MOBIUS TRANSFORM FOR CADIAG-2

PETR HAJEK(1) and NGUYEN HOANG PHUONG(2)

Abstract. This study presents how the Möbius transform can be used for Max-Min compositions of rules of the CADIAG-2. The algorithm for Möbius transform to find new weights of rules for CADIAG-2 is proposed. This method is tested for different examples and some remarks are indicated.

Preface (by P. Hajek)

This report contains Mr. Nguyen elaboration of my suggestion to extend Möbius transform (in the sense of MYCIN-like systems, (Hajek, Valdes, 1994) to CADIAG-like fuzzy expert systems, extended by negative weights. The new and slightly surprising result is that non-invertibility of the maximum operation does not make the transform impossible provided we carefully combine positive and negative weights.

This contributes to our observation that CADIAG-like systems are very close to MYCIN-like systems, even if we keep maximum as the combining operation for positive weights. I want to stress that means that CADIAG-like systems have both similar advantages as MYCIN-like systems (ease of inference) and similar disadvantages, namely the fact that truth-functionality (use of combining functions) prevents consequent understanding of weights as degrees of belief. Methods like Möbius transform or guarded use give only partial correctness, as discussed at large in (Hajek, Havranek, Jirousek, 1992, Chap. VI-VIII). The main question remains:

If thing as relative frequencies are used as weights of implications (rules) and fuzzy inference is applied, what meaning have the results obtained? (see Hajek, Harmancova, 1995).

It is hoped that the present report bring a partial contribution to a future answer to this question.

1. INTRODUCTION

CADIAG-2 is a medical diagnostic expert system based on Max-Min inference. The rule base of CADIAG-2 consists of rules with the form IF (antecedent) THEN
(succedent). Degrees of truth of rules in CADIAG-2 may be used as relative frequencies or their fuzzifications (Adlassnig, 1986; Adlassnig et al., 1986). In (Hajek, Nguyen, 1995), we have studied how CADIAG-2 is embedded into MYCIN-like systems if we replace Max of MaxMin composition of CADIAG-2 by a suitable t-cornom and we propose confirmation and exclusion gives the same results at the corresponding MYCIN-like system. In (Hajek, Havranek, Jirousek, 1992) an algorithm of Möbius transform for MYCIN-like systems which allows to determine the weight of a rule from the corresponding expert’s belief was proposed. The new rule base produces from the corresponding expert’s belief was proposed. The new rule base produces global weights compatible with the expert’s beliefs. In this study, the question is that how much the Möbius transform can be used for Max-Min compositions of rules of CADIAG-2. The answer is that it is possible, but only if negative weights are introduced. The paper is organized as follows: Section 2 presents an algorithm for construction of Möbius transform for MaxMin inference of CADIAG-2 allowing to find new weights such that the values of composition of rules satisfying to expert’s beliefs. Section 3 verifies several examples by the above described algorithm and finally, some conclusions are reported.

2. CONSTRUCTION OF MOBIUS TRANSFORM FOR CADIAG-2

For construction of Möbius transform algorithm for CADIAG-2, we need add some definitions extending CADIAG-2 by negative knowledge.

Definition 1. A fuzzy patient data patient P_q consists of values $\mu^+_{RPS}(P_q, S_i)$ - degree of confirmation and $\mu^-_{RPS}(P_q, S_i)$ - degree of exclusion for $i = 1, ..., m$. Assume that, at least, $\mu^+_{RPS}(P_p, S_i)$ or $\mu^-_{RPS}(P_q, S_i) = 0$ and let

- $\mu^+_{RPS}(P_q, S_i) = 0$ and $\mu^-_{RPS}(P_q, S_i) = 0$ mean symptoms S_i - unknown for patient P_q.
- $\mu^+_{RPS}(P_q, S_i) = 1$ means symptoms S_i - surely present for patient P_q.
- $\mu^-_{RPS}(P_q, S_i) = 1$ means symptoms S_i surely absent patient P_q.

Definition 2. The patient data $\mu^+_{RPS}(P_q, S_i)$ and $\mu^-_{RPS}(P_q, S_i)$ (for $i = 1, ..., m$) are three-valued for patient P_q, if for all S_i, $\mu^+_{RPS}(P_q, S_i)$ and $\mu^-_{RPS}(P_q, S_i)$ take value 0 or 1. Then $\mu^+_{RPS}(P_q, S_i)$ and $\mu^-_{RPS}(P_q, S_i)$ determine an elementary conjunction E_q of symptoms S_i such that S_i occurs in E_q positively if $\mu^+_{RPS}(P_q, S_i) = 1$ and negatively $\mu^-_{RPS}(P_q, S_i) = 1$.

For example, give a fuzzy patient data in Table 1.
Table 1. A patient data

<table>
<thead>
<tr>
<th>P_q</th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu^+_{RPS}(P_q, S_i)$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\mu^-_{RPS}(P_q, S_i)$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

where, S_1, S_2, S_3, S_4 - symptoms,

P_q - patient q,

$\mu^+_{RPS}(P_q, S_i), \mu^-_{RPS}(P_q, S_i)$ are values of the patient data.

From Table 1, the following elementary conjunction of symptoms S_i for patient P_q is constructed:

$$E_q = S_1 \& \neg S_3$$

Definition 3. The values $\mu^+_{RPS}(P_q, \neg S_i), \mu^-_{RPS}(P_q, \neg S_i)$ of patient data for patient P_q are defined as follows

$$\mu^+_{RPS}(P_q, \neg S_i) = \mu^-_{RPS}(P_q, S_i)$$

$$\mu^-_{RPS}(P_q, \neg S_i) = \mu^+_{RPS}(P_q, S_i)$$

Definition 4. An elementary conjunction E_q of symptoms S_i is defined by

$$E_q = (\varepsilon_1)S_1 \& \ldots \& (\varepsilon_m)S_m$$

(recall the notion $0)S_i = \neg S_i$, $1)S_i = S_i$).

