
Tap chi Tin hoc và Dieu khiên hoc 9-1994

INTERVAL-VALUED PROBABILISTIC LOGIC

FOR LOGIC PROGRAMS

Phan Dinh Dieu and Phan Hong Giang

Institute of Information Technology,

1. Introduction

This paper presents an approxim ate m ethod for the probabilistic entailm ent prob
lem in knowledge bases where a portion of knowledge is given by a sentence in
propositional logic accompanied with an interval representing its t ru th probability.

Let B be a knowledge base consisting of sentences Si,S?,-... , S l given together with
their inteval-valued tru th probabilities Ix, I2, . .. , IL\ B = {< 5,-, /,• > |i = 1,... , L}. Let
S be any given sentence. By the semantics introduced by Nilsson in [11], the problem
of entailling interval I for S from B is reduced to solving two linear programm ing
problems which are usually of size ~ 2L x ‘1L (about 2L linear constrain ts and 2L
variables). The method presented in this paper proposes a new way to solve the
problem. It reduces the entailment problem to the one of finding the set of ’’prime
implicants ” of 5 expressed through variables S i , S2 ,. • • , S l . It allows us to avoid linear
programm ing problems of very large sizes and therefore makes the probabilistic
entailm ent problem manageable. However, instead of exact solution, it gives only
approxim ate one.

This approxim ate method is shown to be especially efFicient for probabilistic logic
programs when logical skeletons of knowledge bases form usftal logic programs. In
this case the set of prime implicants can be found by S L D - resolution applied to a
deterministic extension of logic programs.

The proposed method is presented in section 2 for general case and in section 3
for the case of probabilistic logic programs. T he last section containts discussion
and some concluding remarks.

T y p e se t b y

2. Entailment problem and approximate solution

2.1. Entailment problem in probabilistic logic

Firstly, we recall some basic notions of the theory of interval-valued probabilistic
logic developped on the basis of the semantics given by N. J. Nilsson in [11]. A
presentation in details of this theory can be found in [12,14].

A knowledge base B is assumed to be given in the form:

where Si is a sentence in propositional logic, and 7, = [a,-,/?,] C [0,1] is the interval-
value for its tru th probability. Let 5 be a target sentence. Its t ru th probability
must be also an interval denoted by J(S) = [a(5),/?(5)]w The entailm ent problem is
the problem of calculate the lower and upper bounds of /(.s').

We put r = ,Sl } and L = {5 i ,S 2__ r is called logical skeleton of
B.

Let U = ,uk} where uj = (nl i f ... ,uLj)T for j = 1, . . . ,k and V = {«i,... ,vh}
where vm = (r1m__ ,vLm,vsm)T for m = 1, . . . ,h be the sets of consistent vectors of
boolean values of sentences in r and D respectively.

Each vector of V characterizes a E-class of possible worlds. Given a probability
d istribution q = {q1}... ,qh) over the set of S-classes, the t ru th probability w(Si) of the
sentence Si is defined to be the sum of probabilities of classes of worlds in which Si
is true, i.e., tt(S,-) = vn.qi + .. . + v,h.qh. From this semantics it follows th a t lower bound
a(Si) and upper bound (3{Si) of interval I{Si) are the solutions of the following linear
programm ing problems:

0 (5) = min (vsl.qx + . .. + vsh.qh) (1)

0(S) = max (v,i.qi + • • • + vsh.qh) (2)

subject to constraints:

{ (’¿191 + • • • + Vif,qh £ /j for i — 1,... , L
E L l <Im = 1 (3)

qm > 0 for m — 1, . . . , h

We usually denote [a(S), /?(S)] by F(S , B) and write B h < S , F(S , B) >.

Example. For a knowledge base given as follows:

B = {5! : .4 V- .B [.9 1.]
5 2 : B V -.D [.8 .9]
53 ■ C V ->.4 [.6 .8]
54 : D [.8 1.]

