
Journal of Computer Science and Cybernetics, V.28, N.3 (2012), 234�244

OPTIMIZING OCCUPIED MEMORY OF EMBEDDED SOFTWARE

IN THE DESIGN PHASE∗

PHAM VAN HUONG, NGUYEN NGOC BINH, PHAM NGOC THANH

1University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam

Tóm tắt. Trong xu th¸ ph¡t triºn m¤nh m³ cõa cæng ngh» ph¦n m·m nhóng hi»n nay, v§n �· tèi ÷u

ph¦n m·m nhóng câ vai trá quan trång. Vi»c �¡nh gi¡ v tèi ÷u ph¦n m·m nhóng trong giai �o¤n

thi¸t k¸ �em l¤i nhi·u lñi ½ch. Trong b i b¡o n y, chóng tæi �÷a ra ph÷ìng ph¡p mîi tèi ÷u bë nhî

chi¸m döng cõa ph¦n m·m nhóng trong giai �o¤n thi¸t k¸ düa tr¶n sp x¸p Tæ-pæ (thù tü Tæ-pæ),

ngæn ngú mi·n x¡c �ành (DSL) v cæng ngh» sinh m¢ T4. Méi ch÷ìng tr¼nh �÷ñc �°c t£ theo mët

chuéi c¡c t¡c vö v quan h» giúa c¡c t¡c vö. Theo �â, ch÷ìng tr¼nh �÷ñc biºu di¹n b¬ng mët �ç thà

phö thuëc cõa chuéi t¡c vö. Méi �¿nh trong �ç thà biºu di¹n mët t¡c vö, méi t¡c vö gçm c¡c thæng

tin �°c t£ nh÷ t¶n, �¦u v o, �¦u ra. Méi c¤nh biºu di¹n sü phö thuëc giúa c¡c t¡c vö. Ch÷ìng tr¼nh

câ thº thüc hi»n theo c¡c thù tü Tæ-pæ kh¡c nhau m khæng l m thay �êi k¸t qu£ nh÷ng mùc chi¸m

döng bë nhî cõa ch÷ìng tr¼nh s³ kh¡c nhau tr¶n c¡c thù tü Tæ-pæ. Tø �ç thà phö thuëc, chóng tæi

t¼m måi thù tü Tæ-pæ v x¥y düng h m �¡nh gi¡ mùc chi¸m döng bë nhî cõa ch÷ìng tr¼nh theo thù

tü Tæ-pæ �º chån chuéi Tæ-pæ câ mùc chi¸m döng bë nhî th§p nh§t.

Abstract. Nowadays, the optimizing embedded software plays an important role in the development

of embedded software technology. The evaluation and optimization of embedded software in the

design phase bring various benefits. In this paper, we propose a new method to optimize the occupied

memory of embedded software in the design phase based on DSL, T4 and Topological sort. A program

is specified as a chain of tasks and the relationship between the tasks. The program is expressed by

the dependence graph as a directed graph. Each node in the directed graph describes a task, which

consists of specification information such as name, input, output. Each edge describes the relationship

between two tasks. The program working by order of tasks in the different Topological orders does

not change the result, but the occupied memory and performances are different. From the dependence

graph, we can find many topological orders, and each of them will have amount of occupied memory

in difference. Therefore, we built a memory evaluation function to find the topological order that has

the smallest amount of occupied memory.

Keywords. Embedded Software, Optimization, DSL � Domain Specific Language, T4 � Text Tem-

plate Transformation Toolkit, Topological Sort, Topological Order, Dependence Graph, Chain of

Tasks.

∗This research is partly supported by a VNU scientific project (group A) for 2012-2013.

OPTIMIZING OCCUPIED MEMORY OF EMBEDDED SOFTWARE IN THE DESIGN PHASE 235

1. INTRODUCTION

In the development of information technology, embedded technology is a very important
technology. The embedded system appears in almost fields of social life. Along to the hardware
technology, embedded software engineering also has been studied and deeply developed. The
embedded devices are limited on CPU, memory space, battery life [2,13]. Thus, the research
on optimizing the embedded software is especially important.

