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1. Introduction

This paper presents an approxim ate m ethod for the probabilistic entailm ent prob
lem in knowledge bases where a portion of knowledge is given by a  sentence in 
propositional logic accompanied with an interval representing its t ru th  probability.

Let B be a knowledge base consisting of sentences Si,S?,-... , S l  given together with 
their inteval-valued tru th  probabilities Ix, I2, . ..  , IL\ B = {< 5,-, /,• > |i = 1,... , L}. Let 
S  be any given sentence. By the  semantics introduced by Nilsson in [11], the  problem 
of entailling interval I  for S  from B is reduced to  solving two linear programm ing 
problems which are usually of size ~ 2L x ‘1L (about 2L linear constrain ts and 2L 
variables). The method presented in this paper proposes a new way to solve the 
problem. It reduces the entailment problem to the one of finding the  set of ’’prime  
implicants ” of 5 expressed through variables S i , S2 ,. • • , S l  . It allows us to  avoid linear 
programm ing problems of very large sizes and therefore makes the probabilistic 
entailm ent problem manageable. However, instead of exact solution, it gives only 
approxim ate one.

This approxim ate method is shown to be especially efFicient for probabilistic logic 
programs when logical skeletons of knowledge bases form usftal logic programs. In 
this case the  set of prime implicants can be found by S L D -  resolution applied to a 
deterministic extension of logic programs.

The proposed method is presented in section 2 for general case and in section 3 
for the case of probabilistic logic programs. T he last section containts discussion 
and some concluding remarks.

T y p e se t  b y



2. Entailment problem and approximate solution

2.1. Entailment problem in probabilistic logic

Firstly, we recall some basic notions of the theory of interval-valued probabilistic 
logic developped on the basis of the semantics given by N. J. Nilsson in [11]. A 
presentation in details of this theory can be found in [12,14].

A knowledge base B is assumed to be given in the form:

where Si is a sentence in propositional logic, and 7, = [a,-,/?,] C [0,1] is the interval-
value for its tru th  probability. Let 5 be a target sentence. Its t ru th  probability 
must be also an interval denoted by J(S) = [a(5),/?(5)]w The entailm ent problem is 
the problem of calculate the lower and upper bounds of /(.s').

We put r  = ,Sl } and L = {5 i ,S 2__ r  is called logical skeleton of
B.

Let U = ,uk} where uj = (nl i f ...  ,uLj)T for j  = 1, . . .  ,k  and V = {«i,... ,vh}
where vm = (r1m__ ,vLm,vsm)T for m = 1, . . .  ,h be the sets of consistent vectors of
boolean values of sentences in r  and D respectively.

Each vector of V characterizes a E-class of possible worlds. Given a probability 
d istribution q = {q1}... ,qh) over the set of S-classes, the t ru th  probability w(Si) of the 
sentence Si is defined to be the sum of probabilities of classes of worlds in which Si 
is true, i.e., tt(S,-) = vn.qi + .. . + v,h.qh. From this semantics it follows th a t  lower bound 
a(Si )  and upper bound (3{Si) of interval I{Si)  are the solutions of the  following linear 
programm ing problems:

0 (5 ) = min (vsl.qx + . .. + vsh.qh) (1)

0(S) = max (v,i.qi + • • • + vsh.qh) (2)

subject to  constraints:

{  (’¿191 + • • • + Vif,qh £ /j for i — 1,... , L
E L l  <Im = 1 (3)

qm > 0 for m — 1, . . .  , h

We usually denote [a(S), /?(S)] by F( S , B)  and write B h < S , F( S , B )  >.

Example. For a knowledge base given as follows:

B =  {5! : .4 V- .B  [.9 1.]
5 2 : B V -.D [.8 .9]
53 ■ C  V ->.4 [.6 .8]
54 : D  [.8 1.]