: C [.2 .4] }

S: A

Its logical skeleton and basic matrices will be:
r = { S i : .4 V ->B

¿>2 : B V - ' D

S3 : C V —<A
5.1 : D
55 : C }

« 1 11-j « 3 « 4 Ur, It 6 7/7 « 8 U 9 « 1 0 M i l « 1 2

S i (1 1 1 1 1 1 0 0 0 0 1 1 \

S i 1 1 1 1 0 0 1 1 1 1 0 1

II 1 1 0 o- 1 0 1 1 1 1 1 1

5 4 1 0 1 0 1 1 1 0 1 0 1 0

5 S \ 1 1 0 0 1 0 1 1 0 0 0 0

and

*’1 v 2 *3 (>4 V5 l’6 V7 «’8 V9 y10 «11 V 12 «13 «14
Si (1 1 1 1 1 1 1 1 0 0 0 0 1 1 ^
¿2 1 1 1 1 1 0 0 0 1 1 1 1 0 1

V - 53
1 1 1 0 0 1 1 0 1 1 1 1 1 1

S4 1 0 0 1 0 1 1 1 1 0 1 0 1 0
s 5 1 1 ' 1 0 0 1 1 0 1 1 0 0 0 0
s 1 1 1 0 1 1 1 0 1 0 0 0 0 0 0)

2.2. Reduction of linear propramming problems

Let u = (ui ,«*) be a fc-dimentional boolean vector and u e {0 , 1}. We denote
u<t = («!, . . . , r) and call it an (A-+ l)-dimentional extension of «.

We note that each T-consistent vector u G U has at least one extension ucr g V and
conversely each S-consistent vector v G V is an extension of some vector in U. We
can partition the set U into the following subsets:

U = T(S) U F(S) U N(S) where

T(S) ={Uj- € U\ujl G V and Uj0 £ V'}

F(S) ={uj € U|aj0 G V’ and w_,l ^ V}

N(S) ={uj G U\ujl G V and «,-0 G V} = (U \ T(S))\ F(S) .

Example (continued).

T(, \) = {»i = (1,1,1,1 , 1)T , i/:! = (1,1,0. I ,0)r , i<4 = (1. 1 ,0 ,0 ,0)T , u6 = (1,0,0, l ,0) r }
F(A) = {«- = (0,1, 1,1, l) 7'. ».8 = (0. 1,1,0, l) r . u9 = (0,1. 1 ,1,0)T, t/io = (0, 1, 1 ,0 ,0)T ,

»h = (1, 0, 1, 1,0)7 , «12 = (1, 1, 1, 0,0)T}
N (A) = {(,2 = (1 ,1 ,1 ,0 ,1)T , m5 = (1,0, 1,1,1)T}

Now let consider two following linear programming problems:

n (S) = min H pj W
u , £ T { 5)

¡3(S) = I - 111 in Pj
> ' , € F (S)

(5)

subject to constraints:

un-lh +• ■•-+ 'iik-Pk £ h !<>r i = 1— , L
E ;= i Vj = l _ (6)
Pj > 0 for j — 1. . . . , k

T h e m a j o r d i f fe rence b e tw e en tw o pai rs of p r o b le m s (1), (‘2), (3) a n d (4), (5), (6) lays in
t h e fac t t h a t in t h e fo rmer , m in im i z a t i o n (m a x i m i z a t i o n) is d o n e for t h e s u m of all
v ar iabl es w i th c o r r e s p o n d i n g values in t h e last row is 1. b u t in t h e l a t e r it is d o n e
for t h e s u m of va r ia bl es w hich be long to " ro u p 7(5) . T h e i f l a t i o n s h i p b e tw e e n t h e m
is m a d e c l ea r in t h e fo llowing th e o r e m .

Theorem 1. Problems (1) — (3) f(2)-(3)J and (4) — (6) ((’>)-(6)) hare the same solution.

Proof. Let o j a n d o 2 b e t h e values of o(S) given by solving p r o b l e m s (1) - (3) an d
(4) - (6) re spect ively . W e shal l prove c>i = a-,.