Embedded software optimization is done in the different levels such as the design level, the
source code level, the compiler level and the run-time level [11,14]. Although optimization in
the design phase is a new approach, but it faces many challenges and it brings more benefits
than the behind phase optimization method. This method is often based on the model driven
software engineering. Moreover, software engineering based on DSL and T4 has been widely
developed, especially, in specific domain such as embedded software, embedded systems [12,14].
The advantages of DSL and T4 are flexibility and strong code generation. In this paper, we
propose an occupied memory optimization method for the embedded software based on Topo-
logical sort, DSL and T4. We aim the following objectives: modeling the embedded software
and generating the parameters from the model automatically; getting all of Topological orders
from a dependence graph and evaluating the amount of occupied memory, under each Topo-
logical order to select the Topological order that occupy the smallest memory. First, we define
a DSL and build the meta-model for modeling the embedded software by a dependence graph.
The dependence graph is a directed graph that consists of a set of tasks and the relationship
among tasks. Second, from this graph, we use the T4 to get information from the model and
transform this information into the mathematical expression of the dependence graph. Then,
we find the different Topological orders. Each Topological order describes the execution order
of tasks. The execution of a program by any Topological orders also reaches the same result
but there are different sizes of occupied memory. Finally, we construct an occupied memory
evaluation function for each Topological order to find the best Topological order.

The rest of paper includes following parts: Section 2 � Related work; Section 3 � Op-
timizing the memory of embedded software based on Topological sort; Section 4 � Develop
the framework of DSL, T4 and implement the program that supports optimizing; Section 5 �
Experimental; Section 6 � Conclusion and future work.

2. RELATED WORK

In recent years, there are few authors using the DSL to design a model of embedded system.
For example, the research [4] defined DSL and developed the framework to specify and design
real-time embedded system. In this paper, [1] the authors also study and develop the DSL for
hardware-software co-design based on FPGA. There are some researches on embedded software
optimization in the design phase such as the research [2,17] on �Performance optimization on
mobile trade-off with the battery life time based on model driven engineering�. It developed a
DSL, and then used an Eclipse framework to develop mobile software structure, generate the
code simulating the functions and run them to evaluate performance and balance the battery
lifetime. The researchers [3,16] proposed �Mobile application optimization based on model
driven engineering and code generation for production lines�. According to the approach of
embedded software and embedded system optimization based on DSL, we have proposed two

236 PHAM VAN HUONG, NGUYEN NGOC BINH, PHAM NGOC THANH

optimization methods such as �Hardware-software co-design to optimize embedded system in
the design phase based on DSL� and �Embedded software performance optimization in the
design phase based on DSL [5] and code generation� [6]. In these investigations, we defined
two DSL to model and integrated T4 to generate code from models automatically. Their
experimental results are prospective.

On the other hand, although DSL and T4 are applied widely to model and generate code
for software, they can not be applied to optimize embedded software by evaluating the models
directly before. Because it is hard to evaluate performance, memory size, power consumption in
the design phase. Our approach in this paper is to optimize the occupied memory of embedded
software by evaluating the model directly.

3. OPTIMIZING THE MEMORY OF EMBEDDED SOFTWARE BASED

ON TOPOLOGICAL SORT

3.1. The dependence graph of embedded software

Normally, the structure of a program has only the function main as an entry point. Other
functions are called from the function main. With the object-oriented programming language,
in order to implement the program executed directly, the program needs to have a single class
that contains the function main declared by public and static. Therefore, we can describe the
program design as a kind of dependent graph, in which the node represents a task, and the
edge represents a relationship between two tasks. Each task will be implemented as a function
in the later phase and it includes name, return type and a parameter list. Tasks are dependent
or independent. Thus, a program is expressed by the dependence graph of task and is defined
by the formalism in Eq. (1).