: C  [.2 .4] }



S:  A

Its logical skeleton and basic matrices will be: 
r  =  { S i  : .4  V  ->B

¿>2 : B  V - ' D

S3  : C V —<A
5.1 : D
55 : C }

« 1 11-j « 3 « 4 Ur, It 6 7/7 « 8 U 9 « 1 0 M i l « 1 2

S i (  1 1 1 1 1 1 0 0 0 0 1 1 \

S i 1 1 1 1 0 0 1 1 1 1 0 1

II 1 1 0 o- 1 0 1 1 1 1 1 1

5 4 1 0 1 0 1 1 1 0 1 0 1 0

5 S \  1 1 0 0 1 0 1 1 0 0 0 0

and

*’1 v 2 *3 (>4 V5 l’6 V7 «’8 V9 y10 «11 V 12 «13 «14
Si ( 1 1 1 1 1 1 1 1 0 0 0 0 1 1 ^
¿2 1 1 1 1 1 0 0 0 1 1 1 1 0 1

V -  53
1 1 1 0 0 1 1 0 1 1 1 1 1 1

S4 1 0 0 1 0 1 1 1 1 0 1 0 1 0
s 5 1 1 ' 1 0 0 1 1 0 1 1 0 0 0 0
s 1 1 1 0 1 1 1 0 1 0 0 0 0 0 0 )

2.2. Reduction of linear propramming problems

Let u = (ui , . . .  .«*) be a fc-dimentional boolean vector and u e {0 , 1}. We denote 
u<t = («!, . . .  , r) and call it an (A-+ l)-dimentional extension of «.

We note that each T-consistent vector u G U has at least one extension ucr g V and 
conversely each S-consistent vector v G V is an extension of some vector in U. We 
can partition  the set U into the following subsets:

U = T(S) U F(S) U N(S)  where

T(S) ={Uj- € U\ujl G V and Uj0 £ V'}

F(S) ={uj € U|aj0 G V’ and w_,l ^ V}

N(S) ={uj G U\ujl G V and «,-0 G V} = (U \  T(S) )\ F(S) .

Example (continued).



T(, \ )  =  {»i =  (1,1,1,1 , 1)T , i/:! =  (1,1,0. I ,0 )r , i<4 =  (1. 1 ,0 ,0 ,0)T , u6 = (1,0,0, l ,0 ) r } 
F(A)  =  {«- =  (0,1, 1,1, l ) 7'. ».8 =  (0. 1,1,0, l ) r . u9 =  (0,1. 1 ,1,0)T, t/io =  (0, 1, 1 ,0 ,0)T ,

»h = ( 1, 0, 1, 1,0)7 , «12 = ( 1, 1, 1, 0,0)T}
N ( A ) =  {(,2 =  ( 1 ,1 ,1 ,0 ,1)T , m5 =  (1,0, 1,1,1)T}

Now let consider two following linear programming problems:

n ( S ) = min  H  pj W
u , £ T {  5 )

¡3(S) = I -  111 in Pj
> ' , € F ( S )

(5)

subject to constraints:

un-lh +• ■•-+ 'iik-Pk £ h !<>r i = 1—  , L 
E ;= i Vj = l _ (6)
Pj > 0 for j  — 1. . . .  , k

T h e  m a j o r  d i f fe rence  b e tw e en  tw o  pai rs  of p r o b le m s  (1), (‘2), (3) a n d  (4), (5), (6) lays in 
t h e  fac t  t h a t  in t h e  fo rmer ,  m in im i z a t i o n  ( m a x i m i z a t i o n )  is d o n e  for t h e  s u m  of all 
v ar iabl es  w i th  c o r r e s p o n d i n g  values  in t h e  last row is 1. b u t  in t h e  l a t e r  it  is d o n e  
for t h e  s u m  of va r ia bl es  w hich  be long  to  " ro u p  7(5 ) .  T h e  i f l a t i o n s h i p  b e tw e e n  t h e m  
is m a d e  c l ea r  in t h e  fo llowing th e o r e m .

Theorem 1. Problems ( 1) — (3) f(2)-(3)J and (4) — (6) ((’>)-(6 )) hare the same solution.

Proof. Let  o j  a n d  o 2 b e  t h e  values  of o(S) given by solving p r o b l e m s  (1) -  (3) an d  
(4) -  (6) re spect ively .  W e  shal l  prove c>i =  a-,.

