Spots in Italian Macroseismic Data. Pure Appl. Geophys, 168(3-4), 739-752. https://doi.org/10.1007/s00024-010-0111-3.

Molin D., Stucchi M., Valensise G., 1996. Maximum macroeconomic intensities observed in Italian municipalities/Massime intensità macrosismiche osservate nei comuni italiani. Evaluated from the GNDT macroseismic database and data from the ING/SGA Catalogue of Strong Earthquakes in Italy. Developed for the Department of Civil Protection. Massime intensità macrosismiche osservate nei cmuni italiani (ingv.it).

Moratto L., Suhadolc P., G. Costa G., 2011. ShakeMaps for three relevant earthquakes in the Southeastern Alps: Comparison between instrumental and observed intensities, Tectonophysics, 509(1-2), 93-106. https://doi.org/10.1016/j.tecto.2011.06.004.

Morfe J., Schmitz M., Alvarado L., Álvarez L., Zapata J., y Rendón H., 2015. Simulation of seismic wave propagation, and amplitude and period characteristics for the seismic microzoning of Guarenas and Guatire cities. Boletín de Geología, 37(1), 27-43.

Mostafa S.I., Abdelhafiez H.E., Abdel Aziz K., Abdel Aal A., 2019. Deterministic scenarios for seismic hazard assessment in Egypt. Journal of African Earth Sciences, 160, 103655. https://doi.org/10.1016/j.jafrearsci.2019.103655.

Motaghi K., Tatar M., Priestley K., Romanelli R., Doglioni C., Panza G.F., 2015. The deep structure of the Iranian Plateau. Gondwana Research, 28(1), 407-418. https://doi.org/10.1016/j.gr.2014.04.009.

Moustafa et al., 2020. Review of Site Effects Methodologies: with full references. https://assets.researchsquare.com/files/rs-44214/v1/af14e0d3-6b45-48a2-949e-9f0aa028bf68.pdf.

Mridula, Sinhval A., Wason H.R., 2013. A review on pattern recognition techniques for seismic hazard analysis. Proc. International Conference on Emerging Trends in Engineering and Technology, 854-858. 4th International Conference on Emerging Trends in Engineering and Technology (IETET 2013) Advances in Engineering and Technology Volume 3, Haryana, India 25-27 October 2013.

Mualchin L., 2011. History of Modern Earthquake Hazard Mapping and Assessment in California Using a Deterministic or Scenario Approach, Pure and Applied Geophys., 168, 383-407. https://doi.org/10.1007/s00024-010-0121-1.

Muço B., 2013. Probabilistic seismic hazard assessment in Albania, Ital. J. Geosci., 132 (f,2), 194-202. https://doi.org/10.3301/IJG.2012.33.

Muço B., Vaccari F., Panza G.F., 2001 Seismic zonation of Albania using a deterministic approach. The Albanian Journal of Natural & Technical Sciences, 10, 5-19.

Muço B., Vaccari F., Panza G.F., Kuka N., 2002. Seismic zonation in Albania using a deterministic approach. Tectonophysics, 344(3), 277-288. https://doi.org/10.1016/S0040-1951(01)00279-7.

Mulargia F., Stark P., Geller R., 2017. Why is Probabilistic Seismic Hazard Analysis (PSHA) still used? Phys. Earth Planet. Int., 264, 63-75. https://doi.org/10.1016/j.pepi.2016.12.002.

Musson R.M.W., 2019. Great Earthquakes. In: Gupta H. (Ed) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. First online: 04 December 2019. https://doi.org/10.1007/978-3-030-10475-7_7-1.

Nagao T., Kamogawa M., Uyeda S., 2020. Earthquake Precursors and Prediction. In: Gupta H. (Ed) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. First Online 30 October 2019. https://doi.org/10.1007/978-3-030-10475-7_4-1.

Nakamura Y., 1989. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Quart. Rept. Railway Tech. Res. Inst. RTRI, 30(1), 25-33. https://trid.trb.org/view/294184.

Nakamura Y., 2008. On the H/V Spectrum. The 14 th World Conference on Earthquake Engineering Oct. 12-17, 2008, Beijing, China, pp.10. https://www.iitk.ac.in/nicee/wcee/article/14_07-0033.PDF.

Nakamura Y., Gurler D.E., 2001. Estimation of dynamic characteristics of ground and structures with microtremor measurements- A supportive tool for strong ground motion instrumentation. In: Erdik M., Celebi M., Mihailov V., Apaydin N. (Eds) Strong Motion Instrumentation for Civil Engineering Structures. NATO Science Series (Series E: Applied Sciences), 373, 303-311. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0696-5_21.

Negro C., Vitaliani R., Saetta A., Berto L., Panza G., Vaccari F., Martelli A., Indirli M., 2013. Comparison of seismic hazard assessment procedures and equilibrium limit state analysis for the Prigioni statues of Michelangelo. SE-50EEE, International Conference on Earthquake Engineering, 50 Years Skopje Earthquake, 1963-2013, May 2013, Skopje, Former Republic of Macedonia, Conf. Paper, pp.9. https://www.researchgate.net/publication/259849473_Comparison_of_seismic_hazard_assessment_procedures_and_equilibrium_limit_state_analysis_for_the_Prigioni_statues_of_Michelangelo.

Nekrasova A.K., Kossobokov V.G., 2006. General law of similarity for earthquakes: Evidence from the Baikal region. Dokl. Earth Sc., 407, 484-485. https://doi.org/10.1134/S1028334X06030305.

Nekrasova A.K., Kossobokov V.G., Peresan A., Magrin A., 2014. The comparison of the NDSHA, PSHA seismic hazard maps and real seismicity for the Italian territory. Nat, Hazards (2013), 70, 629-641. https://doi.org/10.1007/s11069-013-0832-6.

Nguyen Hong Phuong, Cao Dinh Trieu, F. Romanelli, F. Vaccari, 2008. Realistic estimation of seismic ground motion in Hanoi city using synthetic seismograms. Dept. Geology & Minerals of Vietnam Journal of Geology, Series B, 31-32, 181-191. http://www.idm.gov.vn/111P59N178PI1T/en-US/Chi-Tiet-Linh-Vuc/Center-for-Information-and-Archives-of-Geology.aspx. Center for Information & Archives of Geology (idm.gov.vn).