G = {T,E} with T = {ti|i = 1..N} and E{eij = (ti, tj); i, j = 1..N}, (1)

where:

• ti is the node of graph and eij is the edge from ti to tj ,

• Each node ti corresponds to a task,

• Each edge eij shows that tj is only executed when ti finishes,

• N is the number of tasks.

3.2. Topological sort on the dependence graph

As described in the previous section, the program includes a set of tasks and it is rep-
resented by the dependence graph. With the same set of tasks but different executing order
will affect to the amount of occupied memory and performance. Also from this task set, there
are many different implementations following to the different orders of tasks that satisfy the
dependency graph. These implementations do not change the program execution result. This
is the Topological order on a directed graph. Therefore, from the dependence graph, we can

OPTIMIZING OCCUPIED MEMORY OF EMBEDDED SOFTWARE IN THE DESIGN PHASE 237

find many execution ways of the program and each Topological order presents an execution
way.

3.3. The memory evaluation function of the Topological order

From the dependence graph, there are many Topological orders presenting the different
execution order of Tasks in the program. Thus, to evaluate the Topological order that has
the best effectiveness of memory usage, we will build the evaluation function that is used to
calculate the amount of occupied memory when the is executed program under the Topological
order. We analyze the process of memory allocation and layout of memory in the program
execution. Figure 1 shows the layout of memory during the program execution. The static
memory space is allocated when the program is loaded from the secondary memory. It contains
the static data and source code. The stack memory space is to store local variables, parameters
for each function. After the function ends, the memory frame allocated for the function is
recovered. The heap memory space contains elements allocated and recovered dynamically
during executing the program. It also contains objects created. With the program that consists
of a main program and sub functions, the process of automatic allocation and automatic release
of memory during the execution time is as shown in Figure 2.

Suppose that the program has N tasks and ti denotes for task that has the order ith in the
Topological order. ti has the returned data type ri. And, we also suppose that the program
is not recursive and it is executed sequentially on the single CPU system. When executing
ti, local variables and parameters of ti are allocated in the stack memory space and it will
be released when ti returns. After the task is done, the returned result must be stored in the
local variables of the function main. These variables are allocated in the stack memory when
they are declared and assigned the returned value of the task. These variables are released
when the program finishes. Although the execution time of a task does not depend on the
location of the task, but the resident times of these local variables are different. So in the
different Topological orders, the amounts of memory occupied are also different. Without loss
of generality, we assume that the execution time of each task is a time unit. Then, to store
returned result from ti, we need to declare a local variable of the main function and allocate
memory for this variable. And this variable will be resident in memory until the main function
finishes. Therefore, the amount of occupied memory of the variable depends on the type of
data returned by ti and the order of tasks. Moreover, by the difference of the amount of
occupied among the Topological orders is only caused the local variables of the function main
that contains the returned result. Because the other memory area used when executing a sub
function is withdrawn when the sub function finished. So, we suppose that the amount of
stack memory occupied by ti is equal to (N − i) size(ri). From analysis of occupied memory
caused by each task, we build the occupied memory evaluation function in an execution under
the Topological order as in Eq. (2):

f =
N∑
i=1

(N − i)× size(ri), (2)

where:

• f is the evaluation function of the amount of memory occupied,

238 PHAM VAN HUONG, NGUYEN NGOC BINH, PHAM NGOC THANH

• N is the number of tasks of the program and it is also the number of tasks in the
Topological order,

• ri is the returned data type of ti.

3.4. Selecting the optimal Topological order

When the program is executed under any Topological order of tasks, the total size of
memory used by the program is the same but the resident time in memory is different. Eq.
(2) is used to evaluate the amount of memory occupied during the program execution on a
Topological order. The chosen Topological order is the chain having the minimal f . To find the
best Topological order, we implement a simple algorithm: get the input as a set of Topological
orders in Section 2.3; browser and calculate f for each chain, and select the best Topological
order on which the f is minimal.