Suppose that d) is reached at vector (</j....... qh). We define a vector p = (pi , . . .  ,pk)
as iollows:

_  J  7 , „ .  i f  r , „  -  i i j (7 f o r  s o m e  a  e  { 0 , 1 }  a n d  u j  £ T(S) U  F(S)
l J  I  <im i l  u j  £  \ ' ( S )  a n d  v m  =  « , 1 ,  r „  =  u j O

It is easy to see that vector p satisfies conditions (6). and moreover,

h

A 1 — ^ ^  ^  ' l̂ j ,
> n= l  u , £ T ( S )

Therefore a , > cvL,.
Conversely, suimpose th a t  value a 2 is readied at vector (pt ,. ,;»< ). Xow we define

a vector q = (qx........ qm ) as follows:

pj if vm = iijtj lor s o m e  a £ {0,1} a n d  uj £ T(S) U F(S)
9m = { 0 if vm = Uj 1, and uj £ N(S)

Pj if vm = itj0 and Uj £ N(S)



It is obvi ou s  t h a t  vec to r  q sat isfies co n d i t i o n s  (3), a n d  more ove r ,

h

— /*  ̂ P j  ^  ^   ̂ t ’s m Çm  i
U j Ç T ( S )  m = l

T h e r e f o r e  a 2 > «i- T h u s  «i  =  a 2 is proved .  Similar ly,  we ca n  also  p ro v e  t h a t  t h e  
values  of  (J{S) g iven b y  solving p r o b l e m s  (2) -  (3) a n d  (5) -  (6) a r e  t h e  sam e .

Example (c o n t in u ed ) .
So lving p r o b l e m s  (1) -  (3), (2) -  (3), (4) -  (6) a n d  (5) -  (6) for 5  = .4 by t h e  s im p le x

m e t h o d  we  h a v e  t h e  s a m e  p a i r  of a n sw e rs  a (.4) =  0.5, f i (A)  =  0.8.

Corollary 2. Let B be a knowledge base, and S  and S ’ be tiro sentences. I f  T(S)  -  T(S' )
then a (5) = a(S' ) :  and i f  F(S)  = F(S' )  then 0(S)  = (3{S').

Remark. T h e o r e m  1 r e n d e r s  a  slighl reduc t  ion  of  t h e  cost  of  f inding  in te rva l  F(S , B)  
by  l in ea r  p r o g r a m m i n g  m e t h o d .  Indeed ,  t h e  size of p r o b l e m  (4) -  (6) is sm a l l e r  t h a n  
' that  of  p r o b l e m  (1) — (3) s ince  k < h ; moreover  t h e  fo r m u l a t i o n  of  c o n s t r a i n t s  (6) on ly  
re q u ir e s  t h e  fixed set. V of I ' -consis te i i t  vec tor s  of B which d o es  n o t  d e p e n d s  on t h e  
t a r g e t  s e n t e n c e  (in t h e  case of (3). for e ach  new  t a r g e t  we n ee d  a  new  bas ic  m a t r i x ) .

2.3. An approximate solution

L et  cons ide r  t h e  se t  W =  {0, 1. *}L, where'  * s t a n d s  for ”undefined" . E l e m e n t s  
of U' a r e  ca lled  L -d im en t io n a l  e x t e n d e d  b o o l e a n  vecto rs .  Let «  =  ( « i , . . .  , u l ) b e  an  
e x t e n d e d  vec to r .  D e n o te  T” =  S “1 A . . .  A S l L. w h e r e  .S'1 =  5 ,  5° =  -<S (w e w r i t e  also 
5 ) ,  a n d  5* =  true. For  e x a m p l e  if u =  (1,*,0, 1,*) t h e n  r u = S 1 S 3 S 4

Let  us  def ine a  p a r t i a l l y  o rd e r in g  re la t ion  ■< on  {0, 1, *}, speci f ied  b y  ax io m s  
Vf 6 {0,1.*} x ■< j', 0 ^  * a n d  1 < *. T h i s  re la t io n  can  b e  n a t u r a l l y  g en e ra l i z e d  on 
t h e  e l e m e n t s  of  \V.  For u,v  e  we wri te  u < v iff uj ■< tj  for j  =  1 , . . .  ,L.

Let  u £ W.  W e  say t h a t  a bo o lean  vec to r  v £ {0. 1}L is an  i n s t ance  of  w, if v is 
o b t a i n e d  f r om  u by  r ep la c in g  ( i n d e p e n d e n t h  ) each o c c u re n c e  of  * b y  0 or 1. D e n o t e  
by  E'(u)  t h e  set of  all in s t an ce s  of  u a n d  t h e n  p u t  E(u) = E' (u)  n i r, ( R e m e m b e r  U is 
t h e  se t  T -con s is tent  vecto rs ,  so E(u)  is t h e  set of  all [ - c o n s i s t e n t  i n s t a n c e s  of  u).