Novikova O., Gorshkov A., 2013. Recognition of earthquake prone areas (M ≥ 6.0) in the Kopet Dagh region using the GIS technology. J. Seismol. Earthquake Eng., 15(2), 101-109. https://www.sid.ir/en/Journal/ViewPaper.aspx?ID=489634.

NTC, 2008. Norme tecniche per le costruzioni, D.M. 14 Gennaio 2008, Rome, Italy. http://www.ingegneriasoft.com/NTC2008_Norme_tecniche_per_le_costruzioni.htm.

NTC, 2018. Aggiornamento delle “Norme tecniche per le costruzioni”, D.M. 17 Gennaio 2018, Rome, Italy. https://www.ediltecnico.it/nuove-norme-tecniche-per-costruzioni-ntc/. http://www.gazzettaufficiale.it/atto/serie_generale/caricaDettaglioAtto/originario?atto.dataPubblicazioneGazzetta=2018-02-20&atto.codiceRedazionale=18A00716&elenco30giorni=true https://www.gazzettaufficiale.it/atto/serie_generale/caricaDettaglioAtto/originario?atto.dataPubblicazioneGazzetta=2018-02-20&atto.codiceRedazionale=18A00716&77. http://www.gazzettaufficiale.it/eli/gu/2018/02/20/42/so/8/sg/pdf.

Nunziata C., Costanzo M.R., 2020. Ground Shaking Scenario at the Historical Center of Napoli (Southern Italy) for the 1456 and 1688 Earthquakes. Pure Appl. Geophys., 177, 3175-3190. https://doi.org/10.1007/s00024-020-02426-y.

Okal E., 2019. Energy and Magnitude: A Historical Perspective. Pure Appl. Geophys., 176, 3815-3849. https://doi.org/10.1007/s00024-018-1994-7.

Okal E.A., 2020. Earthquake, Focal Mechanism. In: Gupta H. Ed) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. First online: 10 march 2020. https://doi.org/10.1007/978-3-030-10475-7_158-1.

Olsen K.B., 2000. Site Amplification in the Los Angeles Basin from Three-Dimensional Modeling of Ground Motion. Bull. Seismol. Soc. Am., 90(6B), S77-S94. https://doi.org/10.1785/0120000506.

PAGEOPH Topical Volume 168, 2011. Advanced Seismic Hazard Assessment, Vol. 1 and Vol. 2, G.F. Panza, K. Irikura, M. Kouteva-Guentcheva, A. Peresan, Z. Wang and R. Saragoni R. (Eds) Pure Appl. Geophys., Birkhäuser, Basel, Switzerland, Vol. 1, ISBN: 978-3-0348-0039-6, Vol. 2, ISBN: 978-3-0348-0091-4. http://www.springer.com/it/book/9783034800396. http://www.springer.com/it/book/9783034800914.

Panda D., Kundu B., Gahalaut V.K., 2020. Earthquakes in the Himalaya. In: Gupta H. (Ed) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. First online: 20 August 2020. https://doi.org/10.1007/978-3-030-10475-7_263-1.

Panza G.F., 2017. NDSHA: Robust and Reliable Seismic Hazard Assessment. Proceedings, International Conference on Disaster Risk Mitigation, Dhaka, Bangladesh, September 23-24, pp.10.

Panza G.F., 2019. NDSHA: Reliable Paradigm for Seismic Hazard Assessment. Keynote in: F. Dobran (Ed) Resilience and Sustainability of Cities in Hazardous Environments, 52-56, pp.510. GVES, Napoli-New York. ISBN: 978-88-903183-1-3. International Conference on Resilience and Sustainability of Cities in Hazardous Environments 26-30 Nov. 2018, Naples, Italy. http://congress.gvess.org/downloads/Resilience_and_Sustainability_of_Cities_in_Hazardous_Environments.pdf.

Panza G.F., 2020. Paolo Scandone la rivoluzione nelle Geoscienze e nuovi paradigmi: NDSHA e Polarized Plate Tectonics. Atti Convegni Lincei: L’eredità scientifica di Paolo Scandone, geologo, in press.

Panza G.F., Alvarez L., Aoudia A., Ayadi A., Benhallou H., Benouar D., Bus Z., Chen Y., Cioflan C., Ding Z., El-Sayed A., Garcia J., Garofalo B., Gorshkov A., Gribovszki K., Harbi A., Hatzidimitriou P., Herak M., Kouteva M., Kuznetzov I., Lokmer I., Maouche S., Marmureanu G., Matova M., Natale M., Nunziata C., Parvez I.A., Paskaleva I., Pico R., Radulian M., Romanelli F., Soloviev A., Suhadolc P., Szeidovitz G., Triantafyllidis P., Vaccari F., 2002. Realistic modeling of seismic input for megacities and large urban areas (the UNESCO/IUGS/IGCP project 414). Episodes, 25(3), 160-184.

Panza G.F., Bela J., 2019. NDSHA: a new paradigm for reliable seismic hazard assessment. Engineering Geology, SI, 20 September 2020, Article 105403, 275, pp.14. https://doi.org/10.1016/j.enggeo.2019.105403.

Panza G.F., Cazzaro R., Vaccari F., 1997. Correlation between macroseismic intensities and seismic ground motion parameters. Annals Geophys., 40(5), 1371-1382. https://doi.org/10.4401/ag-3872.

Panza G.F., Kossobokov V., Peresan A., Nekrasova A., 2014. Why are the Standard Probabilistic Methods of Estimating Seismic Hazard and Risks Too Often Wrong. In: Wyss, M. (Ed) Earthquake Hazard, Risk, and Disasters, Elsevier, London, UK, 309-357. ISBN: 978-0-12-394848-9.

Panza G.F., La Mura C., Peresan A., Romanelli F., Vaccari F., 2012. Seismic Hazard Scenarios as Preventive Tools for a Disaster Resilient Society. Advances in Geophysics, 53, 93-165.