Suppose that d) is reached at vector (</j....... qh). We define a vector p = (pi , . . . ,pk)
as iollows:

_ J 7 , „ . i f r , „ - i i j (7 f o r s o m e a e { 0 , 1 } a n d u j £ T(S) U F(S)
l J I <im i l u j £ \ ' (S) a n d v m = « , 1 , r „ = u j O

It is easy to see that vector p satisfies conditions (6). and moreover,

h

A 1 — ^ ^ ^ ' l̂ j ,
> n= l u , £ T (S)

Therefore a , > cvL,.
Conversely, suimpose th a t value a 2 is readied at vector (pt ,. ,;»<). Xow we define

a vector q = (qx........ qm) as follows:

pj if vm = iijtj lor s o m e a £ {0,1} a n d uj £ T(S) U F(S)
9m = { 0 if vm = Uj 1, and uj £ N(S)

Pj if vm = itj0 and Uj £ N(S)

It is obvi ou s t h a t vec to r q sat isfies co n d i t i o n s (3), a n d more ove r ,

h

— /* ̂ P j ^ ^ ̂ t ’s m Çm i
U j Ç T (S) m = l

T h e r e f o r e a 2 > «i- T h u s «i = a 2 is proved . Similar ly, we ca n also p ro v e t h a t t h e
values of (J{S) g iven b y solving p r o b l e m s (2) - (3) a n d (5) - (6) a r e t h e sam e .

Example (c o n t in u ed) .
So lving p r o b l e m s (1) - (3), (2) - (3), (4) - (6) a n d (5) - (6) for 5 = .4 by t h e s im p le x

m e t h o d we h a v e t h e s a m e p a i r of a n sw e rs a (.4) = 0.5, f i (A) = 0.8.

Corollary 2. Let B be a knowledge base, and S and S ’ be tiro sentences. I f T(S) - T(S')
then a (5) = a(S') : and i f F(S) = F(S') then 0(S) = (3{S').

Remark. T h e o r e m 1 r e n d e r s a slighl reduc t ion of t h e cost of f inding in te rva l F(S , B)
by l in ea r p r o g r a m m i n g m e t h o d . Indeed , t h e size of p r o b l e m (4) - (6) is sm a l l e r t h a n
' that of p r o b l e m (1) — (3) s ince k < h ; moreover t h e fo r m u l a t i o n of c o n s t r a i n t s (6) on ly
re q u ir e s t h e fixed set. V of I ' -consis te i i t vec tor s of B which d o es n o t d e p e n d s on t h e
t a r g e t s e n t e n c e (in t h e case of (3). for e ach new t a r g e t we n ee d a new bas ic m a t r i x) .

2.3. An approximate solution

L et cons ide r t h e se t W = {0, 1. *}L, where' * s t a n d s for ”undefined" . E l e m e n t s
of U' a r e ca lled L -d im en t io n a l e x t e n d e d b o o l e a n vecto rs . Let « = (« i , . . . , u l) b e an
e x t e n d e d vec to r . D e n o te T” = S “1 A . . . A S l L. w h e r e .S'1 = 5 , 5° = -<S (w e w r i t e also
5) , a n d 5* = true. For e x a m p l e if u = (1,*,0, 1,*) t h e n r u = S 1 S 3 S 4

Let us def ine a p a r t i a l l y o rd e r in g re la t ion ■< on {0, 1, *}, speci f ied b y ax io m s
Vf 6 {0,1.*} x ■< j', 0 ^ * a n d 1 < *. T h i s re la t io n can b e n a t u r a l l y g en e ra l i z e d on
t h e e l e m e n t s of \V. For u,v e we wri te u < v iff uj ■< tj for j = 1 , . . . ,L.

Let u £ W. W e say t h a t a bo o lean vec to r v £ {0. 1}L is an i n s t ance of w, if v is
o b t a i n e d f r om u by r ep la c in g (i n d e p e n d e n t h) each o c c u re n c e of * b y 0 or 1. D e n o t e
by E'(u) t h e set of all in s t an ce s of u a n d t h e n p u t E(u) = E' (u) n i r, (R e m e m b e r U is
t h e se t T -con s is tent vecto rs , so E(u) is t h e set of all [- c o n s i s t e n t i n s t a n c e s of u).

Let M be a su b s e t of U'. W e d e n o t e

E (M) = (J £■(«)

an d no t i ce t h a t

A vector u e HT is called a Y-supporting vector for S if £'(») C T(S) . Further, if there
does not exist any other T- supporting vector u' such tha t « ^ u' then we call u a
maximal V-supporting Victor for 5.

It is evident th a t if u e T(S) then I'“ |= 5, and if u e F(S) then T" (= ->5» If u e IF is
T-supporting vector for 5. then Tu |= S; in this case we say that I'u is an impJicant
of S. If v is maximal T-supporting vector for 5 then Tu is called prime implicant of
S (expressed through variables S iSi.).

