Combining QuickSCAT wind data and Landsat ETM+ images to evaluate the offshore wind power resource of East Vietnam Sea

Nguyen Xuan Tung, Do Huy Cuong, Bui Thi Bao Anh, Nguyen Thi Nhan, Tran Quang Son
Author affiliations

Authors

  • Nguyen Xuan Tung Institute of Marine Geology and Geophysics, VAST, Vietnam
  • Do Huy Cuong Institute of Marine Geology and Geophysics, VAST, Vietnam
  • Bui Thi Bao Anh Institute of Marine Geology and Geophysics, VAST, Vietnam
  • Nguyen Thi Nhan Institute of Marine Geology and Geophysics, VAST, Vietnam
  • Tran Quang Son National Research Institute of Mechanical Engineering, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/1859-3097/20/2/14714

Keywords:

QuikSCAT wind data, the East Vietnam Sea, wind energy resource evaluation, wind power generation evaluation, Truong Sa, Hoang Sa.

Abstract

Since the East Vietnam Sea has an advantageous geographical location and rich natural resources, we can develop and manage islands and reefs in this region reasonably to declare national sovereignty. Based on 1096 scenes of QuikSCAT wind data of 2006–2009, wind power density at 10 m hight is calculated to evaluate wind energy resources of the East Vietnam Sea. With a combination of wind power density at 70 m hight calculated according to the power law of wind energy profile and reef flats extracted from 35 scenes of Landsat ETM+ images, installed wind power capacity of every island or reef is estimated to evaluate wind power generation of the East Vietnam Sea. We found that the wind power density ranges from levels 4–7, so that the wind energy can be well applied to wind power generation. The wind power density takes on a gradually increasing trend in seasons. Specifically, the wind power density is lower in spring and summer, whereas it is higher in autumn and winter. Among islands and reefs in the East Vietnam Sea, the installed wind power capacity of Hoang Sa archipelago is highest in general, the installed wind power capacity of Truong Sa archipelago is at the third level. The installed wind power capacity of Discovery Reef, Bombay Reef, Tree island, Lincoln island, Woody Island of Hoang Sa archipelago and Mariveles Reef, Ladd Reef, Petley Reef, Cornwallis South Reef of Truong Sa archipelago is relatively high, and wind power generation should be developed on these islands first.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Change, I. P. O. C., 2007. Climate change 2007: The physical science basis. Agenda, 6(07), 333.

Archer, C. L., and Jacobson, M. Z., 2005. Evaluation of global wind power. Journal of Geophysical Research: Atmospheres, 110(D12). https://doi.org/10.1029/2004JD 005462. https://doi.org/10.1029/2004JD 005462.">

Global, W. E. C. G., 2006. Global wind energy outlook 2006. 56 p.

do Brasil, S. E., and de Serviço Público, C., 2008. Agência Nacional de Energia Elétrica-ANEEL. Editora Brasília.

Camargo do Amarante, O. A., Brower, M., Zack, J., and Leite de Sá, A., 2001. Atlas do potencial eólico brasileiro.

Feitosa, E. D., Pereira, A. L., Silva, G. R., Veleda, D. R. A., and Silva, C. C., 2003. Panorama do potencial eólico no Brasil. Brasília: ANEEL.

CADDET, 1995. The world’s first off-shore wind farm. Technical Brochureno. 13. Centre for Renewable Energy, United Kingdom. Available at: www.caddet-re.org.

Larsen, J. H., Soerensen, H. C., Christiansen, E., Naef, S., and Vølund, P., 2005. Experiences from Middelgrunden 40 MW offshore wind farm. In Copenhagen offshore wind conference (pp. 1–8). Denmark: Copenhagen.