Panza G.F., La Mura C., Romanelli F., Vaccari F., 2020. Earthquakes, Strong-Ground Motion. In: Gupta H. (Ed) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. First online: 28 December 2019. https://doi.org/10.1007/978-3-030-10475-7_141-1.

Panza G.F., Peresan A., 2016. Difendersi dal terremoto si può - L'approccio neo-deterministico. EPC Editore, Roma, pp.180. ISBN: 978-88-6310-738-8. https://www.epc.it/Prodotto/Editoria/Libri/Difendersi-dal-terremoto-si-puo%27/3342.

Panza G.F., Peresan A., La Mura C., 2013. Seismic hazard and strong motion: an operational neo-deterministic approach from national to local scale. In UNESCO-EOLSS Joint Committee Eds, Geophysics and Geochemistry, Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford, UK, pp.48. http://www.eolss.net. https://www.researchgate.net/publication/288033593_Seismic_hazard_and_strong_ground_motion_an_operational_neo-deterministic_approach_from_national_to_local_scale

Panza G.F., Peresan A., Margin A., 2014. Neo-deterministic scenarios of seismic hazard for Friuli Venezia Giulia and the surrounding areas. Servizio Geologico D'Italia. Memorie descrittive della Carta Geologica D'Italia Descriptive memories of the geological map of Italy, 94, 1-103. ISPRA Serv. ISBN: 8893110040. Memorie descrittive della carta geologica d'Italia vol.94 - Panza G.F., Peresan A., ISPRA Serv. Geologico d'Italia, Trama libro, 9788893110044. Libreria Universitaria. https://www.isprambiente.gov.it/it/pubblicazioni/periodici-tecnici/memorie-descrittive-della-carta-geologica-ditalia/scenari-neo-deterministici-di-pericolosita-sismica-per-il-friuli-venezia-giulia-e-le-aree-circostanti.

Panza G.F., Peresan A., Margin A., 2014. Neo-deterministic scenarios of seismic hazard for Friuli Venezia Giulia and the surrounding areas. Servizio Geologico D'Italia. Memorie descrittive della Carta Geologica D'Italia, 94, 1-103. ISPRA. https://www.isprambiente.gov.it/it/pubblicazioni/periodici-tecnici/memorie-descrittive-della-carta-geologica-ditalia/scenari-neo-deterministici-di-pericolosita-sismica-per-il-friuli-venezia-giulia-e-le-aree-circostanti.

Panza G.F., Peresan A., Sansò F., Crespi, M., Mazzoni A., Nascetti A., 2018. How geodesy can contribute to the understanding and prediction of earthquakes. Rendiconti Lincei. Scienze Fisiche e Naturali, 29(1), 81-93. https://doi.org/10.1007/s12210-017-0626-y.

Panza G.F., Peresan A., Vaccari F., Romashkova L., Kossobokov V., Gorshkov A., Kuznetsov I., 2003. Earthquake preparedness: the contribution of earthquake prediction and deterministic hazard research. In: A.M. Correig (Ed) Terratrèmols i Temporals de Llevant: Dos Exemples de Sistemes Complexos: Jornades Científiques de l'Institut d'Estudis Catalans, Secció de Ciències i Tecnologia (Sèrie Jornades Científiques: 15), Institut d’Estudis Catalans (IEC), Barcelona, 91-116, 2003.

Panza G.F., Pontevivo A., 2004. The Calabrian Arc: a detailed structural model of the lithosphere-asthenosphere system. Rendiconti, Accademia Nazionale delle Scienze detta dei XL, Memorie di Scienze Fisiche e Naturali, 122(28), 51-88. https://media.accademiaxl.it/memorie/S5-VXXVIII-P2-2004/Panza-Pontevivo51-88.pdf.

Panza G.F., Romanelli F., 2001. Beno Gutenberg contribution to seismic hazard assessment and recent progress in the European-Mediterranean region. Earth-Science Reviews, 55(1-2), 165-180. https://doi.org/10.1016/S0012-8252(01)00051-4.

Panza G.F., Romanelli F., Vaccari F., 2001. Seismic wave propagation in laterally heterogeneous anelastic media: Theory and applications to seismic zonation. Advances in Geophysics, 43, 1-95. Published: 2 Oct. 2000, ISBN: 9780120188437 https://doi.org/10.1016/S0065-2687(01)80002-9.

Panza G.F., Romanelli F., Vaccari F., Decanini L., Mollaioli F., 2004. Seismic ground motion modelling and damage earthquake scenarios: A possible bridge between seismologists and seismic engineers. In: Chen, Y.T., Panza, G.F. and Wu, Z.L. (Eds) Earthquake: Hazard, Risk, and Strong Ground Motion, 323-349, Seismological Press, Beijing, China. https://inis.iaea.org/collection/NCLCollectionStore/_Public/34/014/34014796.pdf?r=1&r=1.

Panza G.F., Romanelli F., Vaccari F., Decanini L., Mollaioli F., 2003. Seismic ground motion modelling and damage earthquake scenarios, a bridge between seismologists and seismic engineers. In: Proceedings of the OECD/NEA Workshop on the Relations between Seismological DATA and Seismic Engineering, 484 pages. Istanbul, 16-18 October 2002, NEA/CSNI/R, 18, 241-266. https://www.osti.gov/etdeweb/biblio/21080989.

Panza G.F., Schwab F.A., Knopoff L., 1972. Channel and crustal Rayleigh waves. Geophys. J.R. Astr. Soc., 30, 273-280. https://www.academia.edu/28781261/Channel_and_Crustal_Rayleigh_Waves.

Panza G.F., Vaccari F., Costa G., Suhadolc P., Faeh D., 1996. Seismic input modeling for Zoning and Microzoning. Earthquake Spectra, 12(3), 529-566. https://doi.org/10.1193/1.1585896.

