SOME MORE PROPERTIES AND REMARKS ABOUT KEYS FOR RELATION SCHEME

HO THUAN, SOUAFI SOUAD, MOHAMED BENKADA DJAMILA

Abstract

In this paper we prove some additional properties of keys and superkeys for relation schemes. Basing on these properties, some algorithms finding keys for relation schemes are improved and their complexities are estimated. Finally, some remarks on the translations of relation schemes are also given.

1. INTRODUCTION

The relation model was first introduced by E.F. Codd in June 1970, in his famous paper A relational model of data for large shared data banks [1]. Its objective was to permit a formal description of the different problems encountered.

We here recall some important notions and results about the relational model.
The notation $R\left(A_{1}, A_{2}, \ldots, A_{n}\right)$, where $\Omega=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ will stand for the relation scheme R defined on the attributes $\Omega . \quad R$ expresses a connection between the attributes of Ω.

3An extension of a relation scheme R defined on the set of attributes Ω, is a subset of the Cartesian product of $D_{1}, D_{2}, \ldots, D_{n}$ where D_{i} is the domain of the possible values for the attribute A_{1}. The extension r of a relation scheme R is a possible realization. We also call it occurrence.

An extension r of a relation scheme can be represented as a table where each column corresponds to an attribute and each line to a tuple.

A constraint is a condition defined either on a relation (intra-relation), or between relations (inter-relation). The test of validity can be done algorithmically on the extension of a relation. Let R be a relation scheme on the set of attributes satisfied by R. Then R is also used to denote a relation scheme.

The functional dependencies (FD) are a particular class of constraints
We say that Y is functionally dependent on X, with $X, Y \subseteq \Omega$ if and only if:

$$
\forall r \in R, \forall t, s \in r: t[X]=s[X] \Rightarrow t[Y]=s[Y]
$$

We note $X \rightarrow Y$. We also say that X determines Y.

In the following, we will consider as constraints only the functional dependencies. Let F be a set of functional dependencies where each FD of F holds in R, $R\langle\Omega, F\rangle \mathrm{F}$ is the relation scheme.

From a set of functional dependencies, others, can be obtained by Armstrong's axioms, and other inference rules can be derived from these axioms.

Armstrong's axioms are:
Let $X, Y, Z \subseteq \Omega$
Reflexivity : If $Y \subseteq X$, then $X \rightarrow Y$
Augmentation: If $X \rightarrow Y$ then $X Z \rightarrow Y Z$
Transitivity: if $X \rightarrow Y$ and $Y \rightarrow Z$ then $X \rightarrow Z$
The following rules are easily obtained from Armstrong's axioms:
Union: If $X \rightarrow Y$ and $X \rightarrow Z$ then $X \rightarrow Y Z$
Pseudo-transitivity: If $X \rightarrow Y$ and $Y W \rightarrow Z$ then $X W \rightarrow Z$
Decomposition: If $X \rightarrow Y$ and $Z \subseteq Y$ then $X \rightarrow Z$
Let F be a set of functional dependencies. The closure F^{+}of F is the set containing F and all the functional dependencies that can be derived from Armstrong's axioms.

Let $X \subseteq \Omega$, the closure of X with respect to a set of functional dependencies F is the set X_{F}^{+}, where:

$$
X_{F}^{+}=\left\{A \mid A \in \Omega,(X \rightarrow A) \in F^{+}\right\}
$$

We know that $X \rightarrow Y$ is obtained by Armstrong's axioms if and only if $Y \subseteq X_{F}^{+}$, i.e.

$$
\ddot{X} \leadsto Y \in F^{+} \Leftrightarrow Y \subseteq X_{F}^{+}
$$

See [2] for a proof.
Let Ω be a set of attributes and F a set of functional dependencies over Ω

$$
\begin{aligned}
F & =\left\{L_{k} \rightarrow R_{k} \mid L_{k} \cap R_{k}=\emptyset, L_{k}, R_{k} \subseteq \Omega\right\} \\
L & =\cup L_{k} \text { and } R=\cup R_{k}
\end{aligned}
$$

Let $X \subseteq \Omega$, Beeri and Bernstein [3] proposed a linear time algorithm to compute X_{F}^{+}.

Algorithm:

1) Establish the sequence $X^{(0)}, X^{(1)}, \ldots$, as follows:

$$
\begin{aligned}
& X^{(0)}=X \\
& \cdots \\
& X^{(i+1)}=X^{(i)} \cup\left(\cup R_{k}\right) \\
& \\
& \qquad \\
& \\
& \\
& \quad\left(L_{k} \rightarrow R_{k}\right) \in F \\
& \quad L_{k} \subseteq C^{(i)}
\end{aligned}
$$

2) It is obvious that:

$$
X^{0)} \subseteq X^{(1)} \subseteq \cdots \subseteq X^{(i)} \subseteq \cdots \subseteq \Omega
$$

Since Ω is a finite set, there exists a smallest non negative integer such that

$$
X^{(t)}=X^{(t+1)}
$$

3) We have $X^{+}=X^{(t)}$.

