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A b s t r a c t .  In th is paper we prove some additional p roperties of keys and  superkeys for 
re la tion  schemes. Basing on these properties, some algorithm s finding keys for re la tion  
schemes are im proved and the ir com plexities are estim ated.
Finally, some rem arks on the transla tions of relation  schemes are also given.

1 . INTRODUCTION

The relation model was first introduced by E .F . Codd in June 1970, in his fa
mous paper A relational model of data for large shared data banks [ 1 ]. Its objective 
was to perm it a formal description of the different problems encountered.

We here recall some important notions and results about the relational model.
The notation R { A i, A2,..., A n), where fi =  {^41 , A 2 ,..., A n} will stand for 

the^relation scheme R  defined on the attributes 0 . R  expresses a connection 
between the attributes of fi.

’An extension of a relation scheme R  defined on the set of attributes fi, is a 
subset of the Cartesian product of D 1 , D 2 ,..., D n where D{ is the domain of the 
possible values for the attribute A\.  The extension r of a relation scheme R  is a 
possible realization. We also call it occurrence.

An extension r of a relation scheme can be represented as a table where each 
column corresponds to an attribute and each line to a tuple.

A constraint is a condition defined either on a relation (intra-relation), or 
between relations (inter-relation). The test of validity can be done algorithmically 
on the extension of a relation. Let R  be a relation scheme on the set of attributes 
satisfied by R.  Then R  is also used to denote a relation scheme.

The functional dependencies (FD) are a particular class of constraints
We say that Y  is functionally dependent on X, with X ,  Y  C fi if and only if:

Vr € ¿2, Vi, s G r : i[X] =  b[X] =* t[Y] = s[Y]

We note X  —► Y . We also say that X  determines Y .



In the following, we will consider as constraints only the functional dependen
cies. Let F  be a set of functional dependencies where each FD of F  holds in R , 
R ( n , F )  F is the relation scheme.

From a set of functional dependencies, others, can be obtained by Arm strong’s 
axioms, and other inference rules can be derived from these axioms.

A rm strong’s axioms are:
Let X, Y, Z  C n

Reflexivity : I f F C X ,  then X  -» Y  
Augmentation: If X  —* Y  then X Z  —> Y Z  
Transitivity: if X  —► Y  and Y  —► Z  then X  —» Z

The following rules are easily obtained from Armstrong’s axioms:
Union: If X  —> Y  and X  -> Z then X  -> Y Z  
Pseudo-transitivity: If X  —» Y  and Y W  —> Z  then X W  —> Z  
Decomposition: If X  —► Y  and Z C Y  then X  —> Z

Let F  be a set of functional dependencies. The closure F + of F  is the set 
containing F  and all the functional dependencies that can be derived from Arm
strong’s axioms.

Let X  C fl, the closure of X  with respect to a set of functional dependencies 
F  is the set X p ,  where:

x+ =  { a \ a  e n ,  (x —► A) e  f +}

We know tha t X  —► Y  is obtained by Armstrong’s axioms if and only if Y  C X p ,
i.e.

X  ^> Y  e F + & Y  C X F+ •

See [2] for a proof.

Let n be a set of attributes and F  a set of functional dependencies over fi

F = {Lk -> Rk\Lk n Rk = 0, Lk, Rk C 
L  =  ULk and R  =  UR^ *

Let X  C H, Beeri and Bernstein [3] proposed a linear time algorithm to 
compute Xj£.

A lgorithm :

1) Establish the sequence X^0), X ^ \  ..., as follows:



x(°) =  X

X (t+1) =  X [i) y  (URkj 
(Lk —■► Rk) £ F  

Lk C CW

2) It is obvious that:

x °) c  x(1) ç  ••• ç  x (t) ç  ••• ç  n

Since fi is a finite set, there exists a smallest non negative integer such that

= X (t+1) A

3) We have X + = X (t}.
Let S — (fl,F ) be a relation scheme, fl =  {A \ ,  A 2 ,..., A n}. A subset X  of fi 

is called a key for S  if X  satisfies the following two conditions:
1 . (X A x A * . . .A n) G F+ An)
2. Vy, F  C X, {Y - + Ax A 2 ... An) £ F+

The subsets X  of fi satisfying the first condition are called superkeys.
Let F  be a set of functional dependencies:

" F — {Li —*• Ri | i =  1,..., k, L i , i2j C fi}
L =  Ul/i t =  1 ,..., k 

J i? =  \JRi i = 1 ,..., k
W ithout loss of generality, we will assume in this paper that:

Vz =  1,..., k, Li n  Ri = 0

. 2 . PROPERTIES

The following properties and lemmas are obvious:

P roperty  1. Ff U F2+ C (Fi U F2) + .

