Improvement of the accuracy of the quasigeoid model VIGAC2017

Ha Minh Hoa
Vietnam Institute of Geodesy and Cartography (VIGAC)

Received 14 June 2017; Received in revised form 25 October 2017; Accepted 10 November 2017

Abstract

A national spatial reference system will be constructed based on a highly accurate national quasigeoid model with accuracy more than 4 cm . In Vietnam at the present stage there isn't a detailed gravimetric measurement in mountainous regions and marine area. So with the purpose of improvement of accuracy of the national quasigeoid model VIGAC2017, we only can solve the task of fitting this model to national quasigeoid heights obtained from heights GPS/first, second orders levelling quasigeoid heights through least squares collocation.

This scientific article will introduce a first research result for improvement of accuracy of the quasigeoid model VIGAC2017 on the base of it's fitting to 194 national quasigeoid heights by the least squares collocation. Research results show that accuracy of the quasigeoid model VIGAC2017 will be obtained at level of $\pm 0,058 \mathrm{~m}$ and increased to 20,69 \%.

Keywords: National spatial reference system; national quasigeoid height; least squares collocation; covariance matrix; semivariogram; semivariance function.
©2018 Vietnam Academy of Science and Technology

1. Introduction

A wide application of GNSS technology with GNSS data processing in ITRF and a combined usage of detailed gravimetric data and more accurate with every passing day Earth Gravity Model (EGM) for the construction of a highly accurate national quasigeoid model naturely lead to a bulding of a national spatial reference system. Ha Minh Hoa, 2017 had found that the most impotant base for the bulding of the national spatial reference system is the national quasigeoid model with ac-

[^0]curacy more than $\pm 4 \mathrm{~cm}$, which is the guarantee that the national geodetic height of every point on the national territory is equal to the sum of the it's national normal height and national quasigeoid height.

At present, many countries had constructed the highly accurate national quasigeoid/geoid models, for example, OSGM2002 (United Kingdom) with accuracy at level $\pm 3,2 \mathrm{~cm}$ (Iliffe J.C., Ziebart M,, Cross P.A., Forsberg R., Strykowski G., Tscherning C.C., 2003), USGG2009 (United States) with accuracy at level \pm (3-4) cm (Roman D. R., Y.M. Wang, J. Saleh, X. Li, 2010), CGG2013 (Canada) with accuracy more $\pm 3 \mathrm{~cm}$ on the 80%
continent part (Huang J., Véronneau M., 2013), GCG16 (Germany) with accuracy more $\pm 1 \mathrm{~cm}$ (Alps max 2 cm , marine area 2-6 cm) (Quasigeoid of the Federal Republic of Germany GCG2016).

The fit of gravimetric geoid/quasigeoid model to GPS/levelling geoid/quasigeoid heights through the least squares collocation had been accomplished in many countries. For example, the geoid model OSGM2002 had been fitted to the 179 GPS/levelling geoid heights cm (Iliffe J.C., Ziebart M., Cross P.A., Forsberg R., Strykowski G., Tscherning C.C., 2003). In (Metin Soycan, 2014) had been presented results of fitting EGM2008 derived geoid heights to the $87 \mathrm{GPS} /$ leveling geoid heights in Turkey.
(Ha Minh Hoa, 2017) has presented results of construction of the initial national spatial referense system on base of orientation of the WGS84 ellipsoid to best fit it to the Hon Dau local quasigeoid at tide gauge Hon Dau with using the most stable 164 co located GPS observations first and second orders bench marks. When the national quasigeoid heights ζ have been calculated from the GPS/first and second orders levelling quasigeoid heights $\zeta_{G P S} /$ leveling by formula:

$$
\zeta=\zeta_{G P S / \text { leveling }}+A \cdot\left(\begin{array}{l}
d X_{0} \tag{1}\\
d Y_{0} \\
d Z_{0}
\end{array}\right)
$$

while national quasigeoid heights ζ^{*} from the inital national quasigeoid model VIGAC2017 have been determined by following formula:

$$
\zeta^{*}=\overline{\bar{\zeta}}^{*}+A \cdot\left(\begin{array}{l}
d X_{0} \tag{2}\\
d Y_{0} \\
d Z_{0}
\end{array}\right)
$$

where the GPS/first and second orders levelling quasigeoid height $\zeta_{G P S / l e v e l i n g}$ has been calculated by formula:

$$
\zeta_{G P S ~ / l e v e l i n g}=\bar{H}_{z}-H_{z}^{\gamma}
$$

\bar{H}_{z} - geodetic height of the first (or second) order bench mark obtained from the GPS data processing in ITRF and converted to the zero - tide system; H_{Z}^{γ} - first (or second) order national normal height converted to the zero - tide system; $\bar{\zeta}^{*}$ - mixed quasigeoid height of point got from the mixed quasigeoid model VIGAC2014 and converted to the zero - tide system; matrix

$$
A=(\cos \bar{B} \cdot \cos \bar{L} \quad \cos \bar{B} \cdot \sin \bar{L} \quad \sin \bar{B})
$$

\bar{B}, \bar{L} - geodetic latitude and longitude of point according to the WGS84 ellipsoid; coordinate transformation parameters from ITRF to the VN2000-3D:

In (Ha Minh Hoa, 2017) with purpose of comparision of an accuracy of series of the national quasigeoid heights ζ (1) with an accuracy of according series of the quasigeoid heights ζ^{*} (2) on the 164 GPS/first order levelling points, the both those series of the quasigeoid heights had been considered to be the equal accuracy at level of $\pm 0,062 \mathrm{~m}$. However, in practice the both above mentioned series of the quasigeoid heights don't have the same accuracy. In (Ha Minh

Hoa, 2017) RMS of the differencies $Z=\zeta-\zeta^{*}$ is equal to:
$m_{Z}= \pm \sqrt{m_{\zeta}^{2}+m_{\zeta^{*}}^{2}}= \pm \sqrt{\frac{\sum_{i=1}^{164} Z_{i}^{2}}{164}}= \pm \sqrt{\frac{1,265}{164}}= \pm 0,088 \mathrm{~m}$.
Meanwhile in (Ha Minh Hoa et al., 2016) based on co - located GPS observations first order bench marks and global quassigeoid heights from the EGM2008 model on those bench marks. RMS of series of the quasigeoid
heights ζ^{*} had been established at level of $m_{\zeta^{*}}= \pm 0,070 \mathrm{~m}$. When contribution portion of $\mathrm{RMS} m_{\zeta}$ of series of the 164 national quasigeoid heights ζ to the RMS value $m_{Z}= \pm 0,088 \mathrm{~m}$ is equal to $\pm 0,053 \mathrm{~m}$.

As such for following usage in this article, we accept that the RMS of the national quasigeoid height ζ calculated by formula (1) from the corresponding GPS/first (or second) order levelling quasigeoid height $\zeta_{G P S / l e v e l i n g}$ on the stable first (or second)
order bench mark is equal to $\pm 0,053 \mathrm{~m}$, while the RMS of the national quasigeoid height ζ^{*} from the quasigeoid model VIGAC2017 calculated by formula (2) is equal to:

$$
\begin{equation*}
m_{\zeta^{*}}= \pm 0,070 \mathrm{~m} \tag{3}
\end{equation*}
$$

With the purpose of improvement of accuracy of the quasigeoid model VIGAC2017 this scientific article will introduce results of fitting this model to the 194 GPS/first, second orders levelling quasigeoid heights by the least squares collocation.

2. Data

Apart from the 164 GPS/first, second orders leveling quasigeoid heights ζ for solving abovementioned task had been added 30 GPS/first order levelling quasigeoid heights in the zero - tide system on the stable first order bench marks obtained by Vietnam Institute of Geodesy and Cartography (VIGAC) in period 2012 - 2013 (Ha Minh Hoa, et al., 2012; Ha Minh Hoa, Nguyen Ba Thuy, Phan Trong Trinh, et al, 2016), Stability of the first order benchmarks had been controled by Smirnov's criteria (Smirnov N.V., Belugin D.A., 1969), The
abovementioned 30 GPS/first order levelling quasigeoid heights had been converted to the national WGS84 reference ellipsoid by formula (1). On the 30 first order bench marks had been determined quasigeoid heights ζ^{*} according to the quasigeoid model VIGAC2017 by formula (2). The total 194 first and second orders bench marks have been distributed relatively regularly on whole territory of Vietnam.