Let  M  be  a su b s e t  of U'. W e  d e n o t e

E ( M ) =  ( J  £■(«)

an d  no t i ce  t h a t



A vector u e  HT is called a Y-supporting vector  for S if £'(») C T(S) .  Further, if there 
does not exist any other T- supporting vector u' such tha t « ^  u' then we call u a 
maximal V-supporting Victor for 5.

It is evident th a t  if u e T(S)  then I'“ |= 5,  and if u e F(S)  then T" (= ->5» If u e IF is 
T-supporting vector for 5. then Tu |= S; in this case we say that I'u is an impJicant 
of S. If v is maximal T-supporting vector for 5  then Tu is called prime implicant of 
S (expressed through variables S i .........Si.).

A set M  C IT is called a complete s d  of T -s u p p o r t i n g  vec tor s  for S  if E ( \ f )  = T(S).  
From (7), i t  follows t h a t  if Af is complete set of T - su p p o r t i n g  vectors for S then

W e  say  t h a t  M is a 'maximal comph Ir set if it is co m p l e t e  an d  each e l em e n t  of M is 
a m a x i m a l  T - s u p p o r t i n g  ve c to r  for S. N o t e  t h a t  t h e  se t  of all m a x i m a l  T -s u p p o r t i n g  
vec to r s  is m a x i m a l  com ple te .

We say th a t  two vectors u,v e H' are incompatible iff E(u)nE(v )  = %. In o th e r  
words, a and v are incompatible iff there is an index I < / < £ such that either u, = 0 
and = 1 or «,• = 1 and c,; = 0.

Now let M  b e  t h e  se t  of  all m a x i m a l  T -s u p p o r t i n g  vectors  for S. A s u b s e t  of M  is
called reduced iff it contains pairwise incompatible vectors. Let ........Mr} be
the set of reduced subsets of M. From (8) we have

Recall th a t  in the theory of probabilistic logic we have:
(a) a(S i VSo) > m a x ( a ( S \ ), o(So)),
(b) if Si A So is fedse then  a(S i V S2) =  a (S i)  + a (S 2),
(c) o(Si A So) > max(0,  a(S'i) + a (S 2) — 1).

From these facts and (9) we have:

The expression in the  right side of (10) with n(Tu) evaluated by the  right side of (1 h 
can be taken as an approxim ation for o(S).

(8)

( 1 0)

where
( 11)



The upper bound of the interval for 5 ran be calculated as the  lower bound for 
->5, since /3(5) = 1 -  a (-5 ) .

In summary, the approxim ate algorithm for calculation of interval [a(5),/3(5)] con
sists of four steps:

1. Find the set M  of all maximal r-supporting  vectors for 5;
2. Find all maximal reduced subsets of A/, assume they  are
3. Calculate the approximate value for a(5) by expressions given in the right sides 

of (10) and (11);
4. Similarly calculate t lie approxim ate value for o(->5), and take /3(5) = 1 -  a  (->5).

Example (continued).
The maximal r-supporting  vectors for 5 are (1, 1,* .1,*) and (*,*,0,-*,*). They are 

compatible, therefore

o(5) > max  (q (5 i 5 3 5 4), q ( 5 3 )) = max(i) 5, 0.2) = 0.5

The maximal r-snpporting  vectors for ->5 are (0,*,*,*,*) and (*,* ,1,* ,0). They are 
compatible, therefore

q(-i5) > max  (a(5i), a{S3 §5 )) = max(0, 0.2) = 0.2

It means /3(5) = 1 -  0.2 = 0.8 
We note tha t the interval [0.5, 0.8] is exacly what obtained by solving linear pro

gram m ing problems.