If for each i, $i = 1, \ldots, m$, $\mu^-_{RPS}(P_q, (\varepsilon_i)S_i) = 0$ then

$$\mu^+_{RPS}(P_q, E_q) = \min_{S_i \in E_q} (\mu^+_{RPS}(P_q, (\varepsilon_i)S_i))$$

$$\mu^-_{RPS}(P_q, E_q) = 0$$

If there is i, $\mu^-_{RPS}(P_q, (\varepsilon_i)S_i) > 0$ then

$$\mu^-_{RPS}(P_q, E_q) = \max_{S_i \in E_q} (\mu^-_{RPS}(P_q, (\varepsilon_i)S_i))$$

$$\mu^+_{RPS}(P_q, E_q) = 0$$

The value of elementary conjunction E_q of symptoms S_i is defined

$$\mu_{RPS}^{\text{tot}}(P_q, E_q) = \mu^+_{RPS}(P_q, E_q) - \mu^-_{RPS}(P_q, E_q)$$ (1)
Recall that a value $\mu_{R^+_S} (E_i, D_j)$ in $[0,1]$ used for confirmation of diagnosis, where the value $\mu_{R^+_S} (E_i, D_j)$ indicates degree in which a symptom (or elementary conjunction of symptoms) E_i confirms a diagnosis D_j. The MaxMin composition of rules for confirmation of diagnosis is

$$ R^+_P = R_P S \circ R^+_S $$

defined by

$$ \mu_{R^+_P} (P, D_j) = \text{Max}_{E_i \in \text{Sys}} \text{Min}(\mu_{R^+_P} (P, E_i); \mu_{R^+_S} (E_i, D_j)) \quad (3) $$

We extend CADIAG-2 by a relation R^-_S defined by $\mu_{R^-_S} (E_i, D_j)$ (E_i is a symptom or elementary conjunction of symptoms) in $[0,1]$, where the value $\mu_{R^-_S} (E_i, D_j)$ indicates degree in which a symptom (or elementary conjunction of symptoms) E_i excludes a diagnosis D_j. Thus, the following MaxMin composition of rules proposed and used to deduce the degree of exclusion of the disease D_j for the patient P_q from the observed symptoms E_i is follows:

$$ R^-_P = R_P S \circ R^-_S $$

defined by

$$ \mu_{R^-_P} (P, D_j) = \text{Max}_{E_i \in \text{Sys}} \text{Min}(\mu_{R^+_P} (P, E_i); \mu_{R^-_S} (E_i, D_j)) \quad (5) $$

where Sys - a set of symptoms E_i.

Definition 5. A rule base Θ given by $\mu_{R^+_S} (E_i, D_j)$ and $\mu_{R^-_S} (E_i, D_j)$ consists of rules:

$$ E_i \rightarrow D_j (\mu_{R^+_S} (E_i, D_j)) \quad (6) $$

$$ E_i \rightarrow \neg D_j (\mu_{R^-_S} (E_i, D_j)) \quad (7) $$

Assume that $\mu_{R^+_S} (E_i, D_j) = 0$ or $\mu_{R^-_S} (E_i, D_j) = 0$ where $\mu_{R^+_S} (E_i, D_j)$, $\mu_{R^-_S} (E_i, D_j)$ are weights of fuzzy rules in $[0,1]$.

Now we are going define the total degree of confirmation and exclusion of diagnosis as a combination of degree of confirmation and degree of exclusion. We shall see that it is more convenient use their difference in the sense of an operation on $(-1,1)$ than just their difference as reals.

Definition 6. Given a patient data, the total degree for confirmation and exclusion of diagnosis by patient P_q from observed symptom S_i is:

$$ \mu_{R^{tot}_P} (P, D_j) = \mu_{R^+_P} (P, D_j) \ominus \mu_{R^-_P} (P, D_j) \quad (8) $$
in \([-1,1]\), where
\[
\mu^+_{RP_D}(P_q, D_j) = \max_{E_q'} \min[\mu^+_{RP_S}(P_q, E'_q); \mu^+_{RS_D}(E'_q, D_j)],
\]
\[
\mu^-_{RP_D}(P_q, D_j) = \max_{E_q'} \min[\mu^+_{RP_S}(P_q, E'_q); \mu^-_{RS_D}(E'_q, D_j)],
\]
where \(E'_q\) varies over all elementary conjunctions of symptoms for which \(\mu^+_{RS_D}(E'_q, D_j)\) or \(\mu^-_{RS_D}(E'_q, D_j)\) is positive.

Remark: note that if the patient data are three-valued, i.e. given by an elementary conjunction \(E_q\), then this reduces to
\[
\mu^+_{RS_D}(P_q, D_j) = \max_{E'_q \subseteq E_q} \left(\mu^+_{RS_D}(E'_q, D_j) \right)
\]
and it is similar for \(\mu^-_{RS_D}(P_q, D_j)\).

Let us recall some notions on \(\oplus\) and \(\ominus\) on \((-1,1)\) (Hájek et al.; 1992, 1994).
- Operation \(\oplus\) is an ordered Abelian group, extended to extremals:
 \[
 1 \oplus x = 1, \quad -1 \oplus x = -1
 \]
- The PROSPECTOR group operation \(\oplus\) on \((-1,1)\) is defined as follows:
 \[
 x \oplus y = \frac{x + y}{1 + xy}
 \]
- Operation \(\ominus\) is a group operation defined by
 \[
 x \ominus y = x \oplus -y
 \]
Remark: Let recall that we compare the degree of confirmation \(\mu^+_{RS_D}(P_q, D_j)\) and the degree of exclusion \(\mu^-_{RS_D}(P_q, D_j)\) in \([0,1]\) of diagnosis \(D_j\) for patient \(P_q\). One can see the representation of these degrees in \([-1,1]\) in Graph 1.

Graph 1. Representation of \(\mu^+_{RP_D}(P_q, D_j)\) and \(\mu^-_{RP_D}(P_q, D_j)\)

To this end we represent the exclusion as negative confirmation, so we take \(-\mu^-_{RP_D}(P_q, D_j)\) in \([-1,1]\) instead of \(\mu^-_{RP_D}(P_q, D_j)\) in \([0,1]\).