The algorithm used to find a Topological order from directed graph has a polynomial
complexity O(|T |+ |E|) [15], with T is the set of tasks, E is the set of edges in the definition
(1). However, to find all Topological orders in the set T , the complexity is O(|T |!). Here, we
propose an algorithm based on the main idea such as an order chain satisfies the set of edge
E is a Topological order. The algorithm is as follows:

For each ci order chain in factorial of N chains {

Set the variable isTopo to true

For each egde ej,k in the set E {

If tj is follow tk in ci then {

Set variable isTopo to false

break

}

}

If isTopo is equal true {

Add ci to the set of Topological orders

OPTIMIZING OCCUPIED MEMORY OF EMBEDDED SOFTWARE IN THE DESIGN PHASE 239

}

}

4. DEVELOPING THE DSL AND T4 FRAMEWORK FOR

OPTIMIZATION

To implement the methodology of memory optimization based on Topological sort men-
tioned in the section 2, we build a framework that enables to specify and construct a model
of the dependence graph of tasks based on DSL. We build the T4 text template to transfer
to the mathematical expression of the dependence graph from the model of the dependence
graph. Then, we implement the program to generate all Topological orders of tasks and select
the optimal Topological order that has the smallest occupied memory during the execution
time of the program.

4.1. Defining the DSL and building the meta-model file

To specify a model of the dependence graph visually, we first define a Domain Specific
Language for optimizing the memory based on Topological sort named by OMTS. Then, based
on the Visual Studio.NET 2010 SDK, we build the meta-model of OMTS. With the meta-
model built, designers can create a model of a dependence graph in the graphical interface.
The process of DSL definition and meta-model construction includes the following steps:

• Define the logical components: Process class, Task class, Comments class, Rules, Con-
strain, etc.

• Define the shape symbols corresponding to each logical component above. The symbols
are to design models in the graphical interface after the DSL.

• Create the XML file of the meta-model that is to store the logical class definitions,
the shape class definitions and the mapping between the logical classes and the shape
classes.

4.2. Transforming the model into a mathematical expression of the dependence

graph

To optimize memory automatically after designing the model of a dependence graph, we
define the T4 Text template to transform automatically into a mathematical expression from
the model of the dependence graph of the tasks based T4 technology. T4 is a powerful code
generation technology, which allows automatic code generation based on the XML file of
the meta-model and the XML file of the actual model. The idea of the T4 code generation
technology is the reading the XML file of the actual model and the XML file of meta-model
that defines the logical components, the shape components and the mapping of them to analyze
and generate the accordance code in with the text template.

240 PHAM VAN HUONG, NGUYEN NGOC BINH, PHAM NGOC THANH

4.3. Implementing the program to optimize memory usage based on Topological

sort

In this section, we implement a program to find the optimal amount of memory occupied
during the execution time. This program get the input that is the dependence graph of the
tasks extracted from the model as described in the section 4.2. Then, we implement the
Johnson Trotter algorithm [10,15] to retrieve all permutations from the set of tasks (nodes of
the graph). Next, we implement the algorithm finding all Topological orders of tasks in the
set of all permutations. We also build the evaluation function of the memory occupied of each
task that depends on the order of the task in the chain and build the evaluation function of
the amount of memory occupied for each Topological order of tasks. Browse and calculate the
value of the evaluation function from the Topological orders to select Topological order having
the smallest memory occupied. The result of optimization and the chart of amount of memory
occupied from all Topological orders are shown in Figure 3.

Figure 3. The best Topological order and the graph of memory usage of all task chain

5. EXPERIMENT

In this experiment, we carry out in two phases. First, we use the framework of DSL,
T4 and Topological sort to model the dependence graph of task set in an application. Our
framework transforms the model into the mathematical expression of the dependence graph.
Then, we execute the optimal program to find the Topological order that has the minimal
occupied memory size during the execution time of the application. Second, we implement

OPTIMIZING OCCUPIED MEMORY OF EMBEDDED SOFTWARE IN THE DESIGN PHASE 241

Figure 4. Task flow of the Næm character recognition module

this application under the best Topological order of tasks. Each task is implemented as a
function. The functions are called in the main function. We change order of functions under
the different Topological orders but unchange content of functions to reach to the different
programs. Second, we run these programs to do statistic of occupied memory amount of each
program. In order to do the experiment, we use the Næm character recognition module that
is the part of the Næm character process system developed by our research group [7,8].