Let $S=\langle\Omega, F\rangle$ be a relation scheme, $\Omega=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$. A subset X of Ω is called a key for S if X satisfies the following two conditions:

$$
\begin{aligned}
& \text { 1. } \left.\left(X \rightarrow A_{1} A_{2} \ldots A_{n}\right) \in F^{+} \mathrm{An}\right) \\
& \text { 2. } \forall Y, Y \subset X,\left(Y \rightarrow A_{1} A_{2} \ldots A_{n}\right) \notin F^{+}
\end{aligned}
$$

The subsets X of Ω satisfying the first condition are called superkeys.
Let F be a set of functional dependencies:

$$
\begin{aligned}
& F=\left\{L_{i} \rightarrow R_{i} \mid i=1, \ldots, k, L_{i}, R_{i} \subseteq \Omega\right\} \\
& L=\cup L_{i} \quad i=1, \ldots, k \\
& R=\cup R_{i} \quad i=1, \ldots, k
\end{aligned}
$$

Without loss of generality, we will assume in this paper that:

$$
\forall i=1, \ldots, k, L_{i} \cap R_{i}=\emptyset
$$

2. PROPERTIES

The following properties and lemmas are obvious:
Property 1. $\quad F_{1}^{+} \cup F_{2}^{+} \subseteq\left(F_{1} \cup F_{2}\right)^{+}$.
Property 2. $\left(\left(X_{F_{1}}^{+}\right)_{F_{2}}^{+} \subseteq X_{F_{1} \cup F_{2}}^{+}\right.$.
Remark: $\quad X_{F_{1} \cup F_{2}}^{+} \subseteq\left(\left(X_{F_{1}}^{+}\right)_{F_{2}}^{+}\right.$is not always true. For example, let:

$$
\begin{aligned}
& F_{1}=\{A \rightarrow B, B \rightarrow C, D \rightarrow E\} \\
& F_{2}=\{A \rightarrow D\} \\
& \text { Suppose that: } X=\{A\}
\end{aligned}
$$

$$
\begin{aligned}
\text { Then } X_{F_{1}}^{+} & =\{A, B, C\} \\
\left(X_{F_{1}}^{+}\right)_{F_{2}}^{+} & =\{A, B, C, D\} \\
F_{F_{1} \cup F_{2}}^{+} & =\{A, B, C, D, E\} . \\
\text { So } \quad F_{F_{1} \cup F_{2}}^{+} & \not \subset\left(X_{F_{1}}^{+}\right)_{F_{2}}^{+} .
\end{aligned}
$$

Corollary 1. If $F_{1} \subseteq F_{2}$, then $\left(X_{F_{2}}^{+}\right)_{F_{1}}^{+}=\left(X_{F_{1}}^{+}\right)_{F_{2}}^{+}=X_{F_{2}}^{+}$
Lemma 1. $\quad F_{1} \subseteq F_{2} \Rightarrow \forall i, X_{F_{1}}^{(i)} \subseteq X_{F_{2}}^{(i)}$
Corollary 2. $F_{1} \subseteq F_{2} \Rightarrow X_{F_{1}}^{+} \subseteq X_{F_{2}}^{+}$
Lemma 2. Let $S=\langle\Omega, F\rangle$ be a relation scheme, and $X, Y \subseteq \Omega$, then

$$
(X Y)_{F}^{+}=\left(X_{F}^{+} \cup Y\right)_{F}^{+}=\left(X \cup Y_{F}^{+}\right)_{F}^{+}
$$

See the proof in [4].

Corollary 3. Let $X \subseteq \Omega$

$$
X \cup(\Omega-R) \text { is a superkey of } S=\langle\Omega, F\rangle \Leftrightarrow F^{\prime}=\emptyset
$$

With $F^{\prime}=F-\left\{L_{k} \rightarrow R_{k} \mid\left(L_{k} \rightarrow R_{k}\right) \in F, L_{k} \subseteq(X \cup(\Omega-R))_{H}^{+}\right.$.
Theorem 1. Let $X, Y \subseteq \Omega, X \subseteq Y$ and F be a set of functional dependencies over Ω. We define F^{\prime} a set of functional dependency as:

$$
F^{\prime}=F-\left\{L_{k} \rightarrow R_{k} \mid\left(L_{k} \rightarrow R_{k}\right) \in F, L_{k} \subseteq X_{F}^{+}\right\}, \text {so } Y_{F}^{+}=\left(X_{F}^{+} \cup Y\right)_{F}^{+}
$$

Proof. We first show that: $\left(X_{F}^{+} \cup Y\right)_{F}^{+} \subseteq Y_{F}^{+}$.
Since $X \subseteq Y$ then

$$
Y_{F}^{+}=(X Y)_{F}^{+}=\left(X_{F}^{+} \cup Y\right)_{F}^{+}
$$

By lemma 2, from $F^{\prime} \subseteq F$ we get

$$
\left(X_{F}^{+} \cup Y\right)_{F}^{+} \subseteq\left(X_{F}^{+} \cup Y\right)_{F}^{+}
$$

So

$$
\left(X_{F}^{+} \cup Y\right)_{F}^{+} \subseteq Y_{F}^{+}
$$

We show that $Y_{F}^{+} \subseteq\left(X_{F}^{+} \cup Y\right)_{F}^{+}$, by induction on the order of iteration in the algorithm for computing the closure of Y with respect to F.

For $i=0, Y_{F}^{(0)}=Y \subseteq\left(X_{F}^{+} \cup Y\right)_{F}^{+}$.