Definition 7. A conditional weight system \(\beta\) consists of \(\beta^+_{SD}(D_j|E_q)\) and \(\beta^-_{SD}(D_j|E_q)\) in \([0,1]\) for a set of pairs \((D_j, E_q)\). Assume that \(\beta^+_{SD}(D_j|E_q)\) or \(\beta^-_{SD}(D_j|E_q) = 0\), where \(E_q\) : elementary conjunction of symptoms \(S_i\).

Definition 8. A total conditional weight system \(\beta^t_{SD}(D_j|E_q)\) for a set pairs \(D_j \in \text{Dise} (\text{Dise: a set of Diseases } D_j), E_q \in EC(Sym)\) (Elementary Conjunction
of Symptoms) is defined as follows:

$$\beta^{\text{tot}}_{SD}(D_j|E_q) = \beta^+_SD(D_j|E_q) - \beta^-SD(D_j|E_q)$$ \hspace{1cm} (11)

Definition 9. A conditional weight system β is weakly sound the following holds for each $E'_q \subseteq E_q \in EC(\text{Sym})$ and $D_j \in \text{Dise}$: if $\beta^+_SD(D_j|E_q)$, $\beta^-SD(D_j|E_q)$, $\beta^+_SD(D_j|E'_q)$, $\beta^-SD(D_j|E'_q)$ are defined and $\beta^+_SD(D_j|E'_q)$, $\beta^-SD(D_j|E'_q)$ is extremal (i.e $= 1$) (one of them takes value 0), then

$$\beta^+_SD(D_j|E'_q) = \beta^+_SD(D_j|E_q)$$ \hspace{1cm} (12)

$$\beta^-SD(D_j|E'_q) = \beta^-SD(D_j|E_q)$$ \hspace{1cm} (13)

Theorem. Let β be a weakly sound conditional weight system. Then there is a rule Θ with new weight $\mu^{\text{tot}}_{SD}(S_i, D_j)$ and $\mu_{RS}^-(S_i, D_j)$ of fuzzy rules such that for each patient P_q and each three-valued patient data $\mu^{\text{tot}}_{RS}(P_q, S_i)$, $\mu_{RS}^-(P_q, S_i)$ (therefore E_q exists)

$$\mu^{\text{tot}}_{RS}(P_q, D_j) = \beta^{\text{tot}}_{SD}(D_j|E_q)$$ \hspace{1cm} (14)

whenever the right hand side is defined.

Proof. Fix D_j, we define $\mu^{\text{tot}}_{SD}(E_q, D_j)$ and $\mu^{\text{tot}}_{RS}(E_q, D_j)$ for pairs (E_q, D_j) such that $\beta^+_SD(D_j|E_q)$, $\beta^-SD(D_j|E_q)$ are defined.

We proceed by induction on length of E_q.

Case 1: For each E_q such that $\beta^+_SD(D_j|E_q)$, $\beta^-SD(D_j|E_q)$ are defined but $\beta^+_SD(D_j|E'_q)$, $\beta^-SD(D_j|E'_q)$ are underdefined for each proper subconjunction E'_q of E_q, we put

$$\mu^{\text{tot}}_{SD}(E_q, D_j) = \beta^+_SD(D_j|E_q)$$ \hspace{1cm} (15)

$$\mu^{\text{tot}}_{RS}(E_q, D_j) = \beta^-SD(D_j|E_q)$$ \hspace{1cm} (16)

Case 2: If $\beta^+_SD(D_j|E_q)$, $\beta^-SD(D_j|E_q)$ are defined and extremal (i.e $= 1$), then put

$$\mu^{\text{tot}}_{SD}(E_q, D_j) = \beta^+_SD(D_j|E_q)$$ \hspace{1cm} (17)

$$\mu^{\text{tot}}_{RS}(E_q, D_j) = \beta^-SD(D_j|E_q)$$ \hspace{1cm} (18)

Case 3: Assume that $\beta^+_SD(D_j|E_q)$, $\beta^-SD(D_j|E_q)$ are defined and nonextremal (i.e $\neq 1$) and $\mu^{\text{tot}}_{RS}(E_q, D_j)$, $\mu_{RS}^-(E_q, D_j)$ are not yet defined, E_q has some
proper subconjunctions E'_q such that $\beta^+_{SD}(D_j|E'_q), \beta^-_{SD}(D_j|E'_q)$ are defined and for all such $E'_q,$ $\mu^+_{RD}(E'_q, D_j), \mu^-_{RD}(E'_q, D_j)$ have been defined. Collect positive and negative knowledge M^+ and M^- for D_j under proper subconjunctions E'_q of E_q. Define the total knowledge $M^{tot} = M^+ \ominus M^-,$ where M^+, M^- are defined as follows:

$$M^+ = \text{Max}_{E' \subseteq E_q}[\mu^+_{RD}(E'_q, D_j)]$$

$$M^- = \text{Max}_{E' \subseteq E_q}[\mu^-_{RD}(E'_q, D_j)]$$

We consider the following cases:

a) If $M^{tot} = \beta_{SD}^{tot}(D_j|E_q)$ then put

$$\mu^+_{RD}(E_q, D_j) = \beta_{SD}^{tot}(D_j|E_q)$$

if $\beta_{SD}^{tot}(D_j|E_q) \geq 0$ or

$$\mu^-_{RD}(E_q, D_j) = \beta_{SD}^{tot}(D_j|E_q)$$

if $\beta_{SD}^{tot}(D_j|E_q) < 0$.

b) If $M^{tot} < \beta_{SD}^{tot}(D_j|E_q)$ then put

$$\mu^+_{RD}(E_q, D_j) = M^- \ominus \beta_{SD}^{tot}(D_j|E_q)$$

operation \ominus is defined as in (9).

c) If $M^{tot} > \beta_{SD}^{tot}(D_j|E_q)$ then put

$$\mu^-_{RD}(E_q, D_j) = M^+ \ominus \beta_{SD}^{tot}(D_j|E_q)$$

operation \ominus is defined as in (10)

and we get (14) for each (D_j, E_q) in the domain β.