In the first phase, we create a model of the dependence graph of tasks in the Næm character
recognition module. This model is shown in Figure 4. We transform this model into the mathe-
matical expression of the dependence graphs and do optimization. The results of optimization
at the model level are shown in Figure 3. When executing the optimization program, the de-
pendency graph of the nine of tasks in the Figure 4, there are factorial of 9 permutations, 294
Topological orders obtained and 6 Topological orders that have the smallest occupied memory
amount. The right part of Figure 3 illustrates the chart of the amount of occupied memory of
the Topological order.

In the second phase, we implement Næm character recognition module as in Figure 5.
Then, we permute the order of performing the functions under one of the best Topological
order shown in Figure 3 and under 10 Topological orders that are not the best Topological
order and are selected randomly from the 294 Topological orders to run the tests on the same

242 PHAM VAN HUONG, NGUYEN NGOC BINH, PHAM NGOC THANH

configuration. Here, we do tests on the simulation device of Pocket PC on the configuration
in Table I. To do statistic of the amount of occupied memory shown in Table 2, we use �Best
TaskMan� program [9] to show all of the Næm character recognition processes on Windows
Mobile as in Figure 6. Then, we draw the chart of actual occupied memory amount shown
in Figure 7. The experimental result shown in Figure 7 matches the evaluation of occupied
memory at model level shown in Figure 3.

Table 2. Amount of actual Occupied Memory of the program corresponding to each

Topological order

OPTIMIZING OCCUPIED MEMORY OF EMBEDDED SOFTWARE IN THE DESIGN PHASE 243

6. CONCLUSION AND FUTURE WORK

We have proposed the new method to optimize the occupied memory of the embedded
software in the design phase based on DSL, T4 and Topological sort. Due to the limitation
of embedded systems about resources and CPU, this optimization method has an important
role and able to apply widely. We can extend this research for applying to other fields such
as optimizing the scheduler of processes, optimizing the compiler, etc. The paper has the
following main contributions. First, we built the occupied memory evaluation function of the
task chain under the Topological order and proposed the new approach to optimize occupied
of embedded system based on Topological sort. Second, we developed the code generation
method from the model based on DSL and T4 automatically. Third, we built the framework
of DSL, T4 and Topological sort to design, generate code and optimize at model level based
on Topological sort.

However, there are still some challenges in the paper such as file permutation space of
tasks and not supporting the cycle graphs of Topological sort. Topological sort, model trans-
formation, DSL and T4 are the prospective investigations and able to apply widely. Based
on the result of this paper, we continue to make improvements and further research such as
Pareto multi-objective optimization of embedded software based Topological sort, compiler
optimization, the process scheduler optimization based on Topological sort and optimization
based on model transformation based on DSL and T4.

REFERENCES

[1] Jason Agron, Domain-specific language for HW/SW co-design for FPGAs, Proceedings of the

IFIP TC 2 Working Conference on Domain-Specific Languages, Berlin (2009) 262�284.

[2] Michalis Anastasopoulos, Thomas Forster, Dirk Muthig, Optimizing model-driven development

by deriving code generation patterns from product line architectures, Proceedings of STJA,

Kaiserslautern (2005) 425�427.

[3] Michalis Anastasopoulos, Thomas Forster, Dirk Muthig, Model driven development for rapid

prototyping and optimization of wireless sensor network applications, Proceedings of the 2nd

Workshop on Software Engineering for Sensor Network Applications (2007) 31�36.

[4] Kevin Hammond, A domain specific language for real-time embedded systems, Proceedings of

GPCE (2003) 37�56.

