CALCULATIONS OF TIDAL CURRENTS IN BAY LAGOON (NHA TRANG BAY) USING FINITE ELEMENT METHOD

Bui Hong Long, Tran Van Chung

Abstract


At present, development activities are vigorously going on in Bay lagoon (Nha Trang bay). Therefore, investigation into the natural and environmental conditions in this area, including the study and calculations of current regime is very necessary and pressing. However, modeling the current regime in this lagoon is not simple task because of many islands located in the study area … Their existence makes the long wave transmission into the bay more complex and local-specific. Therefore, as we study the current regime here, great attention is paid to the detailization of the coastal boundaries. Using the finite element method (FEM) for calculating the tidal currents has solved difficulties which have been faced by the finite difference method (FDM) used previously. Initial research results show that the outcomes by FEM agreed well with the field data measured at random times. From the results computed by FEM, we have following remarks on the tidal current regime in this bay:

At ebb tide, tidal current velocity can reach 22.9 cm/s with direction of 137.30, usually at         19.2 m in depth.

At flood tide, tidal current velocity can reach 19.4 cm/s with direction of 353.80, at 1.0 m in depth.

The comparison between the modeling sea levels and field measurements at the same position shows the largest deviation being 19.1 cm, the average being 10 cm, and the smallest one being 0.

Keywords


Tidal current, finite element method (FEM), Bay lagoon, Nha Trang bay.

Full Text:

PDF

References


Zienkiewicz, O. C., 1977. The finite element method. Rayleigh Damping, Field And Dynamic Problems.

Johnson, C., 1990. Adaptive finite element methods for diffusion and convection problems. Computer Methods in Applied Mechanics and Engineering, 82(1): 301-322.

Connor, J. J., and Wang, J. D., 1973. Finite element modeling of two-dimensional hydrodynamic circulation. Massachusetts Institute of Technology, School of Engineering.

Walters, R. A., and Werner, F. E., 1989. A comparison of two finite element models of tidal hydrodynamics using a North Sea data set. Advances in water resources, 12(4): 184-193.

Le Provost, C., and Vincent, P., 1986. Some tests of precision for a finite element model of ocean tides. Journal of computational physics, 65(2): 273-291.

Haidvogel, D. B., Robinson, A. R., and Schulman, E. E., 1980. The accuracy, efficiency, and stability of three numerical models with application to open ocean problems. Journal of computational Physics, 34(1): 1-53.

Myers, P. G., and Weaver, A. J., 1995. A diagnostic barotropic finite-element ocean circulation model. Journal of Atmospheric and Oceanic Technology, 12(3): 511-526.

Iskandarani, M., Haidvogel, D. B., and Boyd, J. P., 1995. A staggered spectral element model with application to the oceanic shallow water equations. International Journal for Numerical Methods in Fluids, 20(5): 393-414.

Wunsch, C., and Stammer, D., 1997. Atmospheric loading and the oceanic “inverted barometer” effect. Reviews of Geophysics, 35(1): 79-107.

Levin, J. G., Iskandarani, M., and Haidvogel, D. B., 1997. A spectral filtering procedure for eddy-resolving simulations with a spectral element ocean model. Journal of Computational Physics, 137(1): 130-154.

Levin, J. C., Iskandarani, M., & Haidvogel, D. B., 2006. To continue or discontinue: Comparisons of continuous and discontinuous Galerkin formulations in a spectral element ocean model. Ocean Modelling, 15(1): 56-70.

Curchitser, E. N., Iskandarani, M., and Haidvogel, D. B., 1998. A spectral element solution of the shallow-water equations on multiprocessor computers. Journal of Atmospheric and Oceanic Technology, 15(2): 510-521.

Behrens, J., 1996. An adaptive semi-Lagrangian advection scheme and its parallelization. Monthly weather review, 124(10): 2386-2395.

Le Roux, D. Y., Staniforth, A., and Lin, C. A., 1998. Finite elements for shallow-water equation ocean models. Monthly Weather Review, 126(7): 1931-1951.

Giraldo, F. X., 2006. High-order triangle-based discontinuous Galerkin methods for hyperbolic equations on a rotating sphere. Journal of Computational Physics, 214(2): 447-465.