Pryor, S. C., and Barthelmie, R. J., 2001. Comparison of potential power production at on‐and offshore sites. Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 4(4), 173–181. https://doi.org/10.1002/we.54. https://doi.org/10.1002/we.54.">

Garvine, R. W., and Kempton, W., 2008. ssessing the wind field over the continental shelf as a resource for electric power. Journal of Marine Research, 66(6), 751–773. https://doi.org/10.1357/00222 4008788064540. https://doi.org/10.1357/00222 4008788064540.">

Kempton, W., Archer, C. L., Dhanju, A., Garvine, R. W., and Jacobson, M. Z., 2007. Large CO2 reductions via offshore wind power matched to inherent storage in energy end‐uses. Geophysical Research Letters, 34(2). https://doi.org/10.1029/ 2006GL028016. https://doi.org/10.1029/ 2006GL028016.">

O’Connor E., 2007. The European Offshore supergrid. Windtech Int., 3(1), 7–9.

Landberg, L., Myllerup, L., Rathmann, O., Petersen, E. L., Jørgensen, B. H., Badger, J., and Mortensen, N. G., 2003. Wind resource estimation—an overview. Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 6(3), 261–271. https://doi.org/10.1002/we.94. https://doi.org/10.1002/we.94.">

Perry, K. L., 2001. SeaWinds on QuikSCAT level 3 daily, gridded ocean wind vectors (JPL SeaWinds Project). California Institute of Technology Tech. Rep. D-20335.

Bentamy, A., and Piollé, J. F., 2002. QuikSCAT scatterometer mean wind field products user manual. Rep. C2-MUT-W-03-IF.

Chelton, D. B., Freilich, M. H., Sienkiewicz, J. M., and Von Ahn, J. M., 2006. On the use of QuikSCAT scatterometer measurements of surface winds for marine weather prediction. Monthly Weather Review, 134(8), 2055–2071. https://doi.org/10.1175/MWR 3179.1. https://doi.org/10.1175/MWR 3179.1.">

Von Ahn, J. M., Sienkiewicz, J. M., and Chang, P. S., 2006. Operational impact of QuikSCAT winds at the NOAA Ocean Prediction Center. Weather and Forecasting, 21(4), 523–539. https://doi.org/10.1175/WAF934.1. https://doi.org/10.1175/WAF934.1.">

Thompson, D. R., Monaldo, F. M., Beal, R. C., Winstead, N. S., Pichel, W. G., and Clemente‐Colón, P., 2001. Combined estimates improve high‐resolution coastal wind mapping. Eos, Transactions American Geophysical Union, 82(41), 469–474. https://doi.org/10.1029/01EO00278. https://doi.org/10.1029/01EO00278.">

Augenbaum, J. M., Luczak, R. W., and Legg, G., 2004. Seawinds near-real-time scatterometer winds for AWIPS. In Preprints, 20th Int. Conf. on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Seattle, WA, Amer. Meteor. Soc., CD-ROM (Vol. 4).

Servain, J., Busalacchi, A. J., McPhaden, M. J., Moura, A. D., Reverdin, G., Vianna, M., and Zebiak, S. E., 1998. A pilot research moored array in the tropical Atlantic (PIRATA). Bulletin of the American Meteorological Society, 79(10), 2019–2032. https://doi.org/10.1175/1520-0477(1998)079<2019:APRMAI>2.0.CO;2. https://doi.org/10.1175/1520-0477(1998)079<2019:APRMAI>2.0.CO;2.">

Derickson, R., McDiarmid, M., Cochran, B., and Peterka, J. A., 2002. Wind Energy Explained, Theory, Design and Application.

Downloads

Published

22-05-2020

How to Cite

Tung, N. X., Cuong, D. H., Anh, B. T. B., Nhan, N. T., & Son, T. Q. (2020). Combining QuickSCAT wind data and Landsat ETM+ images to evaluate the offshore wind power resource of East Vietnam Sea. Vietnam Journal of Marine Science and Technology, 20(2), 143–153. https://doi.org/10.15625/1859-3097/20/2/14714

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>