3. Probabilistic logic programs

As mentioned above, the proposed appoximation for the entailm ent problem, in 
probabilistic logic requires the set of all maximal r-supporting  vectors for target 
sentence 5. There is a. straightforward way 1o com pute it from the  basic m atrix  for 
T. But this wTay becomes impractical once Y has dozens of sentences, because the 
formulation of the basic m atrix  alone, in general case, has the exponential complex
ity. Naturally, some question rise: is there any way to com pute the set of maximal 
r -supporting  vectors without having the basic m atrix  for r?  At lea^t, for what 
restricted class of knowledge bases the question can be answered positively?

In this section, we consider knowledge base B , logical skeleton V of which is a 
set of disjunctions1 of literals. By interpreting expression < yl(x),[q(x),/3(j-)] > as 
a set {< .4(c), [o(c),/3(c)] > |c is constant symbol }, the database  logic programs and 
knowledge bases of a large number of export systems using first order language

know led g e  p o r t io n  <  5 , [ a ( S ) , / ? ( 5 ) ]  > ,  w here  5  is a  c o n ju n c tio n  o f l i t e r a l s  5  =  B \  A . . .  A B m co u ld  b e  mad» 
fit in  th is  fram ew o rk  by  u s in g  i ts  n e g a tiv e  fo rm  <  -*S, [l — /3 (5 ), 1 — or( -S)] > .  w h ere  -»5 =  -*B i V . . .  V  ~>Bm.



having no function symbol and a finite number of constant symbols could be brought 
back to propositional language. Therefore, they fall into the considered here class.* 

The procedure of computing the set of maximal T—supporting vectors for an atom 
A comprises two stages. Firstly, T is unfolded into Te - a set of definite program
clauses. Then, on the obtained l'e, a modified version of SLD -resolution is ap
plied. We will prove th a t  the proposed algorithm is correct. We use the terms 
definite program clause, definite program, definite goal, resolvent, SLD-derivation,  
SLD-refutation,  and SLD-tree  as defined in [10].

3.1. Unfolding the declared program

For each declared clause Si of T - 5,- : .4i V A 2 V ... V Ak we create 2k new clauses: 
Ai A { , . . .  , Ai_ t , .4,-1- j , . . .  , Ak ,Si for / = 1, . . .  ,k
A~[ — S~ for / = 1, . . .  , k,

where .S’,: are special symbols, which are reserved for naming the clauses. A f  and 
S~ are newly introduced symbols. The set Te of newly created clauses is callod 
unfolded program from T.

Example (continued). Unfolded program will be as follows:
r e = { -4 ~  S i , D ( 1)

B~ -  S i ,A - (2 )
B -  S f (3)
A~ -  5 f (4)
B — S 2 J ) (5)
D~ — s 2 , b - (6 )
D — s 2 (7)
B - -  s ; (S)
c -  ¿3,-4 •(9)

' A - -  s 3 , c - ( 10)
A -  S ĩ ( 11)
c~ ~  $3 ( 12)
D -  s , (13)
D~ ^4 (14)
c — Sĩ, (15)
c~ - s n . (16)

A clause of k literals in F will correspond to 2 k clauses in 1%. For a declared 
program of L clauses, and I literals each, the unfolded program will consist of 2L * I 
clauses. In practice, the numbers of literals in a clause of knowledge bases are often 
limited to small enough constant. If the number of literals in declared clauses is 
bounded then the size of unfolded programs is linear proportional to one of declared 
programs.



3.2. Algorithm for computing a set of r-supporting vectors

Formally, Te is a def in i te  logic p r o g r a m ,  we  ca n  a p p l y  S L D - r e s o lu t io n  to  p ro ve  a 
clause.  We will m o d i fy  it as follows to  find t h e  se t  of  T - s u p p o r t i n g  vecto rs .

+  Each resolvent will be checked against contradiction i.e. the simultaneous 
presence of a complementary pair of either normal literals A and A ~ , or special 
literals S  and S ~ . If found, stop.

-f Skip subgoa.1 which is a special literal .s', or S ~ .

W ith  such modifications, the final resolvent for a finite2 derivation will fall into 
one of three categories:

+  Success: when all remained subgoals are special literals.

+  Failure of type 1: when the selected sub-goal can not match with an\ head of 
program clause of r f.

+  Failure of type 2: when the contradiction found in the resolvent.

We call t h e  m od i f i ed  S L D -re so lu t i o n  PSLD- r es o l u t i on .