Giraldo, F. X., and Warburton, T., 2008. A high‐order triangular discontinuous Galerkin oceanic shallow water model. International journal for numerical methods in fluids, 56(7): 899-925.

Bùi Hồng Long, Trần Văn Chung, 2004. Tính toán dòng chảy 3 chiều cho vùng cửa sông. Tạp chí Khoa học và Công nghệ biển, 4(3): 43-53.

Bùi Hồng Long, Trần Văn Chung, 2005. Tính toán các hằng số điều hòa thủy triều và ảnh hưởng của nước dâng do bão bằng phương pháp phân tích điều hòa thủy triều tại vịnh Nha Trang. Tạp chí Khoa học và Công nghệ biển, 5(1): 14-24.

Bùi Hồng Long, Trần Văn Chung, 2005. Một vài kết quả tính toán dòng triều theo mô hình ba chiều tại đầm Thị Nại. Tạp chí Khoa học và Công nghệ biển, 5(Phụ trương 4): 10-22.

Bùi Hồng Long, Trần Văn Chung, 2006. Tính toán thử nghiệm dòng chảy ba chiều (3D) cho vùng vịnh Vân Phong. Tạp chí Khoa học và Công nghệ biển, 6(1): 12-27.

Bùi Hồng Long, Trần Văn Chung, 2006. Tính toán dòng chảy cho vịnh Nha Trang. Tạp chí Khoa học và Công nghệ biển, 6(4): 1-18.

Cushman-Roisin, B., and Naimie, C. E., 2002. A 3D finite-element model of the Adriatic tides. Journal of Marine Systems, 37(4): 279-297.

Greenberg, D. A., Shore, J. A., Page, F. H., and Dowd, M., 2005. A finite element circulation model for embayments with drying intertidal areas and its application to the Quoddy region of the Bay of Fundy. Ocean Modelling, 10(1): 211-231.

Haidvogel, D. B., Curchitser, E., Iskandarani, M., Hughes, R., and Taylor, M., 1997. Global modelling of the ocean and atmosphere using the spectral element method. Atmosphere-Ocean, 35(sup1): 505-531.

Hanert, E., Legat, V., and Deleersnijder, É., 2003. A comparison of three finite elements to solve the linear shallow water equations. Ocean Modelling, 5(1): 17-35.

Kashiyama, K., Saitoh, K., Behr, M., and Tezduyar, T. E., 1997. Parallel finite element methods for large-scale computation of storm surges and tidal flows. International journal for numerical methods in fluids, 24(12): 1371-1389.

Kowalik, Z., and Murty, T. S., 1993. Numerical modeling of ocean dynamics (Vol. 481). Singapore: World Scientific.

Legrand, S., Legat, V., & Deleersnijder, E., 2000. Delaunay mesh generation for an unstructured-grid ocean general circulation model. Ocean Modelling, 2(1): 17-28.

Chương trình biển cấp Nhà nước KHCN -06. Phạm Văn Ninh - Chủ biên (1996-2000), Biển Đông - Khí tượng thủy văn và động lực biển, Tập 2, Nxb. Đại Học Quốc Gia Hà Nội, 2003, 565 tr .

Nechaev, D., Schröter, J., and Yaremchuk, M., 2003. A diagnostic stabilized finite-element ocean circulation model. Ocean Modelling, 5(1): 37-63.

Taylor, M., Tribbia, J., and Iskandarani, M., 1997. The spectral element method for

the shallow water equations on the sphere. Journal of Computational Physics, 130(1): 92-108.

Dobrindt, U., and Schröter, J., 2003). An adjoint ocean model using finite elements: An application to the South Atlantic. Journal of Atmospheric and Oceanic Technology, 20(3): 392-407.




DOI: https://doi.org/10.15625/1859-3097/14/4/5819 Display counter: Abstract : 52 views. PDF : 48 views.

Editorial Office:

Vietnam Journal of Marine Science and Technology

1st Floor, A16 Building, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam

Tel: (+84) 024 3791 7411

E-mail: jmst@vjs.ac.vn