Proving case 1. One proves by induction on the length of E_q that eventually $\mu^+_{RD}(S_i, D_j), \mu^-_{RD}(S_i, D_j)$ are uniquely defined for each E_q such that $\beta^+_{SD}(S_i|D_j), \beta^-_{SD}(S_i|D_j)$ are defined. We have (by definition of MaxMin composition of CA-DIAG-2)

$$\mu^+_{RD}(P_q, D_j) = \text{Max}_{E' \subseteq E_q} \text{Min}[\mu^+_{RS}(P_q, E'_q); \mu^+_{RD}(E'_q, D_j)]$$

$$= \text{Max}_{E' \subseteq E_q}[\mu^+_{RS}(E'_q, D_j)]$$

(because $\mu_{PS}^{tot}(P_q, E'_q) = 1$ from (2.0), if E'_q exists, then $\mu^-_{RD}(P_q, E'_q) = 0$)
\[
= \text{Max} (\text{Max}_{E'_q \subseteq E_q} [\mu_{R^+_P} (E'_q, D_j), \mu_{R^+_S} (E_q, D_j)]) = \text{Max} (0, \mu_{R^+_S} (E_q, D_j)) = \\
\mu_{R_{SD}^+} (E_q, D_j) = \beta_{SD}^+ (D_j | E_q)
\]

because \(\text{Max}_{E'_q \subseteq E_q} [\mu_{R^+_S} (E'_q, D_j)] = 0\) (due to \(\mu_{R_{SD}^+} (E'_q, D_j)\) is unknown, when \(E'_q \subset E_q\)).

In an analogous, we get
\[
\mu_{R_{PD}^-} (P_q, D_j) = \mu_{R_{SD}^-} (E_q, D_j) = \beta_{SD}^- (D_j | E_q)
\]

and thus
\[
\mu_{R_{PD}^{tot}} (P_q, D_j) = \mu_{R_{PD}^+} (P_q, D_j) \ominus \mu_{R_{PD}^-} (P_q, D_j) = \beta_{SD}^{tot} (D_j, E_q)
\]

and the equation (14) holds.

Proving case 2. Given \(\beta_{SD}^- (D_j, E_q) = 1\) (or \(\beta_{SD}^- (D_j, E_q) = 1\)) we have
\[
\mu_{R_{PD}^+} (P_q, D_j) = \text{Max}_{E'_q \subseteq E_q} [\mu_{R_{PS}^+} (P_q, E'_q); \mu_{R_{SD}^+} (E'_q, D_j)] = \\
\text{Max}_{E'_q \subseteq E_q} [\mu_{R_{SD}^+} (E'_q, D_j)]
\]

(because \(\mu_{R_{SD}^+} (P_q, E'_q) = 1\) from (1), if \(E'_q\) exists, then \(\mu_{R_{SD}^-} (P_q, E'_q) = 0\))

\[
= \text{Max} [\text{Max}_{E'_q \subseteq E_q} [\mu_{R_{SD}^+} (E'_q, D_j)], \mu_{R_{SD}^+} (E_q, D_j)] = \mu_{R_{SD}^+} (E_q, D_j) = \beta_{SD}^+ (D_j | E_q)
\]

(because \(\mu_{R_{PS}^+} (E_q, D_j) = 1\) by condition).

In an analogous way, we get
\[
\mu_{R_{PD}^-} (P_q, D_j) = \mu_{R_{SD}^-} (E_q, D_j) = \beta_{SD}^- (D_j | E_q)
\]

and thus
\[
\mu_{R_{PD}^{tot}} (P_q, D_j) = \mu_{R_{PD}^+} (P_q, D_j) \ominus \mu_{R_{PD}^-} (P_q, D_j) = \beta_{SD}^{tot} (D_j, E_q)
\]

and the equation (14) holds.

Proving case 3:

a) When \(M_{tot}^+ = \beta_{SD}^{tot} (D_j | E_q)\):

First, we consider the case \(M_{tot}^+ = \beta_{SD}^{tot} (D_j | E_q) \geq 0\)

By definition of MaxMin composition of CADIAG-2, we have:
\[
\mu_{R_{PD}^+} (P_q, D_j) = \text{Max}_{E'_q \subseteq E_q} [\mu_{R_{PS}^+} (P_q, E'_q); \mu_{R_{SD}^+} (E'_q, D_j)] = \\
\text{Max}_{E'_q \subseteq E_q} [\mu_{R_{SD}^+} (E'_q, D_j)]
\]
(because $\mu_{R^+_S} (P, E'_q) = 1$ from (1))

$$= \operatorname{Max} (\operatorname{Max}_{E'_q \subseteq E_q} [\mu_{R^+_S} (E'_q, D_j)], \mu_{R^+_S} (E_q, D_j)).$$

From definition (17), having

$$\operatorname{Max}_{E'_q \subseteq E_q} (\mu_{R^+_S} (E'_q, D_j)) = M^+$$

(because $\mu_{R^+_S} (E'_q, D_j) = M^+$ for some $E'_q > 0$)

and by condition, put $\mu_{R^+_S} (E_q, D_j) = \beta_{SD}^{tot} (D_j | E_q)$, we get

$$\mu_{R^+_D} (P, D_j) = \operatorname{Max}(M^+, \beta_{SD}^{tot} (D_j | E_q)) = M^+$$

because $M^- \geq 0$, $M^{tot} = M^+ \oplus M^- = \beta_{SD}^{tot} (D_j | E_q) \geq 0$, then $M^+ \geq \beta_{SD}^{tot} (D_j | E_q)$.

In an analogous way, we get

$$\mu_{R^-_D} (P, D_j) = \operatorname{Max}(M^-, 0) = M^-$$

because $\mu_{R^-_S} (E_q, D_j) = 0$, and thus

$$\mu_{R^{tot}_D} (P, D_j) = \mu_{R^+_D} (P, D_j) \oplus \mu_{R^-_D} (P, D_j) = M^+ \oplus M^- = \beta_{SD}^{tot} (D_j, E_q)$$

and the equation (14) holds.

Second, for the case $M^{tot} = \beta_{SD}^{tot} (D_j | E_q) < 0$, the proof is quite similar.