Suppose the claim is true till i, i.e, $Y_{F}^{(i)} \subseteq\left(X_{F}^{+} \cup Y\right)_{F}^{+}$.
Let $A \in Y_{F}^{(i+1)}$.
If $A \in Y_{F}^{(i)}$ then by the inductive hypothesis, we have $A \in\left(X_{F}^{+} \cup Y\right)_{F}^{+}$.
If $A \notin Y_{F}^{(i)} \Rightarrow \exists\left(K_{k} \rightarrow R_{k}\right) \in F$ with $A \in R_{k}$ and $L_{k} \subseteq Y_{F}^{(i)}$, so by the inductive hypothesis, we have $L_{k} \subseteq\left(X_{F}^{+} \cup Y\right)_{F}^{+}$.

If $\left.L_{k} \rightarrow R_{k}\right), \in_{-}\left(F-F^{\prime}\right)$ then $L_{k} \subseteq X_{F}^{+}$, so we have $A \in R_{k} \subseteq X_{F}^{+}$and thus $A \in\left(X_{F}^{+} \cup Y\right)_{F}^{+}$.

If $\left(L_{k} \rightarrow R_{k}\right) \in F^{\prime}$, since $L_{k} \subseteq\left(X_{F}^{+} \cup Y\right)_{F}^{+}$then $A \in R_{k} \subseteq\left(L_{k}\right)_{F}^{+} \subseteq\left(X_{F}^{+} \cup Y\right)_{F}^{+}$.
So $Y_{F}^{(i+1)} \subseteq\left(X_{F}^{+} \cup Y\right)_{F}^{+}$. Therefore $Y_{F}^{+} \subseteq\left(X_{F}^{+} \cup Y\right)_{F}^{+}$
Finally: $Y_{F}^{+}=\left(X_{F}^{+} \cup Y\right)_{F}^{+}$.
Lemma 2. $X_{F_{1}}^{+} \cup X_{F_{2}}^{+} \subseteq X_{F_{1} \cup F_{2}}^{+}$.
$`$ Proof. Since $F_{1} \subseteq F_{1} \cup F_{2}$ and $F_{2} \subseteq F_{1} \cup F_{2}$ then by Corollary 2, we have

$$
X_{F_{1}}^{+} \subseteq X_{F_{1} \cup F_{2}}^{+}, X_{F_{2}}^{+} \subseteq X_{F_{1} \cup F_{2}}^{+}
$$

So $X_{F_{1}}^{+} \cup X_{F_{2}}^{+} \subseteq X_{F_{1} \cup F_{2}}^{+}$.
Remark: $X_{F_{1} \cup F_{2}}^{+} \subseteq X_{F_{1}}^{+} \cup X_{F_{2}}^{+}$is not always true. For example, let:

$$
\begin{aligned}
& F_{1}=\{A \rightarrow B, B \rightarrow C, D \rightarrow E\}, F_{2}=\{A \rightarrow D\} . \text { Suppose } X=\{A, B, C\} . \\
& X_{F_{2}}^{+}=\{A, D\} \\
& X_{F_{1}}^{+} \cup X_{F_{2}}^{+}=\{A, B, C, D\} \\
& X_{F_{1} \cup F_{2}}^{+}=\{A, B, C, D, E\} \\
& X_{F_{1} \cup F_{2}}^{+} \not \subset X_{F_{1}}^{+} \cup X_{F_{2}}^{+} .
\end{aligned}
$$

Theorem 2. Let $S=\langle\Omega, F\rangle$ be a relation scheme and $X \subseteq \Omega$ a key of S. Then:

$$
(\Omega-R) \subseteq X \subseteq(\Omega-R) \cup\left((L \cap R)-(\Omega-R)_{F}^{+}\right)
$$

Proof. From a result of Thuan and Bao [5], we know that if X is a key then:

$$
(\Omega-R) \subseteq X \subseteq(\Omega-R) \cup(L \cap R)
$$

To show that: $(\Omega-R) \subseteq X \subseteq(\Omega-R) \cup\left((L \cap R)-(\Omega-R)_{F}^{+}\right)$, it is sufficient to show that:

$$
X \cup\left((\Omega-R)_{F}^{+}-(\Omega-R)\right)=\emptyset
$$

Suppose not, that is $\exists X$, such that $X \cap\left((\Omega-R)_{F}^{+}-(\Omega-R)\right) \neq \emptyset$.

Let $A_{1} \in\left(X \cap\left((\Omega-R)_{F}^{+}-(\Omega-R)\right)\right)$

$$
\begin{aligned}
& \Rightarrow A_{1} \in X \text { and } A \notin(\Omega-R) \text { and } A_{1} \in(\Omega-R)_{F}^{+} \\
& \Rightarrow A_{1} \in X \text { and } A_{1} \notin(\Omega-R) \text { and }\left((\Omega-R) \rightarrow A_{1}\right) \in F^{+} \\
& \Rightarrow(\Omega-R) \subseteq X-\left\{A_{1}\right\} \text { and }\left((\Omega-R) \rightarrow A_{1}\right) \in F^{+} \\
& \Rightarrow\left(X-\left\{A_{1}\right\} \rightarrow(\Omega-R)\right) \in F^{+} \text {and }\left((\Omega-R) \rightarrow A_{1}\right) \in F^{+} \\
& \Rightarrow\left(X-\left\{A_{1}\right\} \rightarrow A_{1}\right) \in F^{+} .
\end{aligned}
$$

Since $A_{1} \in X$ and $\left(X-\left\{\overline{\bar{A}_{1}}\right\} \rightarrow A_{1}\right) \in F^{+}$then by a lemma in [5], X is not a key, which is contradiction.