Panzera F., D'Amico S., Burjanek J., Pischiutta M., 2017. Advance in seismic site response: Usual practices and innovative methods, 1-2. In: Panzera, F., D'Amico, S., Burjanek, J., Pischiutta, M. (Eds.) Advance in seismic site response: usual practices and innovative methods. SI Seismic site response. Physics and Chemistry of the Earth Parts A/B/C 98, pp.172. https://doi.org/10.1016/j.pce.2017.04.005 https://www.sciencedirect.com/journal/physics-and-chemistry-of-the-earth-parts-a-b-c/vol/98/suppl/C.

Parkfield EQ Prediction, 1985. “The Parkfield, California, earthquake prediction experiment”, by Bakun W.H., Lindh A.G., Science, 229(4714), 619-624. https://doi.org/10.1126/science.229.4714.619.

Parvez I.A., Magrin A., Vaccari F., Ashish Mir R.R., Peresan A., Panza G.F., 2017. Neo-deterministic seismic hazard scenarios for India - a preventive tool for disaster mitigation. J. Seismol., 21, 1559-1575. https://doi.org/10.1007/s10950-017-9682-0.

Parvez I.A., Romanelli F., Panza G.F., 2011. Long period ground motion at bedrock level in Delhi city from Himalayan earthquake scenarios. Pure Appl. Geophys, 168, 409-477. https://doi.org/10.1007/s00024-010-0162-5.

Parvez I.A., Vaccari F., Panza G.F., 2003. A deterministic seismic hazard map of India and adjacent areas. Geophysical Journal International, 155(2), 489-508. https://doi.org/10.1046/j.1365-246X.2003.02052.x.

Parvez I.A., Vaccari, F., Panza G.F., 2003. A deterministic seismic hazard map of India and adjacent areas. Geophys J. Int., 155(2), 489-508. https://doi.org/10.1046/j.1365-246X.2003.02052.x.

Paulatto M., Pinat T., Romanelli F., 2007. Tsunami hazard scenarios in the Adriatic Sea domain, Nat. Hazards Earth Syst. Sci., 7(2), 309-325. https://doi.org/10.5194/nhess-7-309-2007.

Peng Y., Wang Z., Woolery E.W., Lyu Y., Carpenter N.S., Fang Y., Huang S., 2020. Ground-motion site effect in the Beijing metropolitan area. Engineering Geology, 266, 105395-105427. https://doi.org/10.1016/j.enggeo.2019.105395.

Peresan A., Gorshkov A., Soloviev A., Panza G.F., 2015. The contribution of pattern recognition of seismic and morphostructural data to seismic hazard assessment. Bollettino di Geofisica Teorica ed Applicata, 56(2), 295-328. https://doi.org/10.4430/bgta0141. http://www3.ogs.trieste.it/bgta/pdf/bgta0141_PERESAN.pdf.

Peresan A., Kossobokov V., Romashkova L., Magrin A., Soloviev A., Panza G.F., 2016. Time-dependent neo-deterministic seismic hazard scenarios: Preliminary report on the M6.2 Central Italy earthquake, 24th August 2016. New Concepts in Global Tectonics Journal, 4(3), 487-493. https://www.aeinfo.org/attach/Acad_Main/Sections/Earth_cosmic_sciences/Activities/Personal_Reports/Panza_Guiliano_AmatriceNCGT.pdf.

Peresan A., Kossobokov V., Romashkova L., Panza G.F., 2005. Intermediate-term middle-range earthquake predictions in Italy: a review. Earth-Science Reviews, 69(1-2), 97-132. https://doi.org/10.1016/j.earscirev.2004.07.005.

Peresan A., Magrin A., Nekrasova A., Kossobokov V.G., Panza G.F., 2013. Earthquake recurrence and seismic hazard assessment: a comparative analysis over the Italian territory. Proceedings of the ERES 2013 Conference, WIT Transactions on The Built Environment, 132, 23-34. ISSN: 1743-3509 https://doi.org/10.2495/ERES130031.

Peresan A., Panza G.F., 2012. Improving Earthquake Hazard Assessments in Italy: An Alternative to Texas Sharpshooting. Eos, 18 December 2012, 93(51), 538-539.

Perron V., Gélis C., Froment B., Hollender F., Bard P.-Y., Cultrera G., Cushing E.M., 2018. Can broad-band earthquake site responses be predicted by the ambient noise spectral ratio? Insight from observations at two sedimentary basins. Geophys J Int., 215(2), 1442-1454.

Peterson D.W., 1988. “Volcanic hazards and public response.” Journal of Geophysical Research, 93, 4161-4170. https://doi.org/10.1029/JB093iB05p04161.

Poggi V., Burjanek J., Michel C., Fäh D., 2017. Seismic site-response characterization of high-velocity sites using advanced geophysical techniques: application to the NAGRA-Net. Geophysical Journal International, 210, 645-659. https://doi.org/10.1093/gji/ggx192.

Pokharel T., Goldsworthy H.M., 2015. Lessons Learned from the Nepal Earthquake 2015. Proceedings of the Tenth Pacific Conference on Earthquake Engineering - Building an Earthquake-Resilient Pacific, 6-8, November 2015, Sydney, Australia. https://doi.org/10.13140/RG.2.1.1657.3528.

Pontevivo A., Panza G.F., 2006. The Lithosphere-Asthenosphere System in the Calabrian Arc and Surrounding Seas-Southern Italy. Pure Appl. Geophys., 163, 1617-1659. https://doi.org/10.1007/s00024-006-0093-3.

Rastgoo M., Rahimi H., Romanelli F., Vaccari F., Panza G.F., 2018. Neo-deterministic seismic hazard assessment for Alborz Region, Iran. Engineering Geology, 242, 70-80. https://doi.org/10.1016/j.enggeo.2018.05.025.

Reid H.F., 1910. The Mechanics of the Earthquake. In: The California Earthquake of April 18, 1906. Report of the State Investigation Commission, Carnegie Institution of Washington, Washington, D.C., 2, 16-28.

Reid H.F., 1911. The elastic-rebound theory of earthquakes. University of California Publications, Bulletin of the Department of Geological Sciences, 6, 413-444.

Rhoades D.A., Christophersen A., Hainzl S., 2020. Statistical Seismology. In: Gupta H. (Ed) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. First online: 10 October 2019. https://doi.org/10.1007/978-3-030-10475-7_208-1.