We have

$$\mu_{R^+_D} (P, D_j) = \operatorname{Max}(M^+, 0) = M^+$$

and

$$\mu_{R^-_D} (P, D_j) = \operatorname{Max}(M^-, \beta_{SD}^{tot} (D_j | E_q)) = M^-$$

because $M^+ \geq 0$, $M^{tot} = M^+ \oplus M^- = \beta_{SD}^{tot} (D_j | E_q) < 0$, then $M^- > \beta_{SD}^{tot} (D_j | E_q)$, we get

$$\mu_{R^{tot}_D} (P, D_j) = \mu_{R^+_D} (P, D_j) \oplus \mu_{R^-_D} (P, D_j) = M^+ \oplus M^- = \beta_{SD}^{tot} (D_j, E_q)$$

and the equation (14) holds.

b) When $M^{tot} = M^+ \oplus M^- < \beta_{SD}^{tot} (D_j | E_q)$:

We have
\[
\mu_{P,D}^\text{tot}(P, D) = \mu_{P,D}^+ (P, D) \ominus \mu_{P,D}^- (P, D) \\
= \max_{E' \subseteq E} \min_{\mu_{P,S}^+ (P, E'_q)} \left[\mu_{R_S}^+ (E'_q, D) \right] \ominus \max_{E' \subseteq E} \min_{\mu_{P,S}^- (P, E'_q)} \left[\mu_{R_S}^- (E'_q, D) \right]
\]

Put
\[
\mu_{R_S}^+ (E, D) = M^- \ominus \beta_{SD}^\text{tot}(D \mid E)
\]

We have now \(\mu_{R_S}^+ (E, D) > 0\), because \(0 < M^- < M^- \ominus \beta_{SD}^\text{tot}(D \mid E)\) and \(M^- > 0\). We get
\[
\mu_{P,D}^\text{tot}(P, D) = \max[M^+, M^- \ominus \beta_{SD}^\text{tot}(D \mid E)] \ominus \max[M^-, 0]
\]
and finally, we have
\[
\mu_{P,D}^\text{tot}(P, D) = (M^- \ominus \beta_{SD}^\text{tot}(D \mid E)) \ominus M^- = \beta_{SD}^\text{tot}(D \mid E)
\]
Thus the equation (14) holds.

c) When \(M^\text{tot} > \beta_{SD}^\text{tot}(D \mid E)\)

In similar way, we have
\[
\mu_{P,D}^\text{tot}(P, D) = \mu_{P,D}^+ (P, D) \ominus \mu_{P,D}^- (P, D) \\
= \max_{E' \subseteq E} \min_{\mu_{P,S}^+ (P, E'_q)} \left[\mu_{R_S}^+ (E'_q, D) \right] \ominus \max_{E' \subseteq E} \min_{\mu_{P,S}^- (P, E'_q)} \left[\mu_{R_S}^- (E'_q, D) \right]
\]

Put
\[
\mu_{R_S}^- (E, D) = M^+ \ominus \beta_{SD}^\text{tot}(D \mid E)
\]
We have now $\mu_{R_{SD}}(E_q, D_j) > 0$, because $0 \leq M^- < M^+ \ominus \beta_{SD}^{tot}(D_j|E_q)$ and $M^+ \geq 0$.

We get

$$
\mu_{R_{PD}}^{tot}(P_q, D_j) = \max[M^+, 0] \ominus \max[M^-, M^+ \ominus \beta_{SD}^{tot}(D_j, E_q)]
$$

$$
= M^+ \ominus (M^+ \ominus \beta_{SD}^{tot}(D_j|E_q)) = \beta_{SD}^{tot}(D_j|E_q)
$$

that the equation (14) holds. This completes the proof of the theorem.

The following example shows that (22) may be undefined for usual subtraction -:

Let given a conditional weight system β:

$$
\beta_{SD}^+(D|S_1) = 0.3 \quad \beta_{SD}^- (D|S_1) = 0
$$

$$
\beta_{SD}^+(D|S_2) = 0.4 \quad \beta_{SD}^- (D|S_2) = 0
$$

$$
\beta_{SD}^+(D|S_1 \land S_2) = 0 \quad \beta_{SD}^- (D|S_1 \land S_2) = 0.7
$$

Applying Möbius transform according to case 3:

- From (11), we get:

$$
\beta_{SD}^{tot}(D|S_1 \land S_2) = \beta_{SD}^+(D|S_1 \land S_2) - \beta_{SD}^-(D|S_1 \land S_2) = 0 - 0.7 = -0.7
$$

- Now we calculate M_{tot} from (19), (20), we get

$$
M_{tot} = \max(0.3, 0.4) \ominus \max(0, 0) = 0.4 \ominus 0 = 0.4
$$

We have $M_{tot} > \beta_{SD}^{tot}(D|S_1 \land S_2)$ then put

$$
\mu_{R_{SD}}^-(S_1 \land S_2, D) = M^+ \ominus \beta_{SD}^{tot}(D_j|S_1 \land S_2)
$$

$$
= 0.4 \ominus -0.7 = 0.4 \oplus (-0.7) = 0.4 \oplus 0.7
$$

Apply operation \ominus in (9), we get

$$
\mu_{R_{SD}}^-(S_1 \land S_2, D) = 0.8593
$$

Remark: Now if we use an usual subtraction $-\ominus$, we have

$$
\mu_{R_{SD}}^-(S_1 \land S_2, D) = M^+ - \beta_{SD}^{tot}(D_j|S_1 \land S_2) = 0.4 - (-0.7) = 1.1 > 1
$$

But from Definition 5, $\mu_{R_{SD}}^-(S_1 \land S_2, D)$ must be in $[0,1]$, that means (22) is undefined for usual subtraction - in our example.
More than that the examble shows that if $\mu_{R_{SD}^{tot}}(P_q, D_j)$ were defined in (8) using \ominus instead of \ominus then we could not construct a rule base Θ such that $\mu_{R_{PD}^{tot}}(P_q, D_j) = \beta_{SD}^{tot}(D_j|E_q)$ for $E_q = S_1, S_2, S_1 \land S_2$.