Let target sentence S be the single atom  A.  After applying P S L D - resolution for 
r e U {*- ,*1}. we construct for each success resolvent R a success vector v = (rly. .. ,vt)T 
where:

' 1, if Si e R 
i>i = < 0, if S~ £ R 

*, otherwise.

Let V be the  set of success vectors.

Example (continued). Solution

P S L D - t r e e  for r e u { — .4} has  2 success  vectors :  V — {(1,1,*, 1,*), (*,*,0,*,*)}.  N o t e  
t h a t  £’(1 )  =  T(A) .  a n d  m ore ove r  t h e  e l e m e n ts  of V  a r e  m a x i m a l  T - s u p p o r t i n g  for .4

2F or th e  c o n s id e red  c la ss  o f  logic p ro g ra m s , th e re  a re  som e te c h n iq u e s  t h a t  allow  av o id in g  in fin ite  d e r iv a tio n s . See 
[8], [15] fo r ex a m p le .



Ạ

+ - S r , S u B  
Failure II

«- S U Sn, D

-5 i .5 2 .5 4
Success

P S L D - tree for U {<— .-I- } has 2 success vectors: V' =  {(0,*,*,*,*), (*, *, 1. *.0)}. 
Note th a t  E(V')  = F(A) ,  and the elements of V' are maximal I’-supporting for -¡A.

Note th a t  by the  resolution algorithm, we come to the solutions presented in the 
last example of section 2. Now, we will validate the  proposed approxim ate m ethod 
by proving the  correctness of the P S L D - resolution.

Definition. Let v be a t ru th  vector, a s i 7npl i f i cat ion according to v of the unfolded 
program r e(v) is the  set of clauses which contains 5,- provided v(i) = 1, or S~  provided 
v(i') = 0. Then  in the  obtained program, all special literals are deleted.

Example (continued). Let y.= (1, 1,*, 1,*)

<- A~

- 53,53 
Failure II



r e(r) = { , 1  -  B
B~ — A~
B — D 
D~ — B -  
D ^  }

W i t h  iden t i f ica t ion of .4~ a n d  ->.4, it is c l ea r  t h a t  Te(t;) an d  T" a r e  logical ly  eq u i v 
a lent .

Theorem 3. S o u n d n e s s  an d  co m p le ten e s s  of t h e  P SL D -reso lu t ion .
The set V of  consistent success vectors yielded by application of  PSLD-resolution  

fo r  r e U { — .4} is complete: and contains all prime iniplicants o f  A i.e F ( \ r) = T ( A ).

Proof. O u r  p ro o f  is ba sed on t h e  soundess  a n d  co m p le t en e s s  of t h e  re so lu t io n  p r i n 
c iple  j)roved e l sew here  (see [10] for e x a m p le ) .

Soundness: F { V ) C T ( A )
Let  f,: £ E ( V ). By def in i t ion  of F(V) ,  t h e r e  is a success  vec to r  v w 1i k . I i has  

as a co ns i s t en t  g ro u n d  in s tance .  T h e  success  de r iv a t io n  of P.S'/,/.)-r e so lu t ion  for 
\ \  U {— A} m a y  be re duced  to a  n o rm a l  success  S I . I ) - de ’ ivat ion for Fe( f<)VJ {*- .!}. 
By t h e  s o u n d n e s s  of re so lu t ion  principle we have  F,(e) |= 1. S ince  r, is a Consistent  
in s t a n c e  of r we have r f(r,) |= Ff(r). I herefo re  I'^(r,-) .4. It m e a n s  i, £ 7(A).

Completeness. V'(.l) c  F(l')
Let I £ T(A) .  By def in i t ion F' |= A.  or  Fe(/) ! = .4. B y  t h e  c o m p le t e n e s s  of ,S7./> 

reso lu t ion .  there1 is a r e fu t a t i o n  for F,(/)U{— A}.  T h e  c o r r s p o n d i n g  d e r iv a t io n  in t h e  
PSt. / M r e e  for F,U{-- .4} will t e r m i i ’-' te wi th a success  resolvent which c o r r e s p o n d s  
to  a success  ve c to r  i. t is one  of consis ten! g r o u n d  in s t an c e s  ol r. It m e a n s  t £ £'(V/ ). 
M oreover  if / is a m ax im a]  F-support ing veclor .  t hen  by th e  same- a r g u m e n t  we can 
c o n c lu d e  t h a t  t is in V\ Q.K. l ) .