So $X \cap\left((\Omega-R)_{F}^{+}-(\Omega-R)\right)=\emptyset$. And then:

$$
(\Omega-R) \subseteq X \subseteq(\Omega-R) \cup\left((L \cap R)-(\Omega-R)_{F}^{+}\right)
$$

E.g.: Let's have the relation scheme $\langle\{a, b, c, g, h\}, F\rangle$, with:
$F=\{a \rightarrow b, b \rightarrow c, g \rightarrow h, h \rightarrow g\}$
$L=\{a, b, g, h\}$
$R=\{b, c, g, h\}$
$\Omega-R=\{a\}$
$(\Omega-R)_{F}^{+}=\{a, b, c\}$
$L \cap R=\{b, g, h\}$
$L \cap R-(\Omega-R)_{F}^{+}=\{g, h\} \subset(L \cap R)$
Property 3. Let $S=\langle\Omega, F\rangle$ be a relation scheme.
Let $L \cap R=\left\{A_{11}, A_{12}, \ldots, A_{1 n}\right\} \neq \emptyset$ and $(\Omega-R)_{F}^{+} \neq \Omega$.
Then $\forall A_{1 k} \in(L \cap R),\left(\left(\Omega_{-}-R\right) \cup(L \cap R)\right)-\left\{A_{1 k}\right\}$ is a superkey of S.
Proof. To show that $\forall A_{1 k} \in(L \cap R),((\Omega-R) \cup(L \cap R))-\left\{A_{1 k}\right\}$ is a superkey of S, we will suppose the opposite, that is: $\exists A_{1 p} \in(L \cap R)$ such that:
$((\Omega-R) \cup(L \cap R))-\left\{A_{1 p}\right\}$ is not a superkey of S, then the attribute $A_{1 p}$ is essential to the superkey $(\Omega-R) \cup(L \cap R)$, and therefore, this attribute will exist in all the keys of S included in $(\Omega-R) \cup(L \cap R)$. Since $G=(\Omega-R)$ is the intersection of all the keys [5], then $A_{1 p} \in(\Omega-R)$, but this contradicts the fact that $A_{1 p} \in(L \cap R)$. So the supposition is false and:
$\forall A_{1 k} \in(L \cap R),((\Omega-R) \cup(L \cap R))-\left\{A_{1 k}\right\}$ is a superkey of S.
Property 4. If $R^{\prime}=R-L$ then $R_{F}^{\prime+}=R^{\prime}$ and $\left(G R^{\prime}\right)_{F}^{+}=G_{F}^{+} \cup R^{\prime}$.
Proof. Since $R^{\prime}=R-L$ then $\forall\left(L_{1} \rightarrow R_{i}\right) \in F, L_{1} \cap R^{\prime}=\emptyset$.
It is obvious that $R_{F}^{+}=R^{\prime}$.
It is shown that $\left(G R^{\prime}\right)_{F}^{+}=\left(G_{F}^{+} \cup R^{\prime}\right)_{F}^{+}$, so we will show that:
$\left(G_{F}^{+} \cup R^{\prime}\right)_{F}^{+}=G_{F}^{+} \cup R^{\prime}$.
Using the algorithm for computing the closures of $X=G_{F}^{+} \cup R^{\prime}$, we have:
$X^{(0)}=G_{F}^{+} \cup R^{\prime}$
$X^{(1)}=X^{(0)} \cap\left(\cup R_{k}\right)$
$\left(L_{k} \rightarrow R_{k}\right) \in F$

$$
L_{k} \subseteq X^{(0)}
$$

Since $L_{k} \subseteq X^{(0)}=G_{F}^{+} \cup R^{\prime}$ and $\forall\left(L_{i} \rightarrow R_{i}\right) \in F, L_{1} \cap R^{\prime}=\emptyset$ so $L_{k} \subseteq G_{F}^{+}$.
Since $L_{k} \subseteq G_{F}^{+}$then $R_{k} \subseteq G_{F}^{+}$.
Thus $\forall\left(L_{k} \rightarrow R_{k}\right) \in F$ where $L_{k} \subseteq G_{F}^{+}$, then $R_{k} \subseteq G_{F}^{+}$.
Therefore $X^{(1)}=X^{(0)}$ and $X_{F}^{+}=G_{F}^{+} \cup R^{\prime}$
Finally $\left(G R^{\prime}\right)_{F}^{+}=\left(G_{F}^{+} \cup R^{\prime}\right)_{F}^{+}=G_{F}^{+} \cup R^{\prime}$

3. REMARKS ON THE ALGORITHMS FOR FINDING KEYS

The improvements we are going to do are based on Theorems 1 and 2.
Let $S=\langle\Omega, F\rangle$ be a relation scheme.
If $X \subseteq \Omega$ a key of S then by Theorem 2:

$$
-\quad(\Omega-R) \subseteq X \subseteq(\Omega-R) \cup\left((L \cap R)-(\Omega-R)_{F}^{+}\right)
$$

Since $(\Omega-R)_{F}^{+}$is computed, then we can use it to eliminate attributes from ($L \cap R$) without introducing a new computing.