P roperty  2. . ((X ^  )£2 C X£iUJV

Remark: X ^ uFo C ((X^ ) £ 2 is not always true. For example, let:
Fi = {A -* B, B ->C, D —> E} 
F2 = {A —> D}
Suppose that: X  =  {A}



Then X + =  {A, B, C}
(X + )+  = { A ,  B , C, D}  

* £ uf2 =  B, C, D t E).

C orollary 1. I f  Fx C F2„ then (X+ )+ =  (X + )+ -  X+

Lem m a 1. Fx C F2 => V»\ X ^  C X<£

C orollary 2. Fi C F2 =>• X̂ T C Xp2

Lem m a 2. Lei 5  =  (H,F) 6e a relation scheme, and X , Y  C (], i/ien

(xy)+ = (x+ u y)+ = (x u y+)+

See the proof in [4].

C orollary 3. Let X  C fi
X  U (0  — R) is a superkey of S  = (fi, F) ■€> F ' = Q 

With F> = F  ~ { L k ^  R k \(Lk -► R k) G F, L k C (X u  (n -  J2))j.

T heorem  1. Let X ,  Y  C fl, X  C Y  and F  be a set of functional dependencies 
over fi. We define F '  a set of functional dependency as:

F '  = F  — { L k —> R k \(Lk -> R k) e  F, L k C X+}, so F +  -  (X+ U F ) +

Proof. We first show that: (Xj£ U y)£ C Yp .
Since X C Y  then

y +  =  (xy)+ =  (x+ u y)+

By lemma 2 , from F' C F  we get

(x+uy)+ c (x+uy)+

So
(x+uy)+cy+

We show tha t Yp  C uy) + , by induction on the order of iteration in the 
algorithm for computing the closure of Y  with respect to F.

For i =  o, ŷ 0) =  yc(x f+u y)J.



Suppose the claim is true till i, i.e, Y P  C C-x? U Y )  + .

Let A e  y £ +1).

If A  G Yp  ̂ then by the inductive hypothesis, we have A  € (X p  U Y ) p .

If A  ^  Yp%) =>• 3 (Kk —■► -Rfc) £ F  with A € Rk and Lk C Y p \  so by the 
inductive hypothesis, we have Lk £ (x+u y )+ .

If Ljk —> Rk) €j{F ~ F ') then Lk Q X p ,  so we have A £ Rk C X F and thus
A G ( X + U F )  + . .

If (L* -> #fc) e  f 1', since Lk C (X ^ u y )£  then A e  R k C (/,*)£ C (X ^ u y )
So y^l+1) C (X+ U y ) J .  Therefore y +  C (X+ U y ) J  
Finally: Y+  =  (X+ U Y)+ .

L em m a 2. X ^  U X ^  C X FiUF2 .

' Proof. Since Fi C ^  U F2 and F2 C ^  U ,F2 then by Corollary 2, we have

— ^F,UF2> Xp2 c  X ^iUF2

S o X +  u * +  c i + i B .

Remark: X p iUF  ̂ C X Fi U X Fa is not always true. For example, let:
„F i =  {>!-*.£?, B -> C, D -* E},  F2 = {A —► D}.  Suppose X  =  {A, B, C}.  

x } ,  = {A,  D)
 ̂AT+ U X +  =  {A, B, C , D }

= { ¿ . S .  C. A  £ >

T h e o re m  2. Lei 5  =  (fI,F ) 6e a relation scheme and X  C fi a key of S .  Then:

(n  — R) c  x c  (n -  R) u ( ( l  n  i?) -  (n  -  ¿2)+)

Proof. From a result of Thuan and Bao [5], we know that if X  is a key then:

(n -  R) C X  C (n -  R) U (L n  tf)

To show that: (fi — R)  C X  C (fi — 72) U ((L fl /?) — (fi — R)p) ,  it is sufficient to 
show that:

x u { { n - R ) + - { n - R ) )  = 0  

Suppose not, that is 3X, such that X  fl ((fi — R) p  — (fi — R)) ^  0.