3. Applied methods

We symbolize Q as a set of n GPS/first and second orders leveling bench marks (in our case $\mathrm{n}=194$), P as a set of points whose quasigeoid heights will be determined by the least squares collocation. In the set Q had been calculated the differencies $Z_{i}=\zeta_{i}-\zeta_{i}^{*}, \quad i=1,2, . ., 194$, where for point i the national quasigeoid height ζ_{i} had been determined by formula (1), while the quasigeoid height ζ_{i}^{*} from the quasigeoid model VIGAC2017 had been determined by formula (2). In addition the accuracy of the national quasigeoid height ζ_{i} is considered equal to $\pm 0,053 \mathrm{~m}$. On base of the least squares collocation, at a point $p \in P$, a national quasigeoid height $\tilde{\zeta}_{p}^{*}$ will be determined by formula:

$$
\begin{equation*}
\tilde{\zeta}_{p}^{*}=\zeta_{p}^{*}+\delta \zeta_{p}^{*} \tag{4}
\end{equation*}
$$

where quasigeoid height ζ_{p}^{*} from the quasigeoid model VIGAC2017 is calculated by formula (2), correction $\delta \zeta_{p}^{*}$ is determined by formula (Moritz, H,, 1980):

$$
\begin{equation*}
\delta \zeta_{p}^{*}=C_{p Q} \cdot K_{Z}^{-1} \cdot Z \tag{5}
\end{equation*}
$$

$C_{P Q}=\left(C_{p 1} C_{p 2} C_{p n}\right)$ is the cross covariance matrix between the differences
$Z_{i}=\zeta_{i}-\zeta_{i}^{*}(i=1,2, . ., 194)$, in the set Q and the estimated quasigeoid height at the point $p \in P, \mathrm{Z}$ is column - vector containing the differences $Z_{i}=\zeta_{i}-\zeta_{i}^{*}(i=1,2, . ., 194)$, covariance matrix has form:

$$
\begin{equation*}
K_{Z}=C_{Z}+C_{Z Z}, \tag{6}
\end{equation*}
$$

C_{Z} is the auto - covariance matrix of vector $\mathrm{Z}, C_{Z Z}$ is the covariance matrix, which reflects the spatial dependencies of the all differences $Z_{i}=\zeta_{i}-\zeta_{i}^{*}(i=1,2, . ., 194)$ in the set Q.

For the 194 differences $Z_{i}=\zeta_{i}-\zeta_{i}^{*} \quad(i=1,2, . ., 194)$, their RMS is equal to:

$$
\begin{equation*}
m_{Z}= \pm \sqrt{\frac{1,580915}{194}}= \pm \sqrt{0,008149}=0,090 \mathrm{~m} . \tag{7}
\end{equation*}
$$

When the auto - covariance matrix C_{Z} has the form:

$$
\begin{equation*}
C_{Z}=m_{Z}^{2} \cdot E_{n \times n}=0,008149 \cdot E_{n \times n}\left\langle m^{2}\right\rangle \tag{8}
\end{equation*}
$$

where $E_{n x n}$ - unit matrix of order 194.
The covariance matrix $C_{Z Z}$, which reflects the spatial dependencies of the all differences $Z_{i}=\zeta_{i}-\zeta_{i}^{*}(i=1,2, . ., 194)$ in the set Q , will be determined based on a covariance function

$$
\begin{equation*}
C(d)=m_{Z}^{2}-\gamma(d) \tag{9}
\end{equation*}
$$

where $\gamma(d)$ is a semivariance; d is a distance between any two points in the set Q .

As such in our case the spatial dependence of quassigeoid heights in the set Q will be studied using semivariogram, The experimental semivariance $\quad \gamma(h)$ at lag distance h is calculated by formula (Cressie N.A.C., 1993; Schabenger O., Gotway C.A., 2005; Marcin Ligas, Marek Kulczycki, 2014):

$$
\gamma(h)=\frac{1}{2 n_{h}} \cdot \sum_{i=1}^{n_{h}}\left(Z\left(x_{i}\right)-Z\left(x_{i}+h\right)\right)^{2},
$$

where $Z\left(x_{i}\right)$ is the difference $Z=\zeta-\zeta^{*}$ of the point at position $x_{i}, Z\left(x_{i}+h\right)$ is the difference $Z=\zeta-\zeta^{*}$ of the point at position $x_{i}+h$ separated from position x_{i} by a distance not more than lag distance $h ; n_{h}$ is the number of pairs $Z\left(x_{i}\right)$.