Richter F., 1935. An instrumental earthquake magnitude scale. Bull. Seism. Soc. Am., 25(1), 1-32. ISSN 0037-1106. https://pubs.geoscienceworld.org/bssa/issue/25/1.

Romanelli F., Cao D. Trieu, Dinh V.T., Thai A.T., Panza G.F., 2013. Multi-scenario based assessment of seismic hazard: a must for the effective definition of the seismic input. In: Proceedings of the International conference on Sustainable Built Environment for Now and the Future, March 26-27, Hanoi, Vietnam, 613-620. https://www.researchgate.net/publication/342380810_Romanelli_F_Cao_DTrieu_Dinh_VT_Thai_AT_and_Panza_GF_2013_Multi-scenario_based_assessment_of_seismic_hazard_a_must_for_the_effective_definition_of_the_seismic_input_Proc_The_international_conference_on.

Romanelli F., Peresan A., Vaccari F., Panza G.F., 2012. Multi Scenario based Seismic Hazard assessment. In: Proceedings of the International scientific conference, Geophysics - cooperation and sustainable development, 180-189, Hanoi & Sapa Nov. 14-17.

Romanelli F., Vaccari F., 1999. Site response estimation and ground motion spectrum scenario in the Catania area. Journal of Seismology, 3(3), 311-326. https://doi.org/10.1023/A:1009847213825.

Romanowicz B., 2020. Surface Waves. In: Gupta H. (Ed) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. First online: 11 August 2020. https://doi.org/10.1007/978-3-030-10475-7_143-1.

Rovida A. et al., 2020. The Italian earthquake catalogue. CPTI15. Bull Earthquake Eng., 18, 2953-2984.

Rugarli P., 2014. Validazione Strutturale. Diagonali, EPC editore, Roma, pp.653. https://www.epc.it/Prodotto/Editoria/Libri/Validazione-strutturale/2120.

Rugarli P., 2016. The Role of the Standards in the Invention of the Truth. Atti dei Convegni Lincei, 306, 59-76, Bardi Editore, Roma. https://www.lincei.it/it/pubblicazioni. https://www.castaliaweb.com/ita/pubblicazioni/The_Role_Of_The_Standards_In_The_Invention_Of_The_truth.pdf.

Rugarli P., 2018. Norme tecniche per le Costruzioni 2018, EPC Editore, Roma. ISBN: 978-88-6310-846-0. https://www.epc.it/Prodotto/Editoria/Libri/Norme-tecniche-per-le-Costruzioni-2018/885.

Rugarli P., Amadio C., Peresan A., Fasan M., Vaccari F., Magrin A., Romanelli F., Panza G.F., 2019a. Neo-Deterministic Scenario-Earthquake Accelerograms and Spectra: a NDSHA approach to seismic analysis. Chpt. 6. In: J. Jia and J.K. Paik (Eds) Engineering Dynamics and Vibrations: Recent Developments, 187-241, pp.400. CRC Press Boca Raton, Florida, USA. ISBN 978-1-4987-1926-1 https://doi.org/10.1201/9781315119908-6. https://doi.org/10.1201/9781315119908.

Rugarli P., Vaccari F., Panza G.F., 2019b. Seismogenic nodes as a viable alternative to seismogenic zones and observed seismicity for the definition of seismic hazard at regional scale. Vietnam Journal

of Earth Sciences, 41(4), 289-304. http://dx.doi.org/10.15625/0866-7187/41/4/14233.

Rundle J., Turcotte D.L., Klein W., 2000. Geocomplexity and the Physics of Earthquakes. American Geophysical Union, Geophys. Mon. Series, 120, 284pp. https://doi.org/10.1029/GM120. https://agupubs.onlinelibrary.wiley.com/doi/book/10.1029/GM120.

Sandron D., Suhadolc P., Costa G., 2008. Source complexity effects on ground shaking scenarios. Bollettino di Geofisica Teorica ed Applicata, 49(2), 227-237. https://www.researchgate.net/publication/299052161_Source_complexity_effects_on_ground_shaking_scenarios.

Sarwar F., Iqbal S., Vaccari F., Magrin A., Rukh L., 2018. Preliminary Neo-Deterministic Seismic Hazard Assessment in Pakistan and Adjoining Regions. Indian Journal of Natural Sciences, 9(51), 15787-15800. https://arts.units.it/retrieve/handle/11368/2948808/281756/Farhana_18_IJONS.pdf. https://www.researchgate.net/publication/329718137_Preliminary_Neo-Deterministic_Seismic_Hazard_Assessment_in_Pakistan_and_Adjoining_Regions.

Saxe J.S., 1873. "The Blind Men and the Elephant", a re-telling of an Indian parable that deals with perception and the subjective nature of truth: featuring six blind men who wish to observe an elephant. https://www.commonlit.org/en/texts/the-blind-men-and-the-elephant?search_id=3423435.

Scalera G., Boschi E., Favali P., Frugoni F., Smriglio G., 1995. Map of Maximum Felt Intensity in Italy/Mappa della Massima Intensità Macrosismica Risentita in Italia. https://doi.org/10.13140/2.1.4826.4003.

SCEC Phase III Report, 2000. Accounting for Site Effects in Probabilistic Seismic Hazard Analyses of Southern California: Overview of the SCEC Phase III Report. Edward H. Field; the SCEC Phase III Working Group. Bull. Seimsol. Soc. Am., 90(6B), S1-S31. https://doi.org/10.1785/0120000512.

Schneider J.F., Oro J., Smolka A., Suhadolc P., Wu Z., 2020. Seismology, Global Earthquake Model. In: Gupta H. (Ed) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. First online: 10 July 2020. https://doi.org/10.1007/978-3-030-10475-7_164-1.

Schwartz D.P., Coppersmith K.J., 1984. Fault behavior and characteristic earthquakes: Examples from the Wasatch and San Andreas fault zones. Journal of Geophysical Research, 89, 5681-5698. JGR Solid Earth 89 (B7) 5681-5698. https://doi.org/10.1029/JB089iB07p05681.