Now we would have to construct the following new rule base:

$$S_1 \rightarrow D(0.3), \quad S_1 \rightarrow \neg D(0)$$

$$S_2 \rightarrow D(0.4), \quad S_2 \rightarrow \neg D(0)$$

$$S_1 \land S_2 \rightarrow D(0), \quad S_1 \land S_2 \rightarrow \neg D(w)$$

such that

$$\mu_{R_{PD}^{+}}(P_q, D) - \mu_{R_{PD}^{-}}(P_q, D) = -0.7 = \mu_{R_{PD}^{tot}}(P_q, D)$$

But $\mu_{R_{PD}^{+}}(P_q, D) = 0.4, \mu_{R_{PD}^{-}}(P_q, D) = w$, which gives

$$0.4 - w = -0.7$$

$$w = 1.1, \text{ which } > 1.$$

3. SOME EXAMPLES

We discuss the following conditional weight system β. We apply the above algorithm to compute new weights using MinMax composition of rules of CADIAG-2:

For every example, we apply M"{o}bius transfrom to the given β of using MaxMin Composition of CADIAG-2 that we find new weight $\mu_{R_{SD}^{+}}(S_i, D_j)$ and $\mu_{R_{SD}^{-}}(S_i, D_j)$ such that

$$\mu_{R_{PD}^{tot}}(P_q, D_j) = \beta_{SD}^{tot}(D_j|E_q)$$

In all examples, we assume $\mu_{R_{PS}^{+}}(P_q, S_1) = \mu_{R_{PS}^{+}}(P_q, S_2) = 1$.

We use PROSPECTOR group operation \oplus and \ominus defined in (9), (10)

Example 1:

$$\beta_{SD}^{+}(D|S_1) = 0.7 \quad \beta_{SD}^{-}(D|S_1) = 0$$

$$\beta_{SD}^{+}(D|S_2) = 0.7 \quad \beta_{SD}^{-}(D|S_2) = 0$$

$$\beta_{SD}^{+}(D|S_1 \land S_2) = 0.7 \quad \beta_{SD}^{-}(D|S_1 \land S_2) = 0$$

- M"{o}bius transform for example 1:
 a) Calculating $M^{tot}, \beta_{SD}^{tot}(D|S_1 \land S_2)$:
 $$M^{+} = \max_{E'_q \subseteq S_1 \land S_2} (\mu_{R_{PS}^{+}}(P_q, E'_q) \land \mu_{R_{SD}^{+}}(E'_q, D)) = \max(0.7, 0.7) = 0.7$$
In similar, we get

\[M^- = \max_{E'_q \subseteq S_1 \land S_2} (\mu_{R^+_SD}(E'_q, D)) = \max(0, 0) = 0 \]

Then \(M^{tot} = 0.7 \oplus 0 = 0.7 \).

On the other hand,

\[\beta^{tot}_{SD}(D|S_1 \land S_2) = \beta^+_{SD}(D|S_1 \land S_2) - \beta^-_{SD}(D|S_1 \land S_2) = 0.7 \]

b) Compare \(M^{tot} \) with \(\beta^{tot}_{SD}(D|S_1 \land S_2) \):

From results above, having \(M^{tot} = \beta^{tot}_{SD}(D|S_1 \land S_2) = 0.7 > 0 \), then put

\[\mu_{R^+_SD}(S_1 \land S_2, D) = \beta^{tot}_{SD}(D|S_1 \land S_2) = 0.7 \]

We receive the following new rule base:

\[
\begin{align*}
S_1 & \rightarrow D(0.7), \; S_1 \rightarrow \neg D(0) \\
S_2 & \rightarrow D(0.7), \; S_2 \rightarrow \neg D(0) \\
S_1 \land S_2 & \rightarrow D(0.7), \; S_1 \land S_2 \rightarrow \neg D(0)
\end{align*}
\]

such that

\[\mu_{R^{tot}_{PD}}(P_q, D) = \beta^{tot}_{SD}(D|S_1 \land S_2) = 0.7 \quad (24) \]

c) Verifying (24):

From (6) we have

\[
\begin{align*}
\mu_{R^{tot}_{PD}}(P_q, D) &= \mu_{R^+_PD}(P_q, D) \ominus \mu_{R^-_{PD}}(P_q, D) \\
&= \max_{E'_q \subseteq E_q} \min[\mu^+_{R_{PD}}(P_q, E'_q); \mu^-_{R_{PD}}(E'_q, D)] \ominus \max_{E'_q \subseteq E_q} \min[\mu^+_{R_{PD}}(P_q, E'_q); \mu^-_{R_{PD}}(E'_q, D)] \\
&= \max(0.7, 0.7, 0.7) \ominus \max(0, 0, 0) = 0.7 \ominus 0 = 0.7
\end{align*}
\]

thus equation (24) holds.

Example 2:

\[
\begin{align*}
\beta^+_{SD}(D|S_1) &= 0.7 & \beta^-_{SD}(D|S_1) &= 0 \\
\beta^+_{SD}(D|S_2) &= 0.7 & \beta^-_{SD}(D|S_2) &= 0 \\
\beta^+_{SD}(D|S_1 \land S_2) &= 0 & \beta^-_{SD}(D|S_1 \land S_2) &= 0.7
\end{align*}
\]
- Möbius transform for example 2:
 a) Calculating M^{tot}, $\beta_{SD}^{tot}(D|S_1 \land S_2)$:

$$M^+ = \max_{E'_q \subset S_1 \land S_2} (\mu_{RS}^+(P_q, E'_q) \land \mu_{RS}^+(E'_q, D)) = \max(0.7, 0.7) = 0.7$$

In similar, we get

$$M^- = \max_{E'_q \subset S_1 \land S_2} (\mu_{RS}^+(E'_q, D)) = \max(0, 0) = 0$$

Then $M^{tot} = M^+ \oplus M^- = 0.7 \oplus 0 = 0.7$.