Let A x g  ( i n  ( ( n  - J 2) j  -  (fi - R ) ) )
=>• Ai  G X  and A  ^  (fi — R)  and A\  G (fi — R)p
=> Ai  £ X  and Ai  (fc (fi — R)  and ((fi — / ? ) —»• Ai) G F +
=> (fi -  R)  C X  -  and ((n -  i2) -> G F+
= > { X -  { A ^  - + ( n -  R))  G F+ and ((fi -  R ) -> A i) G F+ 
= > { X - { A l } - * A 1) e F + .

Since A\  G X  and (X — {.Ai} —»• ^4i) G F + then by a lemma in [5], X  is not 
a key, which is contradiction.

So X  n  ((H — R) p  — (fi — i?)) =  0. And then:

(fi -  R)  C X  C (fi -  R) U {{L n  R) -  (fi -  R)+)

E .g .: Let’s have the relation scheme ({a, b, c, g, h} , F) ,  with: ^
F  =  {a —> b, b —> c, <7 —> h, h —> 3}
L =  {a, 6, <7, /*.} 
i? =  {6, c, 5 , /1} 
fi — R = {a}
(fi -  R ) ^  = {a, b, c}
L  fl R  =  {b, g, h}
L  n  R  -  (fi -  R)+ = {g, h} C {L fl R)

P ro p e r ty  3. Let S  = (f l ,F) be a relation scheme.
Let L  D R  =  -¿4.12» • • • > -^ln} ^  0 ond (fi — Rj f '  ^  ^  •
TTien VAifc G ( I d  R),  ( ( f i^  R)  U {L n R)) — {.¿ifc} ts a superkeg of S .

Proof. To show that G {L n  R),  ((fi  — R) U (L fl R)) — {^4u} is a superkey
of S,  we will suppose the opposite, that is: BAip G {L fl R)  such that:
((fi -  R)  U (L Pi R))  — {.Aip} is not a superkey of S,  then the attribute A\p is 
essential to the superkey (fi — R) U {LC\ R),  and therefore, this attribute will exist 
in all the keys of S  included in (fi — R) U (L n R).  Since G =  (fi — R)  is the 
intersection of all the keys [5], then A \ v G (fi — it!), but this contradicts the fact 
th a t A \ p G {L fl R).  So the supposition is false and:

V-Aifc G ( I n  R),  ((fi — R) U {L D R)) — {Aijfc} is a superkey of S.

P ro p e r ty  4. If R ’ = R  -  L then R 'p  = R' and {GR')p = Gp U R ' .

Proof. Since R'  =  R — L  then ^{L\  —> R{) G F, Li  fl R'  =  0.
It is obvious that R 'p  =  R ' .
It is shown th a t {GR')p =  {Gp U jji ? so wg will show thdti



{ G+UR' )  + = G + U R f.
Using the algorithm for computing the closures of X  =  Gp  U R ' , we have:
X(°) = G+ U R'
x ( J) =  x(°)  n (ui2fc)

(Lk —> Rk)  G F 
L k C X(°)

Since L k C X &  =  G~p U R' and V(L,- -»• R{) e  F, L x n R' =  0 so Lk C G+. 
Since Lk Q Gp  then Rk C Gf .
Thus V(La: —► Rk)  G -F where Lk C Gp,  then Rk C G ^.
Therefore X^1) =  X (0) and X F =  Gp  U R'
Finally (G R %  = (G+ U R')+ = G+ U R'

3. REMARKS ON THE ALGORITHMS FOR FINDING KEYS

The improvements we are going to do are based on Theorems 1 and 2 .
Let S  =  (n ,F)  be a relation scheme.
If X  C O a key of S  then by Theorem 2:

„ (n - R )  c x c (n -  r ) u {{l d r ) -  (n -  r )+)

. Since (f2 — R)p  is computed, then we can use it to eliminate attributes from
(L fl R)  without introducing a new computing.