Schwartz D.P., Coppersmith K.J., 1984. Introduction to the Special Section on Fault Behavior and the Earthquake Generation Process. JGR Solid Earth, 89(B7), 5669-6354. AGU Chapman Conference on Fault Behavior and the Earthquake Generation Process October 11-15, 1982 Snowbird, Utah. American Geophysical Union, Wash. D.C., pp.258. Online 20 Sept. 2012 ISSN: 0148-0227. https://doi.org/10.1029/JB089iB07p05669.

Siegel E., 2016. Science Is Not A Democracy And Can Never Be One. Science Is Not A Democracy, And Can Never Be One (forbes.com) https://www.forbes.com/sites/startswithabang/2016/05/06/science-is-not-a-democracy-and-can-never-be-one/?sh=26a00669798b.

Šílený J., Panza G.F., 1991. Inversion of seismograms to determine simultaneously the moment tensor components and source time function for a point source buried in a horizontally layered medium. Studia Geophysica et Geodaetica, 35, 166-183.

Šílený J., Panza G.F., Campus P., 1992. Waveform inversion for point source moment tensor retrieval with variable hypocentral depth and structural model. Geophys. J. Int., 109(2), 259-274. https://doi.org/10.1111/j.1365-246X.1992.tb00097.x.

Soloviev A.A. Ed, 2018. Prediction of extreme events in nature and society - Keilis-borok, Author. Oris Books-Dragonwell Publishing, pp.503. ISBN: 978-1-940076-44-7. http://publishing.dragonwell.org/ https://www.springer.com/us/book/9783540435280.

Soloviev A.A., Gvishiani A.D., Gorshkov A.I., Dobrovolsky M.N., Novikova O.V., 2014. Recognition of Earthquake-Prone Areas: Methodology and Analysis of the Results. Izvestiya, Physics of the Solid Earth, 50, 151-168. https://doi.org/10.1134/S1069351314020116.

Soloviev A.A., Novikova O.V., Gorshkov A.I., Piotrovskaya E.P., 2013. Recognition of potential sources of strong earthquakes in the Caucasus Region using GIS technologies. Doklady Earth Sci., 450, 658-660. https://doi.org/10.1134/S1028334X13060159.

Somerville P., 2000. Seismic Hazard Evaluation. in Proc. 12th World Conference on Earthquake Engineering, WCEE2000, Jan. 30-Feb. 4, 2000, Auckland, NewZealand Zealand; Paper 2833, pp.8. http://www.iitk.ac.in/nicee/wcee/article/2833.pdf.

Srivastava R.P., Vedanti N., Dimri V.P., 2020. Fractals and Chaos. In: Gupta H.K. (Ed) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. First online: 09 September 2020. https://doi.org/10.1007/978-3-030-10475-7_34-1.

Stark P.B., 2017. “Pay No Attention to the Model Behind the Curtain”, To Appear in Significant Digits: Responsible use of quantitative Information, Saltelli A., and Guimarães Pereira, Â. (Eds), Version 13, Dec. 2017, Megaloceros Press, University of Bergen, Bergen, Germany (in press), pp.21. https://www.stat.berkeley.edu/~stark/Preprints/eucCurtain15.pdf.

Stark P.B., Freedman D.A., 2001, rev. 2016. What is the chance of an earthquake, UC Berkeley Dept. Statistics Tech Rpt., 611, pp.13.

Steckler M.S., Mondal D.R., Akhter S.H., Seeber L., Feng L., Gale J., Hill E.M., Howe M., 2016. Locked and loading megathrust linked to active subduction beneath the Indo-Burman Ranges, Nature Geoscience, 9, 615-618. https://doi.org/10.1038/ngeo2760.

Stein R.S., Sevilgen V., 2019. Albania earthquake strikes highest-hazard zone in the Balkans, devastating nearby towns, Temblor. 26 Nov. 2019. http://doi.org/10.32858/temblor.057.

Sun R., Vaccari F., Marrara F., Panza G.F., 1998. The main features of the local geological conditions can explain the macroseismic intensity caused in Xiji-Langfu (Beijing) by the Ms=7.7 Tangshan 1976 earthquake. Pure Appl. Geophys., 152, 507-521. https://doi.org/10.1007/s000240050164.

Taleb N.N., 2007. The Black Swan: The Impact of the Highly Improbable. Random House Publishing Group, Inc., pp.400. ISBN: 0812979184 9781400063512: The Black Swan: The Impact of the Highly Improbable (Incerto) - AbeBooks - Taleb, Nassim Nicholas: 1400063515.

Tall D., Vinner S., 1981. “Concept Image and Concept Definition in Mathematics with particular reference to Limits and Continuity”, Educational Studies in Mathematics, 12(2), 151-169.

Thenhaus P.C., Campbell K.W., 2003. Seismic hazard analysis. In: Chen, W.F. and Scawthorn, C. (eds.) Earthquake Engineering Handbook. Boca Raton: CRC Press, Chpt., 8, pp.50. https://www.taylorfrancis.com/books/9780429115011/chapters/10.1201%2F9781420042443-12.

Thurber C.H., 2020. Earthquakes, Location Techniques. In: Gupta H.K. (Ed) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. First online: 08 September 2020. https://doi.org/10.1007/978-3-030-10475-7_25-2.

Tiberti M.M., Lorito S., Basili R., Kastelic V., Piatanesi A., Valensise G., 2009. Scenarios of Earthquake-Generated Tsunamis for the Italian Coast of the Adriatic Sea. Pure Appl. Geophys., 165, 2117-2142. https://doi.org/10.1007/s00024-008-0417-6.

Toda S., 2020. Paleoseismology. In: Gupta H. (Ed) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. First online: 29 December 2019. https://doi.org/10.1007/978-3-030-10475-7_9-1.

Tramelli A., Convertito V., Pino N.A., Piochi M., Troise C., De Natale G., 2014. The 2012 Emilia, Italy, Quasi-Consecutive Triggered Mainshocks: Implications for Seismic Hazard. Seismol. Res. Lett., 85(5), 970-976.