On the other hand,

$$\beta_{SD}^{tot}(D|S_1 \land S_2) = \beta_{SD}^+(D|S_1 \land S_2) - \beta_{SD}^-(D|S_1 \land S_2) = 0 - 0.7 = -0.7$$

b) Compare M^{tot} with $\beta_{SD}^{tot}(D|S_1 \land S_2)$:

From results above, having $M^{tot} > \beta_{SD}^{tot}(D|S_1 \land S_2)$ then put

$$\mu_{RS}^-(S_1 \land S_2, D) = M^+ \ominus \beta_{SD}^{tot}(D|S_1 \land S_2) = 0.7$$

Thus

$$\beta_{SD}^{tot}(D|S_1 \land S_2) = -0.7$$

where $0.7 \oplus 0.7 = 0.9395$ (using (9)).

such that

$$\mu_{RP}^{tot}(P_q, D) = \beta_{SD}^{tot}(D|S_1 \land S_2) = -0.7 \quad (25)$$

c) Verifying (25):

From (6) we have

$$\mu_{RP}^{tot}(P_q, D) = \mu_{RP}^+(P_q, D) \ominus \mu_{RP}^-(P_q, D)$$

$$= \max(0.7, 0.7, 0) \ominus \max(0, 0, 0.7 \oplus 0.7) = 0.7 \ominus (0.7 \oplus 0.7 = -0.7$$

Thus

$$\mu_{RP}^{tot}(P_q, D) = \beta_{SD}^{tot}(D|S_1 \land S_2) = -0.7$$
thus the equation (25) holds.

Example 3:

\[
\begin{align*}
\beta^+_{SD}(D|S_1) &= 0.3 & \beta^-_{SD}(D|S_1) &= 0 \\
\beta^+_{SD}(D|S_2) &= 0.3 & \beta^-_{SD}(D|S_2) &= 0 \\
\beta^+_{SD}(D|S_1 \land S_2) &= 0.7 & \beta^-_{SD}(D|S_1 \land S_2) &= 0
\end{align*}
\]

- Möbius transform for example 3:

a) Calculating \(M^{\text{tot}}\), \(\beta^{\text{tot}}_{SD}(D|S_1 \land S_2)\):

\[
M^+ = \max_{E'_q \subseteq S_1 \land S_2} (\mu^+_{RPS}(P_q, E'_q) \land \mu^+_{RSD}(E'_q, D)) = \max(0.3, 0.3) = 0.3
\]

In similar, we get

\[
M^- = \max_{E'_q \subseteq S_1 \land S_2} (\mu^+_{RPS}(E'_q, D)) = \max(0, 0) = 0
\]

Then \(M^{\text{tot}} = M^+ \ominus M^- = 0.3 \ominus 0 = 0.3\).

On the other hand,

\[
\beta^{\text{tot}}_{SD}(D|S_1 \land S_2) = \beta^+_{SD}(D|S_1 \land S_2) - \beta^-_{SD}(D|S_1 \land S_2) = 0.7 - 0 = 0.7
\]

b) Compare \(M^{\text{tot}}\) with \(\beta^{\text{tot}}_{SD}(D|S_1 \land S_2)\):

From results above, having \(M^{\text{tot}} < \beta^{\text{tot}}_{SD}(D|S_1 \land S_2)\) then put

\[
\mu_{RSD}(S_1 \land S_2, D) = M^- \ominus \beta^{\text{tot}}_{SD}(D|S_1 \land S_2) = 0 \ominus 0.7 = 0.7
\]

We receive the following new rule base:

\[
\begin{align*}
S_1 &\rightarrow D(0.3), & S_1 &\rightarrow \neg D(0) \\
S_2 &\rightarrow D(0.3), & S_2 &\rightarrow \neg D(0) \\
S_1 \land S_2 &\rightarrow D(0.7), & S_1 \land S_2 &\rightarrow \neg D(0)
\end{align*}
\]

such that

\[
\mu_{RSD}^{\text{tot}}(P_q, D) = \beta^{\text{tot}}_{SD}(D|S_1 \land S_2) = 0.7 \tag{26}
\]

c) Verifying (26):

From (6) we have

\[
\mu_{RSD}^{\text{tot}}(P_q, D) = \mu_{RSD}^{+}(P_q, D) \ominus \mu_{RSD}^{-}(P_q, D) = \max(0.3, 0.3, 0.7) \ominus \max(0, 0, 0) = 0.7 \ominus 0 = 0.7
\]
Thus
\[\mu_{R_{PD}^{tot}}(P_q, D) = \beta_{SD}^{tot}(D|S_1 \land S_2) = 0.7 \]
thus the equation (26) holds.

Example 4:

\[
\begin{align*}
\beta_{SD}^{+}(D|S_1) &= 0 \\
\beta_{SD}^{-}(D|S_1) &= 0.3 \\
\beta_{SD}^{+}(D|S_2) &= 0.3 \\
\beta_{SD}^{-}(D|S_2) &= 0 \\
\beta_{SD}^{+}(D|S_1 \land S_2) &= 0.7 \\
\beta_{SD}^{-}(D|S_1 \land S_2) &= 0 \\
\end{align*}
\]

- Möbius transform for example 4:

a) Calculating \(M^{tot}, \beta_{SD}^{tot}(D|S_1 \land S_2) \):

\[
M^{\pm} = \max_{E'_q \subseteq S_1 \land S_2} (\mu_{R_{SD}^+}(P_q, E'_q) \land \mu_{R_{SD}^+}(E'_q, D)) = \max(0, 0.3) = 0.3
\]

In similar, we get

\[
M^{-} = \max_{E'_q \subseteq S_1 \land S_2} (\mu_{R_{SD}^+}(E'_q, D)) = \max(0.3, 0) = 0
\]

Then \(M^{tot} = M^{+} \ominus M^{-} = 0.3 \ominus 0.3 = 0 \).