By Theorem 1 , we have:

Y+ = (Xp  U F )  +

w i t h  X , Y  c  n ,  X  C  Y.

F' = F v -  {Lk -» Rk\{Lk -  Rk) G F, Lk C X+}

Let X  =  (n -  R)

Then F'  =  F  — {Lk -> R k \(Lk —>• Rk) G F  and Lk Q (H — i?)F }
• y +  =  ( ( n - i E ) + u y ) +

Here also, since (ft — R)p  is computed, its use can only improve the algorithms.



A lgorithm s o f Thuan and B ao for finding a key

Algorithm 1:
X  : =  ( U - R )  +
if Z = U then 0  — R is the unique key of the scheme 

else X := ( f i  -  R) U ((L n R) -  Z) 
for * : =  1 to | ( L  U R) — Z\ do

if ( Z u ( I - { i t , } ) ) +  =  U then X  : =  X -  {Ati} 
K  := X  : { K  is a key of the scheme 5}

Complexity: The computing of Z requires |n |. |F | operations.
The instruction (Z U {X — {.Ati}))^ =  fi, requiring |f i |.|F '| operations, runs 

|(L n R) — Z\ times.
So the complexity of the algorithm is:

o(|n|. |F | +  | ( L n * )  -z | . | i l | . |F ' | )  ■ ■
$

A lgorith m  o f Lucchesi and Osborn for finding all the keys

An improvement of the algorithm of Lucchesi and Osborn was proposed by 
Thuan [6 , 7]

Let F" = F  -  { h  -+ Ri\{Li —► R t ) e  F  and R x C (R -  L)}.

Algorithm 2: K := {K }
where A; is a key included in the super key (fi — R)  U (L  n R)  and found 
by the algorithm of Thuan and Bao for finding a key (see [5]). 

for each key FD (L j  —► Rj )  G F"  where K{ — Rj  ^  K{  do 
T  := L j  U (Ki -  Rj)  
test := true .
for each key C of K do

if C C T  then test := false 
if test then K := K U {T' }

where T'  is the key included in the sufier key T  and found 
by the second algorithm of Thuan and Bao (see [5]).

Complexity: The computing of K  in the instruction K := {K }  requires:
(|fi|.|.F | +  \L n i2 |.|fi|.|F |) operations.
The instruction C C T requires |fi| operations and runs times.
The instruction K := K U {T '} requires |L fl /2|.|f l |. 1̂ 1 operations and runs

(|/C| — 1) times.



|fi|.|i-| + |L n i î [ . |n | . | f |  + |K|2.|F"|.|n| + (|K| -  i) .|LnÆ |.|n |.|F | =
|n |. |F | + |< |. |n |.( |/c |.( |/c |. |F " | + | i u f i | . |F | ) .

So the complexity of this algorithm is:

0 ( |n |. |F | +  |/C |.|fi|.(|K |.|F" +  |L n iE |.|F |)

We propose now an improvement of this algorithm.

Algorithm 3: K := {K }
where K  is a key included in the super key fi and found 
by the algorithm of Thuan and Bao, after been improved as 
presented in the algorithm 1 . So, Z  =  (fi — R )p  is known 

for each key K{ of K do *
for each FD (Ly —> Rj) £ F"  where K{ — Rj  ^  K{ do 

T := Lj U {Ki -  Rj) 
test := true 
for each key C of K do 

if C ÇT then test =  false 
if test then K := K U {T'}

where T'  is the key included in the super key T  and 
„ found by the algorithm of Thuan and Bao in [5]

improved as follows:

Improvements to the algorithm of Thuan and Bao for finding a key included in a 
super key:

(note th a t Z  = (Q — R)~j? is known)
if T m  = Q — R  then the super key T is also a key, T'  :— T

else T  (0 — R) U ((TcapL fl R) — Z)
for i := 1 to \(T H L R) — Z\ do

if { Z U { T -  {A ti}))+ = fi then T  := T  — { A n }
V  : =  T

. { V  is a key of 5  included in the super key T}
The complexity of this algorithm will then be 0(|(L U  R) — ^ | . |f ï |. | 1 )  instead 

of 0 ( |L U i2 |. |n |. |F |) .