Tuyen N.H., Gorshkov A.I., Thi Lu Ngo, 2012. Recognition of Earthquake-Prone Areas (M ≥ 5.0) applied for North Vietnam and adjacency. J. Sci. Earth, 34(3), 251-265. https://www.researchgate.net/publication/236025216_Recognition_of_earthquake-prone_areas_M_50_applied_for_North_Vietnam_and_adjacency.

Tuyen N.H., Phach Ph.V., Shakirov R.B., Trong C.D., Hung Ph.N., Anh L.D., 2018. Geoblocks Recognition and Delineation of the Earthquake Prone Areas in the Tuan Giao Area (Northwest Vietnam). Geotectonics, 52, 359-381. https://doi.org/10.1134/S001685211803007X.

Tversky A., Kahneman D., 1974. Judgement under uncertainty: heuristics and biases, Science, 185(4157), 1124-1131.

USBR, 2019. Seismic Hazard Analysis. Chpt. B-2 in U.S. Bureau of Reclamation, Risk Management: Best Practices and Risk Methodology: Best Practices in Dam and Levee Safety Risk Analysis Training Course, pp.36. Re: Maximum Credible Earthquake MCE. https://www.usbr.gov/ssle/damsafety/risk/BestPractices/Chapters/B2-SeismicHazardAnalysis.pdf. https://www.usbr.gov/ssle/damsafety/risk/methodology.html.

USGS PSHA - Project 17, 2015a. Project 17 - Developing Next-Generation Seismic Design Value Maps: A Preliminary Planning Report. Prepared for the Federal Emergency Management Agency and U.S. Geological Survey by the Project 17 Planning Committee and R.O. Hamburger, of National Institute Building Sciences Building Seismic Safety Council BSSC, Sept. 28, 2015, pp.131.

USGS PSHA - UCERF3, 2015a. “UCERF3: A New Earthquake Forecast for California’s Complex Fault System”. USGS Fact Sheet 2015-3009, March 2015, pp.6. https://pubs.usgs.gov/fs/2015/3009/pdf/fs2015-3009.pdf. http://dx.doi.org/10.3133/fs20153009.

USGS PSHA - UCERF3, 2015b. “Long-Term Time-Dependent Probabilities for the Third Uniform California Earthquake Rupture Forecast (UCERF3)”. Bulletin of the Seismological Society of America, March 10, 2015, 105(2A), 511-543. - by Working Group on California Earthquake Probabilities: Field E.H., Biasi G.P., Bird P., Dawson T.E., Felzer K.R. Jackson D.D., Johnson K.M., Jordan T.H., Madden C., Michael A.J., Milner K.R., Page M.T., Parsons T., Powers P.M., Shaw B.E., Thatcher W.R., Weldon R.J. II, Zeng Y. https://doi.org/10.1785/0120140093. http://www.wgcep.org/

https://pubs.geoscienceworld.org/ssa/bssa/article-abstract/105/2A/511/331850/long-term-time-dependent-probabilities-for-the?redirectedFrom=fulltext.

USGS PSHA, 2015b. Special Issue on the 2014 USGS National Seismic Hazard Maps. Spectra SI (2015), Earthquake Spectra, 31(S1), 271. http://earthquakespectra.org/toc/eqsa/31/S1.

Vademecum Sveb, 2015. Vademecum for the seismic verification of existing buildings. Panza G., Romanelli F., Vaccari F., Giorgio Altin G. (Eds), Provincia di Trieste, pp.15.

Vittori E., Deiana G., Esposito E., Ferreli L., Marchegiani L., Mastrolorenzo G., Michetti A.M., Porfido S., Serva L., Simonelli A.L., Tondi E., 2000. Ground effects and surface faulting in the September-October 1997 Umbria-Marche (Central Italy) seismic sequence. Journal of Geodynamics, 29(3-5), 535-564. ISSN: 0264-3707. https://doi.org/10.1016/S0264-3707(99)00056-3.

Wald D.J., Quitoriano V., Heaton T., Kanamori H., 1999a. Relationships between Peak Ground Acceleration, Peak Ground Velocity and Modified Mercalli Intensity in California. Earthquake Spectra, 15(3), 557-564.

Wald D.J., Quitoriano V., Heaton T., Kanamori H., Scrivner C.W., Worden C.B., 1999b. TriNet ‘ShakeMaps'’: Rapid Generation of Instrumental Ground Motion and Intensity Maps for Earthquakes in Southern California. Earthquake Spectra, 15(3), 537-556.

Wald D.J., Worden C.B., Thompson E.M., Hearne M., 2019. Earthquakes, ShakeMap. In: Gupta H. (Ed) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. First online: 12 December 2019. https://doi.org/10.1007/978-3-030-10475-7_182-1.

Wang G., Liang S., Panza G.F., 2010. Earthquake Inputs for Structural Aseismic Design in Cities. In: G. Song and R.B. Malla (Eds) Earth and Space 2010: Engineering, Science, and Construction in Challenging Environments, Proc. 12th Biennial Internat. Conf. on Engineering, Construction, and Operations in Challenging Environments,

Honolulu, Hawaii, March 14-17, 2727-2735. https://doi.org/10.1061/41096(366)257.

Wang G., Shi J., 2010. Earthquake Spatial Coherence Analysis from Simulated Accelerograms. In: G. Song and R.B. Malla (Eds) Earth and Space 2010: Engineering, Science, and Construction in Challenging Environments, Proc. 12th Biennial Internat. Conf. on Engineering, Construction, and Operations in Challenging Environments, Honolulu, Hawaii, March 14-17, 2010. ©2010 ASCE, 2736-2745. https://doi.org/10.1061/41096(366)258.

Wang K., Rogers G., 2014. Earthquake Preparedness Should Not Fluctuate on a Daily or Weekly Basis, EDITORIAL | May 01, 2014. Seismol. Res. Lett., 85(3), 569-571. https://doi.org/10.1785/0220130195.

Wang Z., 2012. “Comment on ‘PSHA Validated by Quasi Observational Means’ by R.M.W. Musson”. Seismol. Res. Lett., 83(4), 714-716. https://doi.org/10.1785/0220120016.