By Theorem 1, we have:

$$
Y_{F}^{+}=\left(X_{F}^{+} \cup Y\right)_{F}^{+}
$$

with $X, Y \subseteq \Omega, X \subseteq Y$.

$$
F^{\prime}=F v-\left\{L_{k} \rightarrow R_{k} \mid\left(L_{k} \rightarrow R_{k}\right) \in F, L_{k} \subseteq X_{F}^{+}\right\}
$$

Let $X=(\Omega-R)$
Then $F^{\prime}=F-\left\{L_{k} \rightarrow R_{k} \mid\left(L_{k} \rightarrow R_{k}\right) \in F\right.$ and $\left.L_{k} \subseteq(\Omega-R)_{F}^{+}\right\}$
$Y_{F}^{+}=\left((\Omega-R)_{F}^{+} \cup Y\right)_{F}^{+}$
Here also, since $(\Omega-R)_{F}^{+}$is computed, its use can only improve the algorithms.

Algorithms of Thuan and Bao for finding a key

Algorithm 1:

$$
\begin{aligned}
& X:=(\Omega-R)_{F}^{+} \\
& \text {if } Z=\Omega \text { then } \Omega-R \text { is the unique key of the scheme } \\
& \text { else } X:=(\Omega-R) \cup((L \cap R)-Z) \\
& \text { for } i:=1 \text { to }|(L \cup R)-Z| \text { do } \\
& \quad \text { if }\left(Z \cup\left(X-\left\{A_{t i}\right\}\right)\right)_{F}^{+}=\Omega \text { then } X:=X-\left\{A_{t i}\right\}
\end{aligned}
$$

$$
K:=X:\{K \text { is a key of the scheme } S\}
$$

Complexity: The computing of Z requires $|\Omega| \cdot|F|$ operations.
The instruction $\left(Z \cup\left(X-\left\{A_{t i}\right\}\right)\right)_{F}^{+}=\Omega$, requiring $|\Omega| \cdot\left|F^{\prime}\right|$ operations, runs $|(L \cap R)-Z|$ times.

So the complexity of the algorithm is:

$$
O\left(|\Omega| \cdot|F|+|(L \cap R)-Z| \cdot|\Omega| \cdot\left|F^{\prime}\right|\right)
$$

Algorithm of Lucchesi and Osborn for finding all the keys

An improvement of the algorithm of Lucchesi and Osborn was proposed by Thuan $[6,7]$

Let $F^{\prime \prime}=F-\left\{L_{1} \rightarrow R_{1} \mid\left(L_{1} \rightarrow R_{1}\right) \in F\right.$ and $\left.R_{1} \subseteq(R-L)\right\}$.
Algorithm 2: $K:=\{K\}$
where k is a key included in the super key $(\Omega-R) \cup(L \cap R)$ and found by the algorithm of Thuan and Bao for finding a key (see [5]).
for each key FD $\left(L_{j} \rightarrow \underline{R}_{j}\right) \in F^{\prime \prime}$ where $K_{i}-R_{j} \neq K_{i}$ do

$$
\begin{aligned}
& T:=L_{j} \cup\left(K_{i}-R_{j}\right) \\
& \text { test }:=\text { true }
\end{aligned}
$$

for each key C of \mathcal{K} do
if $C \subseteq T$ then test := false
if test then $\mathcal{K}:=\mathcal{K} \cup\left\{T^{\prime}\right\}$
where T^{\prime} is the key included in the super key T and found by the second algorithm of Thuan and Bao (see [5]).

Complexity: The computing of K in the instruction $K:=\{K\}$ requires:
$(|\Omega| \cdot|F|+|L \cap R| \cdot|\Omega| \cdot|F|)$ operations.
The instruction $C \subseteq T$ requires $|\Omega|$ operations and runs $|K|^{2} \cdot\left|F^{\prime \prime}\right|$ times.
The instruction $\mathcal{K}:=\mathcal{K} \cup\left\{T^{\prime}\right\}$ requires $|L \cap R| \cdot|\Omega| \cdot|F|$ operations and runs $(|K|-1)$ times.

$$
\begin{gathered}
|\Omega| \cdot|F|+|L \cap R| \cdot|\Omega| \cdot|F|+|\mathcal{K}|^{2} \cdot\left|F^{\prime \prime}\right| \cdot|\Omega|+(|\mathcal{K}|-1) \cdot|L \cap R| \cdot|\Omega| \cdot|F|= \\
|\Omega| \cdot|F|+|\mathcal{K}| \cdot|\Omega| \cdot\left(|\mathcal{K}| \cdot\left(|\mathcal{K}| \cdot\left|F^{\prime \prime}\right|+|L \cup R| \cdot|F|\right) .\right.
\end{gathered}
$$

So the complexity of this algorithm is:

$$
O\left(|\Omega| \cdot|F|+|\mathcal{K}| \cdot|\Omega| \cdot\left(|\mathcal{K}| \cdot\left|F^{\prime \prime}+|L \cap R| \cdot\right| F \mid\right)\right.
$$