Complexity: We are going to compute the complexity of the algorithm of Lucchesi 
and Osborn, taking into account the improvements.

The computing of K ,  using the improved algorithm of Thuan and Bao, in 
instruction K := { K }  requires ( |fï|. |F | +  \(L n R) — ^ | .| 1 . j) operations.



The instruction C Ç T  requires |0 | operations, and runs |X”|2.|.P''| times.
The instruction K := K U {T 1} requires ( | ( L f l  i?) — Z |.|fi|.|F '|) operations and 

runs (|X" | — 1) times. (T ' found will the improved algorithm of Thuan and Bao for 
finding a key included in a super key). *

|n|.|F| + | (Lni2)-Z|. |n |. |F'|  + |>C|2.|F,/|.|n| + ( | /C |- l) . | (LnJR)-Z | . |nj . |JF'| = 
|n|.|F| +  |/C|.|n|.(|/C|.|F"| +  \{L n r )  -  z\.\F'\).
Thus the complexity of the algorithm is:
0 ( |f i |. |F | + |K|.|fi|.(|JC|.|F"| + \ {L n R) -  Z\.\F'\)) instead of:
o( |n | . |F |  +  |/C|.|n|.(|/C|.|F"| + \ l  n r \ . \ f \ ) .

4. SOME REMARKS ON THE TRANSLATIONS OF RELATION SCHEMES

Definition and properties of the translations .
Let a have relation scheme S = (fi,F ) where: '
F = {Lj —>• R t \L{, R{ Ç fi, i = 1, ..., k }.
Let Z  be a arbitrary subset of 0 . "
We define the relation scheme S = (Ù, F) as follows:
ÎÎ =  Omega — Z  and F =  {Lt — Z —*■ R{ — Z)\(L{ —+ Ri) £ F } .
The scheme S  is called a ^-translation of the scheme S,  and is noted S  = S — Z.  
The FDs of the form 0 —■> 0 and X  —> 0 with X  /  0 and X  Ç 0 , resulting of 

the translation will be deleted from F.
The deletion of the FDs of the form 0 —> X ,  with I  ^  0 and X  Ç fî,is 

impossible because semantically this FD indicates that X  is always determined. 
We will come back with mofè details on this point.

Theorem  3. Let us have the relation scheme S  = (tt ,F) and let Z  G Cl.
If  S  =  S — =  Z  =  (fi — Z, F)  then for all X  Ç (fi — Z), we have:

Z ( X ) t  =  ( ZX) t
Ï

The reader can find a proof of this theorem in [4].

Lem m a 3. If  X  is a super key of the scheme S  then X  — Z  is a super key of the
scheme S . And inversely Y  is a super key of the scheme S  then Y Z  is a super of
scheme S.

See the proof in [4].



C o ro lla ry  5. If S  =  S — Z  then
1- Ks — Kg  •£>■ Z  C (fl — H ) with H  =  UK{1 where k{ £ Ks
2- Ks  =  Z  © Kg Z  C G with G = DKi, where K{ G Ks and Z  © K~  =

{ Z K ^ e K g } .  5

See a proof in [4].

C o ro lla ry  6 . If  :Z  C (n -  H)  and S  = (S -  G) -  Z  then Ks = G © Kg.

See a proof in [4].

L em m a 4. Let S  =  (fl,F ) be a relation scheme and let K  be a key of S  then:

VZ C K  Z + n { K -  Z ) =  0

Proof. Suppose that 3Z C K  where Z £  fl (K  -  Z) ^  0, then 3A G Z £  n  (K  -  Z) 
so A  G Zp  and A  G K  and A Z .

Since A   ̂ Z  then Z  C  [ K — {A}) and since A G Zp  C  ( K  — {j4})£, so 

((K  — {A}) —> {A}) G F + therefore K  is not a key, which is a contradiction.
Thus we have showed that MZ C K, Zp  n (K  — Z) =  0.

P ro p e r ty  5. Let S  = (i l ,F) be a relation scheme and let Y  C fi.
Let ZYp , We define 5 , S = S  -  Z  = (fi,F) .
Then F  can’t contain and FD of the form 0 —> X  with 1 ^ 0 .