By such way in the set Q we must create groups of points, in addition in every group the distances between points not more than lag distance h. Based on an experimatal semivariogram we will determine form of theoretical semivariance, which in general case has following form:

$$
\begin{equation*}
\gamma(d)=C_{0}+C_{1} \cdot f\left(\frac{d}{a}\right), \tag{10}
\end{equation*}
$$

where C_{0} is the nugget effect; C_{1} is the structural variance; a is the range of spatial dependence; function $f\left(\frac{d}{a}\right)$ will be selected in relation to distribution of the semivariogram corresponding to standaed models of semivariance functions (Gaussian, spherical, exponential, linear models).

Value $C_{0}+C_{1}$ is the sill and determined from the semivariogram.

4. Results

From the 194 most stable co - located GPS observations first and second orders bench marks covering the whole territory of Vietnam had been constructed the set Q , which contains the 194 differences $Z=\zeta-\zeta^{*}$. In the set Q had been created 58 groups of points with change of the distances from 25 km to 1475 km . The lag distance $\mathrm{h}=25 \mathrm{~km}$.

For the semivariogram of the experimatal semivariances, shown in Figure 1, the sill
$C_{0}+C_{1}=0,007928 \mathrm{~m}^{2}$, the range of spatial dependence $a=1475 \mathrm{~km}$. Next analysis results show that the nugget effect $C_{0}=0,002706 \mathrm{~m}^{2}$, the structural variance $C_{1}=0,005222 \mathrm{~m}^{2}$.

$$
\begin{equation*}
\gamma(d)=0,002706+0,005222 \cdot\left(\frac{3 \cdot d}{2 \cdot a}-\frac{1}{2} \cdot\left(\frac{d}{a}\right)^{3}\right)<m^{2}> \tag{11}
\end{equation*}
$$

On account of the formulas (7), (11), the covariance function (8) gets form:

$$
\begin{equation*}
\left.C(d)=0,005443-0,005222 \cdot\left(\frac{3 \cdot d}{2 \cdot a}-\frac{1}{2} \cdot\left(\frac{d}{a}\right)^{3}\right)<m^{2}\right\rangle \tag{12}
\end{equation*}
$$

Figure 1. The semivariogram of the experimatal semivariances

After determination of the covariance matrix $C_{Z Z}$ baded on the the covariance function (12), on account of the auto covariance matrix C_{Z} (8), we had calculated the covariance matrix K_{Z} (6),

The correction $\delta \zeta_{p}^{*}$ to the quasigeoid height ζ_{p}^{*} of any point $p \in P$ was calculated by formula (5) and the corrected quasigeoid height

From the semivariogram of the experimatal semivariances we realize that distribution of the experimatal semivariances corresponds to spherical model. So the theoretical semivariance (10) has form:
$\tilde{\zeta}_{p}^{*}$ of this point was determined by formula (4). With purpose of accuracy estimation of the 194 corrected quasigeoid heights $\tilde{\zeta}^{*}$ of the quasigeoid model VIGAC2017 at the 194 first and second orders bench marks, we had calculated 194 differences $\bar{Z}_{i}=\zeta_{i}-\widetilde{\zeta}_{i}^{*}(i=1,2, \ldots, 194)$, where ζ_{i} is the national quasigeoid height of bench mark i calculated by formula (1) (see Table 1).