We propose now an improvement of this algorithm.
Algorithm 3: $\mathcal{K}:=\{K\}$
where K is a key included in the super key Ω and found by the algorithm of Thuan and Bao, after been improved as
presented in the algorithm 1. So, $Z=(\Omega-R)_{F}^{+}$is known for each key K_{i} of K do for each FD $\left(L_{j} \rightarrow R_{j}\right) \in F^{\prime \prime}$ where $K_{i}-R_{j} \neq K_{i}$ do
$T:=L_{j} \cup\left(K_{i}-R_{j}\right)$
test $:=$ true
for each key C of K do
if $C \subseteq \mathrm{~T}$ then test $=$ false
if test then $\mathcal{K}:=\mathcal{K} \cup\left\{T^{\prime}\right\}$
where T^{\prime} is the key included in the super key T and found by the algorithm of Thuan and Bao in [5] improved as follows:

Improvements to the algorithm of Thuan and Bao for finding a key included in a super key:
(note that $Z=(Q-R)_{F}^{+}$is known)
if $T m=Q-R$ then the super key T is also a key, $T^{\prime}:=T$

> else $T:=(\Omega-R) \cup((T \operatorname{cap} L \cap R)-Z)$
> \quad for $i:=1$ to $|(T \cap L \cap R)-Z|$ do
> \quad if $\left(Z \cup\left(T-\left\{A_{t i}\right\}\right)\right)_{F}^{+}=\Omega$ then $T:=T-\left\{A_{t 1}\right\}$
$T^{\prime}:=T$
$\left\{T^{\prime}\right.$ is a key of S included in the super key $\left.T\right\}$
The complexity of this algorithm will then be $O\left(|(L \cup R)-Z| \cdot|\Omega| \cdot\left|F^{\prime}\right|\right)$ instead of $O(|L \cup R| \cdot|\Omega| \cdot|F|)$.

Complexity: We are going to compute the complexity of the algorithm of Lucchesi and Osborn, taking into account the improvements.

The computing of K, using the improved algorithm of Thuan and Bao, in instruction $\mathcal{K}:=\{K\}$ requires $\left(|\Omega| \cdot|F|+|(L \cap R)-Z| \cdot|\Omega| \cdot\left|F^{\prime}\right|\right)$ operations.

The instruction $C \subseteq T$ requires $|\Omega|$ operations, and runs $|\mathcal{K}|^{2} \cdot\left|F^{\prime \prime}\right|$ times.
The instruction $\mathcal{K}:=\mathcal{K} \cup\left\{T^{\prime}\right\}$ requires $\left(|(L \cap R)-Z| \cdot|\Omega| \cdot\left|F^{\prime}\right|\right)$ operations and runs $(|\mathcal{K}|-1)$ times. (T^{\prime} found will the improved algorithm of Thuan and Bao for finding a key included in a super key).
$|\Omega| \cdot|F|+|(L \cap R)-Z| \cdot|\Omega| \cdot\left|F^{\prime}\right|+|K|^{2} \cdot\left|F^{\prime \prime}\right| \cdot|\Omega|+(|\mathcal{K}|-1) \cdot|(L \cap R)-Z| \cdot|\Omega| \cdot\left|F^{\prime}\right|=$ $|\Omega| \cdot|F|+|\mathcal{K}| \cdot|\Omega| \cdot\left(|\mathcal{K}| \cdot\left|F^{\prime \prime}\right|+|(L \cap R)-Z| \cdot\left|F^{\prime}\right|\right)$.
Thus the complexity of the algorithm is:
$O\left(|\Omega| \cdot|F|+|\mathcal{K}| \cdot|\Omega| \cdot\left(|\mathcal{K}| \cdot\left|F^{\prime \prime}\right|+|(L \cap R)-Z| \cdot\left|F^{\prime}\right|\right)\right)$ instead of:
$O\left(|\Omega| \cdot|F|+|K| \cdot|\Omega| \cdot\left(|\mathcal{K}| \cdot\left|F^{\prime \prime}\right|+|L \cap R| \cdot|F|\right)\right.$.

4. SOME REMARKS ON THE TRANSLATIONS OF RELATION SCHEMES

Definition and properties of the translations
Let a have relation scheme $S=\langle\Omega, F\rangle$ where:
$F=\left\{L_{i} \rightarrow R_{i} \mid L_{i}, R_{i} \subseteq \Omega, i=1, \ldots, k\right\}$.
Let Z be a arbitrary subset of Ω.
We define the relation scheme $\widetilde{S}=\langle\widetilde{\Omega}, \widetilde{F}\rangle$ as follows:
$\widetilde{\Omega}=$ Omega $-Z$ and $\left.\widetilde{F}=\left\{L_{i}-Z \rightarrow R_{i}-Z\right) \mid\left(L_{i} \rightarrow R_{i}\right) \in F\right\}$.
The scheme \widetilde{S} is called a Z-translation of the scheme S, and is noted $\widetilde{S}=S-Z$.
The FDs of the form $\emptyset \rightarrow \emptyset$ and $X \rightarrow \emptyset$ with $X \neq \emptyset$ and $X \subseteq \Omega$, resulting of the translation wiil be deleted from \widetilde{F}.

The deletion of the FDs of the form $\emptyset \rightarrow X$, with $X \neq \emptyset$ and $X \subseteq \Omega$, is impossible because semantically this FD indicates that X is always determined. We will come back with more details on this point.