Proof. If F = {Li  -> Ri\Ri  C fi, i =  1 , k} then:
F = {Li -  Z  -h. /2t- -  Z\{Li iEt) G F}.
Let (Lt- -»• G F  where L { - Z  = 0, then Lt C Z =  F  + , so (y  Lt) G F + .
Thus, we obtain by transitivity: (Y  -> iE,) G F + therefore R { C Z  = F +  and 

so Ri -  Z  =  0. “  F

Remark:  Let 5  =  (fi, F) be a relation scheme.
F = {Li -* Ri\Ri  c n , i =  1 ,..., k}
Let S = S  -  G -  Z,  with Z  C fi -  H, G = Q -  R.
When searching keys the FDs of the form 0 ->■ X  must be not be deleted from

F.

Proof. Let Li —+ Ri,  with Lt- C G and Ri (¡t G, the FD that will be the form:
0 —► R{ — G — Z  in F,  with Ri — G — Z ^  0.
We are going to show that deleting this FD from F  can involve in finding

super keys instead of keys.



Let i f  be a key of the scheme S = (Cl,F).
Let us take an attribute Aj ,  Aj  € (Ri — G — Z) where V/ =  1,..., n, I ̂

i, Aj  ^  Ri, th a t Aj  is not contained in any other right side but the right side of leof

Li  —> R{ .

Suppose th a t the FD Ri — G — Z  is deleted from F .
Since Aj  £ fl, then Aj  £ Cl — R,  where R  — UR p

(L p —► Rp) £ F

So Aj  belongs to each keys of S  = (Cl,F) and in particular to K.
By Corollary 6, since Z  C Cl — H  then Ks  =  G © Kg, Aj  will belong to each i

key of S  =  (Cl,F}.
Let K  =  GK.
We have G —> Lt , Li —► i?t —»• so G —> Aj,  
moreover Aj  ^  G because Aj £ Ri and G —> GAj .
By reflexivity K  — { A j } —> K  — {Aj } .
By applying the union rule, we obtain:

G ( K - { A , } )  GA j i K  -  {Aj })  '

th a t is K  — {Ay} —> K  showing that KK  is a super key and not a key.
So the FDs of the form 0 —► X, X  ^  0, must not be deleted when searching 

keys.

E.g.: Let us have the relation scheme S = (Cl,F) with:
H =  {a, b, c, d, e, / ,  g,'h}
F  =  {ac —► bg, b —> acd, h —> dfg, adeh —► bcf,  abc —»• d, c f  —> aeg}
L  = {a, b, c, d, e, f ,  h} ~
R  =  {a, 6, c, d , e, / ,  g}
G = Cl — R  = {h}
Let Z  = {<7} C Cl — H  
Let S  = S  -  G -  Z
Cl = {a, b, c, d , e, /}  V
F  =  {ac —> 6, 6 —> acd, 0 —> /d , ade —*■ bcf,  abc d, c f  —* ae}
If we delete the FD 0 —> f d , then when searching the keys of S  we will 

find the following set {cf ,  ade, ace, be, bf },  and thus the keys of S  would be 5 
{cf h,  adeh, aceh, beh, bf h}  while it is obvious that c f h  is a super key of S,  as 
well as adeh, aceh, beh and bfh.

However, if the FD 0 —► f d  is not deleted while searching the keys of S,  we 
will find the set {6, c, ae} and thus {bh, ch, aeh} are the keys of S.



Two remarks about the summary of [4]

1. In step 2 (page 95) the phrase:
“Eliminate from F'  functional dependencies of the form:
0 0, 0 -> X, X  -► 0 (X ±  0)”

must be replaced by this one:
“Eliminate from F'  functional dependencies of the form:
0 —> 0, k  -» 0 (X #  0)”

because by the use of Z  = ( GRr)g to define
5' ='(n',F') = s - z

so in S' ,  the functional dependency 0 —► X  dose not exist (See Property 5).

2. In example 3.2 (page 96), there is errors in calculus.
We have Z  =  (78) + =  7846, instead of Z = (7 8 ^  =  78.
So the final result is the following: K~ =  {2, 3, 15}; Ks = {28, 38, 158}.
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