A set M C IT is called a complete s d of T -s u p p o r t i n g vec tor s for S if E (\ f) = T(S).
From (7), i t follows t h a t if Af is complete set of T - su p p o r t i n g vectors for S then

W e say t h a t M is a 'maximal comph Ir set if it is co m p l e t e an d each e l em e n t of M is
a m a x i m a l T - s u p p o r t i n g ve c to r for S. N o t e t h a t t h e se t of all m a x i m a l T -s u p p o r t i n g
vec to r s is m a x i m a l com ple te .

We say th a t two vectors u,v e H' are incompatible iff E(u)nE(v) = %. In o th e r
words, a and v are incompatible iff there is an index I < / < £ such that either u, = 0
and = 1 or «,• = 1 and c,; = 0.

Now let M b e t h e se t of all m a x i m a l T -s u p p o r t i n g vectors for S. A s u b s e t of M is
called reduced iff it contains pairwise incompatible vectors. LetMr} be
the set of reduced subsets of M. From (8) we have

Recall th a t in the theory of probabilistic logic we have:
(a) a(S i VSo) > m a x (a (S \), o(So)),
(b) if Si A So is fedse then a(S i V S2) = a (S i) + a (S 2),
(c) o(Si A So) > max(0, a(S'i) + a (S 2) — 1).

From these facts and (9) we have:

The expression in the right side of (10) with n(Tu) evaluated by the right side of (1 h
can be taken as an approxim ation for o(S).

(8)

(1 0)

where
(11)

The upper bound of the interval for 5 ran be calculated as the lower bound for
->5, since /3(5) = 1 - a (-5) .

In summary, the approxim ate algorithm for calculation of interval [a(5),/3(5)] con
sists of four steps:

1. Find the set M of all maximal r-supporting vectors for 5;
2. Find all maximal reduced subsets of A/, assume they are
3. Calculate the approximate value for a(5) by expressions given in the right sides

of (10) and (11);
4. Similarly calculate t lie approxim ate value for o(->5), and take /3(5) = 1 - a (->5).

Example (continued).
The maximal r-supporting vectors for 5 are (1, 1,* .1,*) and (*,*,0,-*,*). They are

compatible, therefore

o(5) > max (q (5 i 5 3 5 4), q (5 3)) = max(i) 5, 0.2) = 0.5

The maximal r-snpporting vectors for ->5 are (0,*,*,*,*) and (*,* ,1,* ,0). They are
compatible, therefore

q(-i5) > max (a(5i), a{S3 §5)) = max(0, 0.2) = 0.2

It means /3(5) = 1 - 0.2 = 0.8
We note tha t the interval [0.5, 0.8] is exacly what obtained by solving linear pro

gram m ing problems.

3. Probabilistic logic programs

As mentioned above, the proposed appoximation for the entailm ent problem, in
probabilistic logic requires the set of all maximal r-supporting vectors for target
sentence 5. There is a. straightforward way 1o com pute it from the basic m atrix for
T. But this wTay becomes impractical once Y has dozens of sentences, because the
formulation of the basic m atrix alone, in general case, has the exponential complex
ity. Naturally, some question rise: is there any way to com pute the set of maximal
r -supporting vectors without having the basic m atrix for r? At lea^t, for what
restricted class of knowledge bases the question can be answered positively?

In this section, we consider knowledge base B , logical skeleton V of which is a
set of disjunctions1 of literals. By interpreting expression < yl(x),[q(x),/3(j-)] > as
a set {< .4(c), [o(c),/3(c)] > |c is constant symbol }, the database logic programs and
knowledge bases of a large number of export systems using first order language

know led g e p o r t io n < 5 , [a (S) , / ? (5)] > , w here 5 is a c o n ju n c tio n o f l i t e r a l s 5 = B \ A . . . A B m co u ld b e mad»
fit in th is fram ew o rk by u s in g i ts n e g a tiv e fo rm < -*S, [l — /3 (5), 1 — or(-S)] > . w h ere -»5 = -*B i V . . . V ~>Bm.

having no function symbol and a finite number of constant symbols could be brought
back to propositional language. Therefore, they fall into the considered here class.*

The procedure of computing the set of maximal T—supporting vectors for an atom
A comprises two stages. Firstly, T is unfolded into Te - a set of definite program
clauses. Then, on the obtained l'e, a modified version of SLD -resolution is ap
plied. We will prove th a t the proposed algorithm is correct. We use the terms
definite program clause, definite program, definite goal, resolvent, SLD-derivation,
SLD-refutation, and SLD-tree as defined in [10].