Theorem 3. Let us have the relation scheme $S=\langle\Omega, F\rangle$ and let $Z \subseteq \Omega$.
If $\widetilde{S}=S-=Z=\langle\Omega-Z, \widetilde{F}\rangle$ then for all $X \subseteq(\Omega-Z)$, we have:

$$
Z(X)_{\widetilde{F}}^{+}=(Z X)_{F}^{+}
$$

The reader can find a proof of this theorem in [4].
Lemma 3. If X is a super key of the scheme S then $X-Z$ is a super key of the scheme \widetilde{S}. And inversely Y is a super key of the scheme \widetilde{S} then $Y Z$ is a super of scheme S.

See the proof in [4].

Corollary 5. If $\widetilde{S}=S-Z$ then

1. $\mathcal{K}_{S}=\mathcal{K}_{\widetilde{S}} \Leftrightarrow Z \subseteq(\Omega-H)$ with $H=\cup K_{i} 1$ where $k_{i} \in \mathcal{K}_{S}$
2. $K_{S}=Z \oplus K_{\tilde{S}} \Leftrightarrow Z \subseteq G$ with $G=\cap K_{i}$, where $K_{i} \in \mathcal{K}_{S}$ and $Z \oplus \mathcal{K}_{\widetilde{S}}=$ $\left\{Z K_{i} \mid K_{i} \in K_{\widetilde{S}}\right\}$.

See a proof in [4].
Corollary 6. If $Z \subseteq(\Omega-H)$ and $\widetilde{S}=(S-G)-Z$ then $\mathcal{K}_{S}=G \oplus \mathcal{K}_{\tilde{S}}$.
See a proof in [4].
Lemma 4. Let $S=\langle\Omega, F\rangle$ be a relation scheme and let K be a key of S then:

$$
\forall Z \subseteq K \quad Z_{F}^{+} \cap(K-Z)^{=}=\emptyset
$$

Proof. Suppose that $\exists Z \subseteq K$ where $Z_{F}^{+} \cap(K-Z) \neq \emptyset$, then $\exists A \in Z_{F}^{+} \cap(K-Z)$ so $A \in Z_{F}^{+}$and $A \in K$ and $A \notin Z$.

Since $A \notin Z$ then $Z \subseteq(K-\{A\})$ and since $A \in Z_{F}^{+} \subseteq(K-\{A\})_{F}^{+}$, so $((K-\{A\}) \rightarrow\{A\}) \in F^{+}$therefore K is not a key, which is a contradiction.

Thus we have showed that $\forall Z \subseteq K, Z_{F}^{+} \cap(K-Z)=\emptyset$.
Property 5. Let $S=\langle\Omega, F\rangle$ be a relation scheme and let $Y \subseteq \Omega$.
Let $Z Y_{F}^{+}$, We define $\widetilde{S}, \widetilde{S}=S-Z=\langle\widetilde{\Omega}, \widetilde{F}\rangle$.
Then \widetilde{F} can't contain and FD of the form $\emptyset \rightarrow X$ with $X \neq \emptyset$.
Proof. If $F=\left\{L_{i} \rightarrow R_{i} \mid R_{i} \subseteq \Omega, i=1, \ldots, k\right\}$ then:
$\widetilde{F}=\left\{L_{i}-Z \rightarrow R_{i}-Z \mid\left(L_{i} \rightarrow R_{i}\right) \in F\right\}$.
Let $\left(L_{i} \rightarrow R_{i}\right) \in F$ where $L_{i}-Z=\emptyset$, then $L_{i} \subseteq Z=Y_{F}^{+}$, so $\left(Y \rightarrow L_{i}\right) \in F^{+}$.
Thus, we obtain by transitivity: $\left(Y \rightarrow R_{i}\right) \in F^{+}$therefore $R_{i} \subseteq Z=Y_{F}^{+}$and so $R_{i}-Z=\emptyset$.

Remark: Let $S=\langle\Omega, F\rangle$ be a relation scheme.
$F=\left\{L_{i} \rightarrow R_{i} \mid R_{i} \subseteq \Omega, i=1, \ldots, k\right\}$
Let $\widetilde{S}=S-G-Z$, with $Z \subseteq \Omega-H, G=\Omega-R$.
When searching keys the FDs of the form $\emptyset \rightarrow X$ must be not be deleted from \tilde{F}.

Proof. Let $L_{i} \rightarrow R_{i}$, with $L_{i} \subseteq G$ and $R_{i} \not \subset G$, the FD that will be the form:
$\emptyset \rightarrow R_{i}-G-Z$ in \tilde{F}, with $R_{i}-G-Z \neq \emptyset$.
We are going to show that deleting this FD from \tilde{F} can involve in finding super keys instead of keys.

Let \widetilde{K} be a key of the scheme $\widetilde{S}=\langle\widetilde{\Omega}, \widetilde{F}\rangle$.
Let us take an attribute $A_{j}, A_{j} \in\left(R_{i}-G-Z\right)$ where $\forall l=1, \ldots, n, l \neq$ $i, A_{j} \notin R_{l}$, that A_{j} is not contained in any other right side but the right side of leof $L_{i} \rightarrow R_{i}$.

Suppose that the FD $\emptyset \rightarrow R_{i}-G-Z$ is deleted from \widetilde{F}.
Since $A_{j} \in \tilde{\Omega}$, then $A_{j} \in \tilde{\Omega}-\widetilde{R}$, where $\widetilde{R}=\cup R_{p}$

$$
\left(L_{p} \rightarrow R_{p}\right) \in \widetilde{F}
$$

So A_{j} belongs to each keys of $\widetilde{S}=\langle\widetilde{\Omega}, \widetilde{F}\rangle$ and in particular to \widetilde{K}.
By Corollary 6 , since $Z \subseteq \Omega-H$ then $\mathcal{K}_{S}=G \oplus \mathcal{K}_{\widetilde{S}}, A_{j}$ will belong to each 1 key of $S=\langle\Omega, F\rangle$.