Table 1. The differences \bar{Z} on the 194 first and second orders bench marks

No	Points	Differences \bar{Z} (m)	No	Points	$\begin{gathered} \text { Differences } \\ \overline{\mathrm{Z}}(\mathrm{~m}) \\ \hline \end{gathered}$	No	Points	$\begin{gathered} \hline \text { Differences } \\ \overline{\mathrm{Z}}(\mathrm{~m}) \\ \hline \end{gathered}$
1	IBH-LS97	0,0543	66	IVL-HT71	0,0523	131	IILC-TG15	0,0427
2	IBH-TH122A	0,0049	67	IBH-TH59	0,0627	132	IILC-TG19A	-0,0469
3	IBH-TH119	0,0246	68	IVL-HT173-2	0,0860	133	IILC-TG31	0,0422
4	IBH-HN33	-0,0141	69	IBH-TH70A	0,0665	134	IIMC-XM7-1	-0,0825
5	IBH-HN39	-0,0123	70	IHN-VL50	0,1029	135	IIMT-TH25	-0,1431
6	IBH-HN42	-0,0410	71	IVL-HT123	0,0804	136	IIMT-TH4	-0,0217
7	IHN-HP7	0,0344	72	ILS-HN12	0,0415	137	IIMT-TH7	-0,1424
8	IHN-VL10A	-0,1006	73	IHP-MC4-1	0,0550	138	IIMT-TV11	-0,0902
9	IHN-VL4-1	-0,0039	74	IBH-LS80	0,0470	139	IIMX-DC34	-0,1341
10	IHN-VL6-1	-0,0206	75	IDN-BT86	0,0950	140	IINB-HN11-1	0,0281
11	IDN-BMT16	-0,0646	76	IVL-HT320A	0,1044	141	IINB-HN15	-0,0019
12	IDN-BMT28	-0,0582	77	IBMT-APD49-1	0,1158	142	IINB-HN24	0,0397
13	IVL-HT150	-0,0686	78	IHP-NB14A	-0,1340	143	IINB-HN27-1	0,0055
14	IVL-HT152-1	-0,0192	79	ILS-HN36	0,0140	144	IINB-HN32-1	0,1176
15	IHN-VL34-	-0,0504	80	ILS-HN22	-0,1483	145	IINK-PT10	0,0268
16	IHP-MC48A	-0,0945	81	ILS-HN29	-0,0746	146	IINK-PT13	0,0887
17	IBH-TH3-1	-0,0572	82	IBH-HN16A	0,0509	147	IINK-PT6-1	-0,2096
18	IVL-HT181	-0,0485	83	IHN-VL28-1	0,0222	148	IIPLK-PL12	-0,0317
19	ILS-TY4	-0,0933	84	IBH-HN48	0,0954	149	IIPLK-PL16	-0,0667
20	IVL-HT309A	-0,0278	85	IHN-HP2A	0,0859	150	IIPLK-PL2	0,0641
21	IVL-HT317	-0,0323	86	IHN-HP5	0,1210	151	IIPLK-PL24	-0,1687
22	IVL-HT187	-0,0337	87	IVL-HT73	0,1703	152	IIPLK-PL8	-0,0346
23	IVL-HT170-1	-0,0414	88	IVL-HT95	0,1522	153	IISC-PL29	-0,0922
24	IHP-MC41	-0,0684	89	IIDK-TM41	0,0320	154	IISC-VT3-1	0,0001
25	IHN-VL56	0,0631	90	IIAB-CL5	-0,0628	155	IITL-TV5-1	-0,0861
26	IBH-TH11	0,0272	91	IIAS-KS10	-0,1188	156	IITL-TV7	-0,0792
27	IHN-VL40-1	0,0619	92	IIAS-KS16	-0,0715	157	IITT-TK29	-0,1479
28	IVL-HT130	-0,0353	93	IIAS-KS22	-0,1120	158	IITX-TL14	-0,0624
29	IBH-LS77	0,0036	94	IIAS-KS32	-0,0971	159	IITX-TL20-1	-0,0886
30	IBH-TH5	-0,0512	95	IIAS-KS35	-0,1490	160	IITX-TL25	-0,0068
31	IHN-VL38-1	-0,0157	96	IIBH-XL11-1	-0,0204	161	IITX-TL6	-0,0214
32	IVL-HT197	-0,0177	97	IIBH-XL17	0,0250	162	IIYB-CN18	-0,0811
33	IBMT-APD63	-0,0186	98	IIBH-XL6	0,1134	163	IIYB-CN24-1	-0,1574
34	IVL-HT127-3	-0,0283	99	IIBMT-DT12	-0,0944	164	IDN-BT18-1	-0,0764
35	IBMT-APD59-1	-0,0199	100	IIBMT-DT14	-0,1441	165	IBMT-APD46	-0,0854
36	IVL-HT278-1	0,0208	101	IIBMT-DT4	0,1568	166	IVL-HT305	-0,0510
37	IVL-HT108	-0,0264	102	IIBN-QT11-1	0,1120	167	IVL-HT159-3	0,1423
38	IDN-BT77	-0,0083	103	IIBS-CD12	-0,0333	168	IVL-HT262A	0,1721
39	IBMT-NH17-1	-0,0103	104	IIBS-CD14	0,1611	169	IHN-VL76	0,1302
40	IVL-HT83	-0,0326	105	IIBS-CD3	0,0155	170	IVL-HT113	0,1196
41	IBH-HN17	-0,0392	106	IIBS-CD7-1	0,0832	171	ILS-HN10	0,0748
42	IHN-VL45-1	0,0611	107	IICD-HN6	0,1058	172	IBH-HN19-1	0,1009
43	IBH-TH65	-0,0178	108	IICD-VC4	-0,1091	173	IBMT-NH11-1	0,1350
44	IVL-HT178	0,0113	109	IICD-VC4-1	0,0054	174	IBH-HN20-1	0,1026
45	IVL-HT103	-0,0079	110	IICT-GD1	0,1305	175	TB01	0,1079
46	IHN-VL64	0,0259	111	IICT-GD10	0,0103	176	QN01	-0,0246
47	IVL-HT141-3	0,0082	112	IICT-GD15-1	-0,0216	177	QNG1	-0,1084
48	IVL-HT329A	0,0175	113	IICT-GD4	0,1442	178	BP01	0,0219
49	IHN-VL72	0,0225	114	IICF-VT1	0,0049	179	22A1	-0,0264
50	IVL-HT158	0,0264	115	IIDK-TM29	-0,0886	180	38A1	-0,0757
51	IVL-HT121	0,0765	116	IIDK-TM45	-0,1262	181	VL48	0,0401
52	IDN-BT74	0,0485	117	IIDL-PR31	-0,1293	182	IHN-VL59	0,0123