3.1. Unfolding the declared program

For each declared clause Si of T - 5,- : .4i V A 2 V ... V Ak we create 2k new clauses:
Ai A { , . . . , Ai_ t , .4,-1- j , . . . , Ak ,Si for / = 1, . . . ,k
A~[— S~ for / = 1, . . . , k,

where .S’,: are special symbols, which are reserved for naming the clauses. A f and
S~ are newly introduced symbols. The set Te of newly created clauses is callod
unfolded program from T.

Example (continued). Unfolded program will be as follows:
r e = { -4 ~ S i , D (1)

B~ - S i ,A - (2)
B - S f (3)
A~ - 5 f (4)
B — S 2 J) (5)
D~ — s 2 , b - (6)
D — s 2 (7)
B - - s ; (S)
c - ¿3,-4 •(9)

' A - - s 3 , c - (10)
A - S ĩ (11)
c~ ~ $3 (12)
D - s , (13)
D~ ^4 (14)
c — Sĩ, (15)
c~ - s n . (16)

A clause of k literals in F will correspond to 2 k clauses in 1%. For a declared
program of L clauses, and I literals each, the unfolded program will consist of 2L * I
clauses. In practice, the numbers of literals in a clause of knowledge bases are often
limited to small enough constant. If the number of literals in declared clauses is
bounded then the size of unfolded programs is linear proportional to one of declared
programs.

3.2. Algorithm for computing a set of r-supporting vectors

Formally, Te is a def in i te logic p r o g r a m , we ca n a p p l y S L D - r e s o lu t io n to p ro ve a
clause. We will m o d i fy it as follows to find t h e se t of T - s u p p o r t i n g vecto rs .

+ Each resolvent will be checked against contradiction i.e. the simultaneous
presence of a complementary pair of either normal literals A and A ~ , or special
literals S and S ~ . If found, stop.

-f Skip subgoa.1 which is a special literal .s', or S ~ .

W ith such modifications, the final resolvent for a finite2 derivation will fall into
one of three categories:

+ Success: when all remained subgoals are special literals.

+ Failure of type 1: when the selected sub-goal can not match with an\ head of
program clause of r f.

+ Failure of type 2: when the contradiction found in the resolvent.

We call t h e m od i f i ed S L D -re so lu t i o n PSLD- r es o l u t i on .

Let target sentence S be the single atom A. After applying P S L D - resolution for
r e U {*- ,*1}. we construct for each success resolvent R a success vector v = (rly. .. ,vt)T
where:

' 1, if Si e R
i>i = < 0, if S~ £ R

*, otherwise.

Let V be the set of success vectors.

Example (continued). Solution

P S L D - t r e e for r e u { — .4} has 2 success vectors : V — {(1,1,*, 1,*), (*,*,0,*,*)}. N o t e
t h a t £’(1) = T(A) . a n d m ore ove r t h e e l e m e n ts of V a r e m a x i m a l T - s u p p o r t i n g for .4

2F or th e c o n s id e red c la ss o f logic p ro g ra m s , th e re a re som e te c h n iq u e s t h a t allow av o id in g in fin ite d e r iv a tio n s . See
[8], [15] fo r ex a m p le .

Ạ

+ - S r , S u B
Failure II

«- S U Sn, D

-5 i .5 2 .5 4
Success

P S L D - tree for U {<— .-I- } has 2 success vectors: V' = {(0,*,*,*,*), (*, *, 1. *.0)}.
Note th a t E(V') = F(A) , and the elements of V' are maximal I’-supporting for -¡A.

Note th a t by the resolution algorithm, we come to the solutions presented in the
last example of section 2. Now, we will validate the proposed approxim ate m ethod
by proving the correctness of the P S L D - resolution.

Definition. Let v be a t ru th vector, a s i 7npl i f i cat ion according to v of the unfolded
program r e(v) is the set of clauses which contains 5,- provided v(i) = 1, or S~ provided
v(i') = 0. Then in the obtained program, all special literals are deleted.