Let $K=G \tilde{K}$.
We have $G \rightarrow L_{i}, L_{i} \rightarrow R_{i}, R_{i} \rightarrow A_{j}$, so $G \rightarrow A_{j}$,
moreover $A_{j} \notin G$ because $A_{j} \in R_{i}$ and $G \rightarrow G A_{j}$.
By reflexivity $\widetilde{K}-\left\{A_{j}\right\} \rightarrow \widetilde{K}-\left\{A_{j}\right\}$.
By applying the union rule, we obtain:

$$
G\left(\widetilde{K}-\left\{A_{j}\right\}\right) \rightarrow G A_{j}\left(\tilde{K}-\left\{A_{j}\right\}\right)
$$

that is $K-\left\{A_{j}\right\} \rightarrow K$ showing that $\mathrm{K} K$ is a super key and not a key.
So the FDs of the form $\emptyset \rightarrow X, X \neq \emptyset$, must not be deleted when searching keys.
E.g.: Let us have the relation scheme $S=\langle\Omega, F\rangle$ with:

$$
\begin{aligned}
& \Omega=\{a, b, c, d, e, f, g, \cdot h\} \\
& F=\{a c \rightarrow b g, b \rightarrow a c d, h \rightarrow d f g, a d e h \rightarrow b c f, a b c \rightarrow d, c f \rightarrow a e g\} \\
& L=\{a, b, c, d, e, f, h\}^{*} \\
& R=\{a, b, c, d, e, f, g\} \\
& G=\Omega-R=\{h\}
\end{aligned}
$$

Let $Z=\{g\} \subseteq \Omega-H$
Let $\widetilde{S}=S-G-Z$
$\widetilde{\Omega}=\{a, b, c, d, e, f\}$
$\widetilde{F}=\{a c \rightarrow b, b \rightarrow a c d, \emptyset \rightarrow f d, a d e \rightarrow b c f, a b c \rightarrow d, c f \rightarrow a e\}$
If we delete the FD $\emptyset \rightarrow f d$, then when searching the keys of \widetilde{S} we will find the following set $\{c f, a d e, a c e, b e, b f\}$, and thus the keys of S would be 3 $\{c f h, a d e h, a c e h, b e h, b f h\}$ while it is obvious that $c f h$ is a super key of S, as well as adeh, aceh, beh and bfh.

However, if the FD $\emptyset \rightarrow f d$ is not deleted while searching the keys of \widetilde{S}, we will find the set $\{b, c, a e\}$ and thus $\{b h, c h, a e h\}$ are the keys of S.

Two remarks about the summary of [4]

1. In step 2 (page 95) the phrase:
"Eliminate from F^{\prime} functional dependencies of the form:

$$
\emptyset \rightarrow \emptyset, \emptyset \rightarrow X, X \rightarrow \emptyset(X \neq \emptyset) "
$$

must be replaced by this one:
"Eliminate from F^{\prime} functional dependencies of the form:
$\emptyset \rightarrow \emptyset, \dot{x} \rightarrow \emptyset(X \neq \emptyset) "$
because by the use of $Z=\left(G R^{\prime}\right)_{S}^{+}$to define

$$
S^{\prime}=\left\langle\Omega^{\prime}, F^{\prime}\right\rangle=S-Z
$$

so in S^{\prime}, the functional dependency $\emptyset \rightarrow X$ dose not exist (See Property 5).
2. In example 3.2 (page 96), there is errors in calculus.

We have $Z=(78)^{+}=7846$, instead of $Z=(78)^{+}=78$.
So the final result is the following: $\mathcal{K}_{\widetilde{S}}=\{2,3,15\} ; \mathcal{K}_{S}=\{28,38,158\}$.

Acknowledgement

We are grateful to the referees for their comments, which have helped to improve the presentation of this paper.

REFERENCES

1. E.F. Codd, A relational model of data for lange shared data banks, Comm., ACM, Vol. 13, No. 5, June 1970.
2. J. D. Ullman, Principles of Database Systems, Pitman, London, 1981.
3. C. Beeri and P. A. Bernstein, Computational problem related to the design of normal form relation schemes, Trans. on DBSys. 4:1, March 1979.
4. J. Demetrovics, Ho Thuan, Nguyen Xuan Huy, and Le Van Bao, Translation of relation schemes, balanced relation schemes and the problem of key representation, J. Inf. Process. Cybern. EIK, 23 (2-3) (1987), 81-97.
5. Ho Thuan and Le Van Bao, Some results about keys of relation schemes, Acta Cybernetica, Hungary 7 (1) (1985), 99-113.
6. J. Demetrovics and Ho Thuan, Keys and superkeys for relation schemes, Computer and Artificial intelligence, 5 (6) (1986), 511-519.
7. Ho Thuan, Some remarks on the algorithm of Lucchesi and Osborn, Acta Cybernetica, Hungary 8 (2) (1987).
```
Institute of informatic
University of Sidi Bel Abbes, Algeria
```