Ha Minh Hoa/Vietnam Journal of Earth Sciences 40 (2018)

53	IBH-LS88-1	-0,0155	118	IIGD-AB12	-0,0212	18	VL73	0,1348
54	IVL-HT98	0,0110	119	IIGD-AB3-1	-0,0451	18	HT73	0,1263
55	IBH-LS85-1	-0,0117	120	IIGD-AB9-1	-0,0068	185	HT84	0,0415
56	IBH-LS93	-0,0133	121	IIGD-APD2-1	0,1062	186	HT94	0,0882
57	IBH-LS71	-0,0074	122	IIGD-APD6-1	-0,0193	18	HT106	0,0137
58	IBT-APD56	0,0382	123	IIHN-AB11	-0,0317	188	HT121	-0,0415
59	IVL-HT87	0,0281	124	IIHN-AB17	-0,0880	189	HT127-4	0,0117
60	IVL-HT247A	0,0574	125	IIHN-AB20	-0,0542	190	IVL-HT141-3	0,0622
61	ILS-TY1	0,0040	126	IIHN-AB23	-0,0333	191	HT159-1	-0,0326
62	IVL-HT325-1	0,1074	127	IIHN-AB3	-0,0346	192	HT173-3	-0,0243
63	IDN-BT83	0,0552	128	IIHN-AB7	-0,1025	193	HT197	0,0932
64	IVL-HT78	0,0298	129	IIHN-MT15	-0,0598	19	IHP-MC45	0,0950
65	ILS-HN7	0,0170	130	IIHN-MT5	0,0092			

The RMS of the differences $\bar{Z}_{i}=\zeta_{i}-\tilde{\zeta}_{i}^{*}(i=1,2, \ldots, 194)$ is equal to:
$m_{\bar{Z}}= \pm \sqrt{\frac{\sum_{i=1}^{194} \bar{Z}_{i}^{2}}{194}}= \pm \sqrt{\frac{1,1750}{194}}= \pm 0,078 \mathrm{~m}$.
Because the RMS of the national quasigeoid heights ζ calculated by formula (1) got equal to $m_{\zeta}= \pm 0,053 \mathrm{~m}$, the contribution portion of RMS $m_{\tilde{\zeta}^{*}}$ of the quasigeoid heights $\tilde{\zeta}^{*}$ of the corrected quasigeoid model VIGAC2017 to the RMS value $m_{\bar{Z}}= \pm 0,078 \mathrm{~m}$ is equal to $\pm 0,058 \mathrm{~m}$.

From the RMS values $m_{\tilde{\zeta}^{*}}= \pm 0,058 \mathrm{~m}$ and $m_{\zeta^{*}}$ (3) we realize that in comparison with the initial quasigeoid model VIGAC2017, the corrected quasigeoid model VIGAC2017 has been more accurate than 20,69 \%.