Example (continued). Let y.= (1, 1,*, 1,*)

<- A~

- 53,53
Failure II

r e(r) = { , 1 - B
B~ — A~
B — D
D~ — B -
D ^ }

W i t h iden t i f ica t ion of .4~ a n d ->.4, it is c l ea r t h a t Te(t;) an d T" a r e logical ly eq u i v
a lent .

Theorem 3. S o u n d n e s s an d co m p le ten e s s of t h e P SL D -reso lu t ion .
The set V of consistent success vectors yielded by application of PSLD-resolution

fo r r e U { — .4} is complete: and contains all prime iniplicants o f A i.e F (\ r) = T (A).

Proof. O u r p ro o f is ba sed on t h e soundess a n d co m p le t en e s s of t h e re so lu t io n p r i n
c iple j)roved e l sew here (see [10] for e x a m p le) .

Soundness: F { V) C T (A)
Let f,: £ E (V). By def in i t ion of F(V) , t h e r e is a success vec to r v w 1i k . I i has

as a co ns i s t en t g ro u n d in s tance . T h e success de r iv a t io n of P.S'/,/.)-r e so lu t ion for
\ \ U {— A} m a y be re duced to a n o rm a l success S I . I) - de ’ ivat ion for Fe(f<)VJ {*- .!}.
By t h e s o u n d n e s s of re so lu t ion principle we have F,(e) |= 1. S ince r, is a Consistent
in s t a n c e of r we have r f(r,) |= Ff(r). I herefo re I'^(r,-) .4. It m e a n s i, £ 7(A).

Completeness. V'(.l) c F(l')
Let I £ T(A) . By def in i t ion F' |= A. or Fe(/) ! = .4. B y t h e c o m p le t e n e s s of ,S7./>

reso lu t ion . there1 is a r e fu t a t i o n for F,(/)U{— A}. T h e c o r r s p o n d i n g d e r iv a t io n in t h e
PSt. / M r e e for F,U{-- .4} will t e r m i i ’-' te wi th a success resolvent which c o r r e s p o n d s
to a success ve c to r i. t is one of consis ten! g r o u n d in s t an c e s ol r. It m e a n s t £ £'(V/).
M oreover if / is a m ax im a] F-support ing veclor . t hen by th e same- a r g u m e n t we can
c o n c lu d e t h a t t is in V\ Q.K. l) .

4. Conclusion and discussion

1 lie goal ol th is p a p e r lias been to p ro v ide an a p p r o x i m a t e m e t h o d for solving t h e
en t a i lm en t p r o b l e m in t h e in te rva l -v alued p ro b ab i l i s t ic logic. T h e p r o b l e m c o n s i d
ered in t h e f r am ew o rk of Ni lsson 's s e m an t i c s a m o u n t s to tw o l inea r p r o g r a m m i n g
p r o b l e m s which ar e »usually of very large size. T h e key idea of o u r a p p r o x i m a t e
a l g o r i t h m is to find for a t a rg e t s en ten ce S, given a k n o w led g e b as e £> w i th logical
skel e ton F, t h e se t M of all T - su p p o r t i n g vec tor s for .s' a n d t h e set M of all m a x i m a l
r e d u ced su b s e t s of M. F ro m set M we can ca lc u l a t e eas ily a bellow- a p p r o x i m a t e
value for t h e lower b o u n d of t in ' t r u t h p r o b a b i l i t y of S. T h i s a p p o x i m a t e m e t h o d
al lows us to avoid l inear p r o g a m m i n g p ro b l e m s of l arge sizes. I t is s h o w n to b e very
efficient for p ro b a b i l i s t i c logic p r o g r a m s , i.e.. w h e n logical skel e t ons of k n o w led g e

bases are usual logic program. In this case the set M of T-supporting vectors Ibi
s' can be found by applying SL/> resolution for a certain extention of T. The solu
tion obtained by the proposed method, as has been shown by our experiments, are
very closed to - and in many cases, are coincided with the results given by solving
corresponding linear programming problems.