4. Conclusion and discussion

1 lie goal ol th is  p a p e r  lias been to  p ro v ide  an  a p p r o x i m a t e  m e t h o d  for solving  t h e  
en t a i lm en t  p r o b l e m  in t h e  in te rva l -v alued  p ro b ab i l i s t ic  logic. T h e  p r o b l e m  c o n s i d 
ered in t h e  f r am ew o rk  of Ni lsson 's  s e m an t i c s  a m o u n t s  to  tw o l inea r  p r o g r a m m i n g  
p r o b l e m s  which ar e  »usually of  very large  size. T h e  key idea  of  o u r  a p p r o x i m a t e  
a l g o r i t h m  is to  find for a t a rg e t  s en ten ce  S, given a k n o w led g e  b as e  £> w i th  logical  
skel e ton F, t h e  se t  M  of  all T - su p p o r t i n g  vec tor s  for .s' a n d  t h e  set M  of  all m a x i m a l  
r e d u ced  su b s e t s  of M.  F ro m  set M  we can  ca lc u l a t e  eas ily  a  bellow- a p p r o x i m a t e  
value  for t h e  lower  b o u n d  of t in '  t r u t h  p r o b a b i l i t y  of S. T h i s  a p p o x i m a t e  m e t h o d  
al lows us to  avoid  l inear  p r o g a m m i n g  p ro b l e m s  of l arge  sizes. I t  is s h o w n  to  b e  very  
efficient for p ro b a b i l i s t i c  logic p r o g r a m s ,  i.e..  w h e n  logical  skel e t ons  of  k n o w led g e



bases are usual logic program. In this case the set M  of T-supporting vectors Ibi
s' can be found by applying SL/> resolution for a certain extention of T. The solu
tion obtained by the  proposed method, as has been shown by our experiments, are 
very closed to - and in many cases, are coincided with the results given by solving 
corresponding linear programming problems.

To represent bases of knowledge under uncertainty, a set of propositional sentences 
weighted with two values in the unit interval was used bv m any researchers prior to 
us [1]> [5]i [7] and [16]. But the syntax may be only thing shared by those approaches. 
The semantics underlying the weights-numbers differ from one to another. The rule 
of uncerta in ty 'p ropagation  in the support logic programming [1.2,3] is justified by 
voting model and fuzzy set. Neccesity-valued knowledge base [5] has fuzzy theory 
semantics. Among probabilistic approaches [13], [16] and [7], the distinguishing 
feature of our is preserving the uniform (declarative) style of trea tm ent for "ru le” and 
’’fact” knowledge of logic programming. Here, we do not have to invent an explicit 
mechanism of uncertainty propagation. In our method, the classic machinery of 
resolution is exploited in-lead.

■The accuracy of an approxim ate method is always a vital question. Assumed 
Nilsson’s semantic, the interval found by linear programming method is the best, 
( tightest), it would be intersting to ask a question: what relation the interval calcu
lated by proposed algorithms forms with the tightest one. At this moment, we are 
not able to provide a absolute estimation except, that the later lays inside the former. 
But we have an evidence that the accuracy of our method is good comparatively with 
proposed in literature rules of probability propagation. In [7], Frisch and Haddawy 
presented a comprehensive set of rules which had inherited many proposed in ealier 
works. These rules work with conditional probability. It is interesting to note that if 
we reduce them  to unconditional! cases, they could be modeled by our m ethod, i.e, 
they can be derived as special cases of our algorithms. It means th a t  with restriction 
to unconditional probabilities our method would provide be t te r  approximation.

The serious estimation of this approxim ate method is a subject of our further 
work.
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Abstract

This paper presents an approximate method for  the probabilistic cntailmeu t problem 
ih knowledge basts when a portion of  knowledge is given by a sentence in propo
sitioned logic accompanied with an interval representing its truth probability. Tin .> 
method reduces the entailme nt problem to one o f  finding  ”prime im plica nts" o f  the 
target se ntence expressed through sentences in the given knowledge base. It is shown 
that in the case o f  probabilistic logic programs the s i t  o f  such prime implicants can 
be found  by using the SLD-resolution method fo r  usual definite logic programs.