5. Discussions

Research results show that after fitting the initial quasigeoid model VIGAC2017 to 194 national quasigeoid heights at the first and second orders bench marks by the least squares collocation, accuracy of the corrected quasigeoid model VIGAC2017 had been increased to 20,69 \%. That has been obtained
taking into account the spatial dependences of the quasigeoid heights in the Earth gravity field on territory of Vietnam.

However, the corrected quasigeoid model VIGAC2017 still does not obtain accuracy more than 4 cm . The next increase of accuracy of the national quasigeoid model in Vietnam will be accomplished in the future on base of using detailed gravimetric data.

6. Conclusions

Above represented research results show, that on the base of solving the task of fitting the initial quasigeoid model VIGAC2017 to the 194 national quasigeoid heights got from the 194 GPS/first and second orders levelling quasigeoid heights by the least squares collocation, the accuracy of the this model has been increased to to $20,69 \%$. That had been obtained due to taking into account the spatial dependences of the quasigeoid heights in the Earth gravity field on territory of Vietnam, With obtained accuracy of $\pm 0,058 \mathrm{~m}$ the corrected quasigeoid model VIGAC2017 may be used for solving of some tasks related to physical geodesy in the initial spatial reference system VN2000-3D.

A perfection of the national spatial reference system in relation to step by step accuracy improvement of the national quasigeoid model is iterative process. After accomplishment of detailed gravimetric measurements on whole territory of Vietnam
will be realized the next accuracy improvement of the national quasigeoid model, That will create conditions for the next perfection of the national spatial reference system in Vietnam in the future.

References

Cressie N.A.C., 1993. Statistics for spatial data, John Wiley \& Sons. New York, 900p.
Ha Minh Hoa, et al., 2012. Research scientific base for perfection of the height system in connection with construction of national dynamic reference system. General report of the science - technological teme of the Ministry of Natural Resources and Environment, Hanoi, 247p.
Ha Minh Hoa (Editor), 2016. Research for determination of normal surfaces of sea levels ("zero" depth surface, mean sea surface, highest sea surface) by methods of geodesy, hydrography and geology with serving construction of buildings and planning of coastline in tendency of climate changes". State techno - scientific theme with code KC.09.19/11-15 in period of 2011-2015, Vietnam Ministry of Science and Technology, Hanoi, 563p.
Huang J., Véronneau M., 2013. Contribution of the GRACE and GOCE models to a geopotential based geodetich vertical datum in Canada. Geophysical Research Abstracts, 15, EGU201310164.

Iliffe J.C., Ziebart M., Cross P.A., Forsberg R., Strykowski G., Tscherning C.C., 2003. OSGM02: A New model for converting GPS-derived heights to local height datums in Great Britain and Ireland. Survey Review, 37(290), 276-293.
Marcin Ligas, Marek Kulczycki, 2014. Kriging approch for local height transformations. J, Geodesy And Cartography, Polish Academy of Sciences, 63(1), 537, Doi: 10,2478/geocart-2014-0002.
Metin Soycan, 2014. Improving EGM2008 by GPS and leveling data at local scale. BCG - Boletin de Ciências Geodésicas Sec, Artigos, Curitiba, 20(1), 3-18, on - lineversion, ISSN 1982-2170, Doi,org/10,1590/S1982-21702014000100001.
Moritz H., 1980. Advanced Physical Geodesy. Herbert wichmann Verlag Karlsruhe, Abacus Press Tunbridge Wells Ken, 512p.
Quasigeoid of the Federal Republic of Germany GCG2016. Federal Agency for Cartography and Geodesy, www,geodatenzentrum.de.
Roman D.R., Wang Y.M., Saleh J., Li X., 2010. Geodesy, Geoids \& Vertical Datums: A Perspective from the U,S, National Geodetic Survey. FIG Congress 2010, Sydney, Australia, April 2010, 11-16.
Schabenger O., Gotway C.A., 2005. Statistical methods for spatial data analysis. Chapman \& Hall/CRC, New York, ISBN 1-58488-322-7, 488p.
Smirnov N.V., Belugin D.A., 1969. Probability theory and mathematical statistics in applying to geodesy. Moscow, Nedra, 379p.

[^0]: *Corresponding author, Email: minhhoavigac@gmail,com