To represent bases of knowledge under uncertainty, a set of propositional sentences
weighted with two values in the unit interval was used bv m any researchers prior to
us [1]> [5]i [7] and [16]. But the syntax may be only thing shared by those approaches.
The semantics underlying the weights-numbers differ from one to another. The rule
of uncerta in ty 'p ropagation in the support logic programming [1.2,3] is justified by
voting model and fuzzy set. Neccesity-valued knowledge base [5] has fuzzy theory
semantics. Among probabilistic approaches [13], [16] and [7], the distinguishing
feature of our is preserving the uniform (declarative) style of trea tm ent for "ru le” and
’’fact” knowledge of logic programming. Here, we do not have to invent an explicit
mechanism of uncertainty propagation. In our method, the classic machinery of
resolution is exploited in-lead.

■The accuracy of an approxim ate method is always a vital question. Assumed
Nilsson’s semantic, the interval found by linear programming method is the best,
(tightest), it would be intersting to ask a question: what relation the interval calcu
lated by proposed algorithms forms with the tightest one. At this moment, we are
not able to provide a absolute estimation except, that the later lays inside the former.
But we have an evidence that the accuracy of our method is good comparatively with
proposed in literature rules of probability propagation. In [7], Frisch and Haddawy
presented a comprehensive set of rules which had inherited many proposed in ealier
works. These rules work with conditional probability. It is interesting to note that if
we reduce them to unconditional! cases, they could be modeled by our m ethod, i.e,
they can be derived as special cases of our algorithms. It means th a t with restriction
to unconditional probabilities our method would provide be t te r approximation.

The serious estimation of this approxim ate method is a subject of our further
work.

References

1. Baldwin J .F ., Support logic programming. International Journal of Intelligent Sys
tems, 1, 1986, 73-104.

2. Baldwin J .F ., Evidental support logic programming, Fuzzy sets and systems. 24,
1987, 1-26.

3. Baldwin J .F ., Computational models o f uncertainty reasoning in expert systems,
C om puter and M ath, with Appli., 19, 1990, 105-119.

4. Bundy A., Incidence calculus: a mechanism for probabilistic reasoning, Journal of

autom ated reasoning, 1. 1085, 263-283.
5. Dubois D., Lang J. and Prade H., Possibilistic logic, Technical report-,. IRTT, Uni

versity Paul Sabatier, Toulouse, I ranc« f991.
6. Dubois D. and Prade II., /1 disettssiun uj uncertainty handling in support logic

programming. International Journal of Intelligent Systems, 5, 1990, 15-42.
7. Frisch A .M. and Haddaury P., Any t ime deduction fo r probabilistic logic, Technical

report, University o f Wisconsin, Milawkee. 1992.
8 . van Gelder, Negation as failure rising tight derivation for general U>gic programs,

Foundation o f deductive databases and logic programming (J. Minker ed.) Morgan
Kaufmann, 1988.

9. Genese reth M R . and Nilsson N.J, Logical foundations of artificial intelligence,
Morgan Kaufmann, 1987.

10. Lloyd ./.IF, Foundation o f logic programming, Second edition, Springer Verlag,
1987.

11. Nilsson N.J., Probabilistic logic. Artificial Intelligence, 28, 1986, 71-87.
12. Phan I) .I) . , Probabilistic logic for approximate reasoning, Artificial IntiUigence

and Information control syste ms of Robot-89, North Holland 1989, 107-112.
13. Pearl ./.. Probabilistic reasoning in intelligint systems. Morgan Kaufmann 1988.
I/,. Phan D.D, On the interval-valued probabilistic logic. Technical Report, ICS,

N C S R o f \ 'ie Inam, 1990.
15. Phan II. G., j 1 method for detecting injinitness fo r Prolog programs, Proceedings

of Pacific Rim International Conference on A I, Nagoya, Japan, 1990.
16. Raymond Ng. and Subralunanian V.S., Probabilistic logic programming, In forma

tion and Computation, 101, 1992. 150-201
17. Quinlan J.R. , INFERNO: /1 cautious approach to uncertain inference, Computer

Journal. 26, 1983, 255-269.

Abstract

This paper presents an approximate method for the probabilistic cntailmeu t problem
ih knowledge basts when a portion of knowledge is given by a sentence in propo
sitioned logic accompanied with an interval representing its truth probability. Tin .>
method reduces the entailme nt problem to one o f finding ”prime im plica nts" o f the
target se ntence expressed through sentences in the given knowledge base. It is shown
that in the case o f probabilistic logic programs the s i t o f such prime implicants can
be found by using the SLD-resolution method fo r usual definite logic programs.