[5] Pham Van Huong, Nguyen Ngoc Binh, Bui Ngoc Hai, Vu Van Phuc, Hardware-Software Co-

Design to optimize embedded system by Pareto principle and DSL, Proceedings of IEICE

ICDV, Hanoi (8/2012) (ISBN: 978-4-88522-264-2 C3055).

[6] Pham Van Huong, Nguyen Ngoc Binh, Nguyen Thu Huyen, Nguyen Thuy Duong, Tran Nghi

Phu, Embedded Software Performance Optimization Based on Generating the Simulation Code

of Functions, Proceedings of IEICE ICDV, Hanoi (8/2012) (ISBN: 978-4-88522-264-2 C3055).

[7] Pham Van Huong, Tran Minh Tuan, Do Quoc Huy, Le Hong Trang, Nguyen Ngoc Binh, Truong

Anh Hoang and Vu Thanh Nhan, Some Methodologies of Næm Optical Character Recognition,

Proceedings of ICT.rda'08, Hanoi (8/2008) 309�318.

244 PHAM VAN HUONG, NGUYEN NGOC BINH, PHAM NGOC THANH

[8] Pham Van Huong, Tran Minh Tuan, Do Quoc Huy, Le Hong Trang, Nguyen Ngoc Binh and

Truong Anh Hoang, Some approaches to Næm optical character recognition, VNU, Hanoi. J.

of Science, Natural Sciences and Technology 24 3 (2008) (ISSN: 0866-8612).

[9] http://best-taskman-s60-3rd.en.softonic.com/symbian

[10] Arthur Kahn, Topological sorting of large networks, Journal of Communications of the ACM

5 11 5 (Nov. 1962) 558�562.

[11] Sangyoon Oh, Mehmet Aktas, Marlon Pierce, Geoffrey Fox, Optimizing Web service messaging

performance using a context store for static data, Proceedings of the 5th WSEAS interna-

tional conference on Telecommunications and informatics (2006) 50�58.

[12] Dorin Petriu and Murray Woodside, A Meta model for generating performance models from

UML designs, Proceedings of the 7th International Conference, Lisbon, Portugal (October

11-15, 2004) 41�53.

[13] Armita Peymandoust, Tajana simunic and giovanni De Micheli, Low power embedded software

optimization using symbolic algebra, Proceedings of the conference on Design, automation

and test, Europe (2002) 1052�1060.

[14] Sanna Sivonen, Domain-specific modeling language and code generator for developing repository-

based Eclipse plug-ins, Proceedings of the 12th International Software Product Line Con-

ference, HongKong (2008) 356�364.

[15] Lambert Surhone, Mariam Tennoe, Susan Henssonow, Steinhaus-Johnson-Trotter algorithm,

Mauritius (2010) 25�40 (ISBN: 6133260440).

[16] Chris Thompson, Jules White, Brian Dougherty, Douglas Schmidt, Optimizing mobile applica-

tion performance with Model-Driven Engineering, Proceedings of the 7th IFIP, Berlin (2009)

36�46.

[17] Lloyd Williams, Performance evaluation of software architectures, Proceedings of the 1st in-

ternational workshop on Software and performance (1998) 66�77.

Received on May 25, 2012

Revised on December 18, 2012

	INTRODUCTION
	RELATED WORK
	OPTIMIZING THE MEMORY OF EMBEDDED SOFTWARE BASED ON TOPOLOGICAL SORT
	The dependence graph of embedded software
	Topological sort on the dependence graph
	The memory evaluation function of the Topological order
	Selecting the optimal Topological order

	DEVELOPING THE DSL AND T4 FRAMEWORK FOR OPTIMIZATION
	Defining the DSL and building the meta-model file
	Transforming the model into a mathematical expression of the dependence graph
	Implementing the program to optimize memory usage based on Topological sort

	EXPERIMENT
	CONCLUSION AND FUTURE WORK

