Open Access Open Access  Restricted Access Subscription Access

PRESENT-DAY STRESS FIELD AND RELATIVE DISPLACEMENT TENDENCY OF THE EARTH'S CRUST IN THE PARACEL ISLANDS AND ADJACENT AREA

Tran Tuan Dung, R. G. Kulinich, Ngo Thi Bich Tram, Nguyen Quang Minh, Nguyen Ba Dai, Tran Tuan Duong, Nguyen Thai Son

Abstract


Present-day stress filed in the Hoang Sa archipelago and adjacent areas is determined through the earthquake’s focal mechanism parameters that have been recorded during a time period of more than 100 years. The geometric parameters of the faults (such as the location, strike and dip angles as well as depth, length…) are determined by satellite-derived gravity, seismic data and stress fields. In this study, predictive determination of the magnitude and tendency of the relative displacement of the Earth’s crust is carried out by calculating and assessing the relationship between the stress fields and fault’s geometric parameters. On the basis of the Earth’s crust relative displacement, the geodynamic mechanism of the Hoang Sa archipelago and adjacent areas through the different geological periods can be rebuilt. Magnitude and tendency of the relative displacement of the Earth’s crust are represented by the color spectrum and the vector’s magnitude. Although the displacement appears in the whole region, its intensities are different in particular areas that have the faults systems with different grades.

Keywords


Hoang Sa archipelago, satellite-derived gravity, present-day stress field, earthquake’s focal mechanism, Earth’s crust displacement.

Full Text:

PDF

References


Bott, M. H. P., 1959. The mechanics of oblique slip faulting. Geological Magazine, 96(2), 109–117.

McKenzie, D. P., 1969. The relation between fault plane solutions for earthquakes and the directions of the principal stresses. Bulletin of the Seismological Society of America, 59(2), 591–601.

Angelier, J., 1990. Inversion of field data in fault tectonics to obtain the regional stress-III. A new rapid direct inversion method by analytical means. Geophysical Journal International, 103(2), 363–376.

Morris, A., Ferrill, D. A., and Henderson, D. B., 1996. Slip-tendency analysis and fault reactivation. Geology, 24(3), 275–278.

McFarland, J. M., Morris, A. P., and Ferrill, D. A., 2012. Stress inversion using slip tendency. Computers & Geosciences, 41, 40–46.

Toda, S., Stein, R. S., Richards-Dinger, K., and Bozkurt, S. B., 2005. Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer. Journal of Geophysical Research: Solid Earth, 110(B5), B05S16, doi:10.1029/2004 JB003415.

Yukutake, Y., Takeda, T., and Yoshida, A., 2015. The applicability of frictional reactivation theory to active faults in Japan based on slip tendency analysis. Earth and Planetary Science Letters, 411, 188–198.

Aid, K., and Richards, P. G., 1980. Quantitative seismology: Theory and methods. San Francisco.

Nguyễn Văn Vượng và nnk., 2004. Thử nghiệm phân vùng và dự báo các đặc trư¬ng chuyển dịch hiện đại vỏ trái đất khu vực Tây Bắc Bộ trên cơ sở nghiên cứu mối tương tác giữa trư¬ờng ứng suất khu vực với một số hệ thống đứt gãy. Tạp chí Địa chất, số 285//11–12/2004).

Trần Tuấn Dũng và nnk., 2015. Nghiên cứu, cảnh báo nguy cơ trượt lở ngầm trên thềm và sườn lục địa Nam Trung bộ. Đề tài cấp nhà nước KC-09.11/2011–2015.

http://www.globalcmt.org/

Bùi Công Quế và nnk., 2011. Nghiên cứu đánh giá độ nguy hiểm của động đất và sóng thần ở vùng ven biển và hải đảo Việt Nam và đề xuất các giải pháp phòng tránh, giảm nhẹ hậu quả. Đề tài ĐTĐL-2007G/45, 2009–2011.

Nguyễn Trọng Tín và nnk., 2010. Nghiên cứu cấu trúc địa chất và đánh giá tiềm năng dầu khí các Khu vực Trường Sa và Tư Chính - Vũng Mây. Đề tài KC.09-25/06 ]-10, 2009–2010.

Trần Tuấn Dũng, 2013. Đặc điểm cấu trúc kiến tạo khu vực nước sâu Biển Đông Việt Nam trên cơ sở minh giải tổng hợp các tài liệu trọng lực và từ. Hội nghị 35 năm thành lập viện Dầu khí Việt Nam, 6/2013, Tr. 55–66.

Sandwell, D., Garcia, E., Soofi, K., Wessel, P., Chandler, M., and Smith, W. H., 2013. Toward 1-mGal accuracy in global marine gravity from CryoSat-2, Envisat, and Jason-1. The Leading Edge, 32(8), 892–899. DOI: 10.1190/tle32080892.1.

Dung, T. T., Que, B. C., and Phuong, N. H., 2013. Cenozoic basement structure of the South China Sea and adjacent areas by modeling and interpreting gravity data. Russian Journal of Pacific Geology, 7(4), 227–236.

Dung, T. T., Que, B. C., and Minh, N. Q., 2016. Distribution of eruptive volcanic basalt in the South China Sea and adjacent areas by interpreting gravity, magnetic and seismic data. Russian Journal of Pacific Geology, 10(1), 1–12. DOI 10.1134/S1819714016010024.

Blakely, R. J., and Simpson, R. W., 1986. Approximating edges of source bodies from magnetic or gravity anomalies. Geophysics, 51(7), 1494–1498.

Delvaux, D., and Barth, A., 2010. African stress pattern from formal inversion of focal mechanism data. Tectonophysics, 482(1–4), 105–128.

Neves, M. C., Paiva, L. T., and Luis, J., 2009. Software for slip-tendency analysis in 3D: A plug-in for Coulomb. Computers & Geosciences, 35(12), 2345–2352.

Steketee, J. A., 1958. On Volterra’s dislocations in a semi-infinite elastic medium. Canadian Journal of Physics, 36(2), 192–205.

Okada, Y., 1992. Internal deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 82(2), 1018–1040.

Wallace, R. E., 1951. Geometry of shearing stress and relation to faulting. The Journal of geology, 59(2), 118–130.

Kis, K. I., 1990. Transfer properties of the reduction of magnetic anomalies to the pole and to the equator. Geophysics, 55(9), 1141–1147.

Schellart, W. P., 2000. Shear test results for cohesion and friction coefficients for different granular materials: Scaling implications for their usage in analogue modelling. Tectonophysics, 324(1–2),

–16.




DOI: https://doi.org/10.15625/1859-3097/18/4/13665

Journal of Marine Science and Technology ISSN: 1859 3097

Published by Vietnam Academy of Science and Technology