### DESIGNING HEDGE ALGEBRAIC CONTROLLER AND OPTIMIZING BY GENETIC ALGORITHM FOR SERIAL ROBOTS ADHERING TRAJECTORIES

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

L. A. Tuan, S.-C. Moon, W. G. Lee, and S.-G. Lee, “Adaptive sliding mode control of overhead cranes with varying cable length”, J. Mech. Sci. Technol., vol. 27, no. 3, pp. 885-893, 2013.

M. Jouini, M. Sassi, N. Amara, and A. Sellami, “Modeling and control for a 6-DOF platform manipulator”, International Conference on Electrical Engineering and Software Applications, 2013, pp. 1-5.

F. Piltan, N. Sulaiman, M. Rashidi, Z. Tajpaikar, and P. Ferdosali, “Design and Implementation of Sliding Mode Algorithm: Applied to Robot Manipulator-A Review”, Int. J. Robot. Autom., vol. 2, no. 5, pp. 265-282, 2011.

F. Piltan and N. B. Sulaiman, “Review of sliding mode control of robotic manipulator”, World Appl. Sci. J., vol. 18, no. 12, pp. 1855-1869, 2012.

Siciliano and Khatib, Springer Handbook of Robotics. Springer, 2008.

D. Nguyen-Tuong, J. Peters, M. Seeger, and B. Sch¨olkopf, “Learning inverse dynamics: a comparison”, in European Symposium on Artificial Neural Networks, 2008, no. EPFLCONF-175477.

R. Isermann, “Adaptive Control Systems (A Short Review) BT - Digital Control Systems: Volume 2: Stochastic Control, Multivariable Control, Adaptive Control, Applications”, R. Isermann, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991, pp. 127-140.

Q. D. Le, H. Kang, and T. D. Le, “Adaptive Extended Computed Torque Control of 3 DOF Planar Parallel Manipulators Using Neural Network and Error Compensator”, vol. 2, pp. 437-448, 2016.

Y. Stepanenko and C.-Y. Su, “Adaptive motion control of rigid-link electrically-driven robot manipulators”, in Proceedings of the 1994 IEEE International Conference on Robotics and Automation, 1994, pp. 630-635 vol.1.

F. L. Lewis, D. M. Dawson, and C. T. Abdallah, Control of robot manipulators. Prentice Hall PTR, 1993.

L. A. Zadeh, “Fuzzy Sets-Information and Control”,1965.

K. M. Passino, S. Yurkovich, and M. Reinfrank, Fuzzy control, vol. 20. Citeseer, 1998.

C. G. Kang, “Variable structure fuzzy control using three input variables for reducing motion tracking errors”, J. Mech. Sci. Technol., vol. 23, no. 5, pp. 1354-1364, 2009.

D. Vukadinovi´c, M. Baˇsi´c, C. H. Nguyen, N. L. Vu, and T. D. Nguyen, “Hedge-algebrabased voltage controller for a self-excited induction generator”, Control Eng. Pract., vol. 30, no. 0, pp. 78-90, 2014.

C. H. Nguyen, D. A. Nguyen, and N. L. Vu, “Fuzzy controllers using hedge algebra based semantics of vague linguistic terms”, Fuzzy Control Syst. Nov. Sci. Publ. Hauppauge, pp. 135-192, 2013.

N. D. Duc, N.-L. Vu, D.-T. Tran, and H.-L. Bui, “A study on the application of hedge algebras to active fuzzy control of a seism-excited structure”, J. Vib. Control, vol. 18, no. 14, pp. 2186-2200, 2012.

DESIGNING HEDGE ALGEBRAIC CONTROLLER AND OPTIMIZING BY... 19

N. D. Anh, H. Bui, N. Vu, and D. Tran, “Application of hedge algebra-based fuzzy controller to active control of a structure against earthquake”, Struct. Control Heal. Monit., vol. 20, no. 4, pp. 483-495, 2013.

H.L. Bui, C.H. Nguyen, N.L. Vu, and C.H. Nguyen, “General design method of hedgealgebras-based fuzzy controllers and an application for structural active control”, Appl. Intell., vol. 43, no. 2, pp. 251-275, 2015.

N. V. Khang and C. A. My, Introduction to Robotic (in Vietnamese). Publishing house for science and technology, 2011.

N. V. Khang, Multibody System Dynamics (in Vietnamese). Publishing house for science and technology, 2007.

N. Van Khang, “Kronecker product and a new matrix form of Lagrangian equations with multipliers for constrained multibody systems”, Mech. Res. Commun., vol. 38, no. 4, pp. 294-299, 2011.

N. C. Ho and W. Wechler, “Hedge algebras: an algebraic approach to structure of sets of linguistic truth values”, Fuzzy sets Syst., vol. 35, no. 3, pp. 281-293, 1990.

N. C. Ho and W. Wechler, “Extended hedge algebras and their application to fuzzy logic”, Fuzzy Sets Syst., vol. 52, no. 3, pp. 259-281, 1992.

Ho N. C., Khang T. D., Nam H. V., Chau N. H. (1999), “Hedge algebras, linguisticvalued logic and their application to fuzzy reasoning”, International Journal of Uncertainty, Fuzziness and Knowledge Based Systems, 7, pp. 347-361.

N.C.HO, V.N.LAN and L.X.VIET (2006), “Quantifying Hedge Algebra, Interpolative reasoning method and its application to some problems of fuzy control”, Wseas Transactons on Computer, 5, pp. 2519-2529.

N. C. Ho and N. Van Long, “Fuzziness measure on complete hedge algebras and quantifying semantics of terms in linear hedge algebras”, Fuzzy Sets Syst., vol. 158, no. 4, pp. 452-471, 2007.

N. T. Duy and N. T. Kien, “Designing the Controller Based on the Approach of Hedge Algebras and Optimization through Genetic Algorithm”, in International Journal of Electrical Electronics & Computer Science Engineering (IJEECSE), 2018, pp. 198-194.

N. T. Duy, V.N.Lan, “Interpolation based on semantic distance weighting in hedge algebra and its application”, J. Comput. Sci. Cybern., vol. 33, no. 1, pp. 19-33, 2017.

M. Kumar, M. Husian, N. Upreti, and D. Gupta, “Genetic Algorithm: Review and Application”, Int. J. Inf. Technol. Knowl. Manag., vol. 2, no. 2, pp. 451-454, 2010.

DOI: https://doi.org/10.15625/1813-9663/36/3/14349 Display counter: Abstract : 73 views. PDF : 37 views.

Oktrik

*Journal of Computer Science and Cybernetics *ISSN: 1813-9663**Published by Vietnam Academy of Science and Technology**