Wang Z., 2015. Predicting or Forecasting Earthquakes and the Resulting Ground-Motion Hazards: A Dilemma for Earth Scientists. Seismol. Res. Lett., 86(1), 1-5. https://doi.org/10.1785/0220140211.

Wang Z., Cobb J.C., 2013. A critique of probabilistic versus deterministic seismic hazard analysis with special reference to the New Madrid seismic zone, In: R.T. Cox, M.P. Tuttle, O.S. Boyd and J. Locat, J. (Eds). Geol. Soc. Amer. GSA Special Paper 493: Recent Advances in North American Paleoseismology and Neotectonics East of the Rockies, 259-275.

Wang Z., Ormsbee L., 2005. Comparison between probabilistic seismic hazard analysis and flood frequency analysis. Eos, Transactions American Geophysical Union, 86(5), 45, 51-52. https://doi.org/10.1029/2005EO050001.

Ward S.N., 2020. Tsunami. In: Gupta H. (Ed) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. First online: 15 February 2020. https://doi.org/10.1007/978-3-030-10475-7_22-1.

Wells D.L., Coppersmith K.J., 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seismol. Soc. Am., 84(4), 974-1002. https://pubs.geoscienceworld.org/ssa/bssa/article/84/4/974/119792/New-empirical-relationships-among-magnitude.

Wesnousky S.G., 1994. The Gutenberg-Richter or characteristic earthquake distribution, which is it? Bull. Seismol. Soc. Am., 84(6), 1940-1959. https://pubs.geoscienceworld.org/ssa/bssa/article-abstract/84/6/1940/119861/The-Gutenberg-Richter-or-characteristic-earthquake.

Wood H.O, Neumann F., 1931. Modified Mercalli intensity scale of 1931, Bull. Seismol. Soc. Am., 21(4), 277-283. https://pubs.geoscienceworld.org/ssa/bssa/article/21/4/277/115039/Modified-Mercalli-intensity-scale-of-1931.

Wyss M., 2015. Testing the Basic Assumption for Probabilistic Seismic-Hazard Assessment: 11 Failures. Seismol. Res. Lett., 86(5), 1405-1411. https://doi.org/10.1785/0220150014.

Wyss M., Nekrasova A., Kossobokov V., 2012. Errors in expected human losses due to incorrect seismic hazard estimates. Natural Hazards, 62, 927-935. https://doi.org/10.1007/s11069-012-0125-5.

Yamazaki F., Maruyama Y., 2020. Seismic Microzonation. In: Gupta H. (Ed) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. First online: 19 February 2020. https://doi.org/10.1007/978-3-030-10475-7_187-1.

Yamazaki F., Maruyama Y., 2020. Seismic Microzonation. In: Gupta H. (Ed) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. First online: 19 February 2020. https://doi.org/10.1007/978-3-030-10475-7_187-1.

Yu Y., Gao M., Xu G., 2020. Seismic Zonation. In: Gupta H. (Ed) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. First online: 01 January 2020. https://doi.org/10.1007/978-3-030-10475-7_184-1.

Zhang H., Shi Z., Wang G., Sun X., Yan R., Liu C., 2019. Large Earthquake Reshapes the Groundwater Flow System: Insight From the Water‐Level Response to Earth Tides and Atmospheric Pressure in a Deep Well. Water Resources Research, 55(5), 4207-4219. https://doi.org/10.1029/2018WR024608.

Zhang L., Carpenter N.S, Wang Z., Lyu Y., Li S., 2018. Scenario based seismic hazard analysis for the Xianshuihe fault zone, Southwest China. Pure Appl. Geophys., 175, 707-720. https://doi.org/10.1007/s00024-017-1686-8.

Zhang X., Teng J., Sun R., Romanelli F., Zhang Z., Panza G.F., 2014b. Structural model of the lithosphere-asthenosphere system beneath the Qinghai-Tibet Plateau and its adjacent areas. Tectonophysics, 634, 208-226. https://doi.org/10.1016/j.tecto.2014.08.017.

Zhang Z., Deng Y., Chen L., Wu J., Teng J. and Panza G., 2013a. Seismic structure and rheology of the crust under mainland China. Gondwana Research, 23(4), 1455-1483.

Zhang Z., Teng J., Romanelli F., Braitenberg C., Ding Z., Zhang X., Fang L., Zhang S., Wu J., Deng Y., Ma T., Sun R., Panza G.F., 2014a. Geophysical constraints on the link between cratonization and orogeny: Evidence from the Tibetan Plateau and the North China Craton. Earth-Science Reviews, 130, 1-48. https://doi.org/10.1016/j.earscirev.2013.12.005.

Zhang Z., Wang Y., Deng Y., Chen L., Wu J., Teng J., Chen Y., Fan W., Panza G.F., 2013b. Geophysical constraints on mesozoic disruption of North China Craton by underplating-triggered lower-crust flow of the Archaean lithosphere. Terra Nova, 25(3), 245-251. https://doi.org/10.1111/ter.12032. https://www.researchgate.net/publication/259575555_Geophysical_constraints_on_mesozoic_disruption_of_North_China_Craton_by_underplating-triggered_lower-crust_flow_of_the_Archaean_lithosphere.

Zhang Z., Wu J., Deng Y., Teng J., Zhang X., Chen Y., Panza G.F., 2012. Lateral variation of the strength of lithosphere across the eastern North China Craton: New constraints on lithospheric disruption. Gondwana Research, 22(3-4), 1047-1059. https://doi.org/10.1016/j.gr.2012.03.006.




DOI: https://doi.org/10.15625/0866-7187/15925 Display counter: Abstract : 135 views. PDF : 18 views.

Refbacks

  • There are currently no refbacks.


Vietnam Journal of Earth Sciences, ISSN: 0866-7187; 2615-9783

Contact address:

tcckhvtd@vjs.ac.vn; vjesmail@gmail.com; phantrongt@yahoo.com

Index: Web of Science (ESCI); Scopus (accepted), GeoRef (American Geosciences Institute); NPI (Norway)Google ScholarScilit (Switzerland)Copernicus InternationalAsean Citation IndexCiteFactor

© Vietnam Academy of Science and Technology (VAST)