On the other hand,

\[
\beta_{SD}^{tot}(D|S_1 \land S_2) = \beta_{SD}^{+}(D|S_1 \land S_2) - \beta_{SD}^{-}(D|S_1 \land S_2) = 0.7 - 0 = 0.7
\]

b) Compare \(M^{tot} \) with \(\beta_{SD}^{tot}(D|S_1 \land S_2) \):

From results above, having \(M^{tot} < \beta_{SD}^{tot}(D|S_1 \land S_2) \) then put

\[
\mu_{R_{SD}^+}(S_1 \land S_2, D) = M^{-} \oplus \beta_{SD}^{tot}(D|S_1 \land S_2)
\]

= 0.3 \(\oplus \) 0.7 = 0.8264 (using (9)). We receive the following new rule base:

\[
\begin{align*}
S_1 &\rightarrow D(0), \quad S_1 \rightarrow \neg D(0.3) \\
S_2 &\rightarrow D(0.3), \quad S_2 \rightarrow \neg D(0) \\
S_1 \land S_2 &\rightarrow D(0.3 \oplus 0.7), \quad S_1 \land S_2 \rightarrow \neg D(0)
\end{align*}
\]

such that

\[
\mu_{R_{PD}^{tot}}(P_q, D) = \beta_{SD}^{tot}(D|S_1 \land S_2) = 0.7 \quad (27)
\]

c) Verifying (27):
From (6) we have

\[\mu_{R_{PD}}^{\text{tot}}(P_q, D) = \mu_{R_{PD}}^{+}(P_q, D) \ominus \mu_{R_{PD}}^{-}(P_q, D) \]

\[= \max(0, 0.3, 0.3 \oplus 0.7) \ominus \max(0.3, 0, 0) = (0.3 \oplus 0.7) \ominus 0.3 = 0.7 \]

Thus

\[\mu_{R_{PD}}^{\text{tot}}(P_q, D) = \beta_{SD}^{\text{tot}}(D|S_1 \land S_2) = 0.7 \]

thus the equation (27) holds.

Example 5:

- Möbius transform for example 5:

a) Calculating \(M^{\text{tot}} \), \(\beta_{SD}^{\text{tot}}(D|S_1 \land S_2) \):

\[M^{+} = \max_{E'_q \subseteq S_1 \land S_2} (\mu_{R_{PS}}^{+}(P_q, E'_q) \land \mu_{R_{SD}}^{+}(E'_q, D)) = \max(0, 0.3) = 0.3 \]

In similar, we get

\[M^{-} = \max_{E'_q \subseteq S_1 \land S_2} (\mu_{R_{PS}}^{+}(E'_q, D)) = \max(0.3, 0) = 0.3 \]

Then \(M^{\text{tot}} = M^{+} \ominus M^{-} = 0.3 \ominus 0.3 = 0.7 \).

On the other hand,

\[\beta_{SD}^{\text{tot}}(D|S_1 \land S_2) = \beta_{SD}^{+}(D|S_1 \land S_2) - \beta_{SD}^{-}(D|S_1 \land S_2) = 0 - 0.7 = -0.7 \]

b) Compare \(M^{\text{tot}} \) with \(\beta_{SD}^{\text{tot}}(D|S_1 \land S_2) \):

From results above, having \(M^{\text{tot}} > \beta_{SD}^{\text{tot}}(D|S_1 \land S_2) \) then put

\[\mu_{R_{SD}}^{-}(S_1 \land S_2, D) = M^{+} \ominus \beta_{SD}^{\text{tot}}(D|S_1 \land S_2) \]

\[= 0.3 \ominus -0.7 = 0.3 \oplus 0.7 = 0.8264 \text{ (using (9))} \]. We receive the following new rule base:

\[S_1 \rightarrow D(0), \quad S_1 \rightarrow \neg D(0.3) \]

\[S_2 \rightarrow D(0.3), \quad S_2 \rightarrow \neg D(0) \]
\[S_1 \land S_2 \rightarrow D(0), \; S_1 \land S_2 \rightarrow \neg D(0.3 \oplus 0.7) \]

where \(0.3 \oplus 0.7 = 0.8264 \)

such that

\[\mu_{R_{PD}}^{tot}(P_q, D) = \beta_{SD}^{tot}(D|S_1 \land S_2) = -0.7 \] \((28) \)

c) Verifying (28):
From (6) we have

\[
\mu_{R_{PD}}^{tot}(P_q, D) = \mu_{R_{PD}}^{+}(P_q, D) \ominus \mu_{R_{PD}}^{-}(P_q, D) \\
= \max(0, 0.3, 0) \ominus \max(0.3, 0, 0.3 \oplus 0.7) = 0.3 \ominus (0.3 \oplus 0.7) = -0.7
\]

Thus

\[\mu_{R_{PD}}^{tot}(P_q, D) = \beta_{SD}^{tot}(D|S_1 \land S_2) = -0.7 \]

and the equation (28) holds.

Example 6:

\[
\begin{align*}
\beta_{SD}^{+}(D|S_1) &= 0.7 \\
\beta_{SD}^{+}(D|S_2) &= 0.3 \\
\beta_{SD}^{+}(D|S_1 \land S_2) &= 0.7 \\
\beta_{SD}^{-}(D|S_1 \land S_2) &= 0
\end{align*}
\]

- Möbius transform for example 6:
 a) Calculating \(M_{SD}^{tot} \), \(\beta_{SD}^{tot}(D|S_1 \land S_2) \):

\[
M^{+} = \max_{E_q' \subseteq S_1 \land S_2} (\mu_{R_{PS}}^{+}(P_q, E_q') \land \mu_{R_{SD}}^{+}(E_q', D)) = \max(0.7, 0.3) = 0.7
\]

In similar, we get

\[
M^{-} = \max_{E_q' \subseteq S_1 \land S_2} (\mu_{R_{SD}}^{+}(E_q', D)) = \max(0, 0) = 0
\]

Then

\[M^{tot} = M^{+} \ominus M^{-} = 0.7 \ominus 0 = 0.7. \]

On the other hand,

\[
\beta_{SD}^{tot}(D|S_1 \land S_2) = \beta_{SD}^{+}(D|S_1 \land S_2) - \beta_{SD}^{-}(D|S_1 \land S_2) = 0.7 - 0 = 0.7
\]

b) Compare \(M^{tot} \) with \(\beta_{SD}^{tot}(D|S_1 \land S_2) \):
From results above, having \(M^{tot} = \beta_{SD}^{tot}(D|S_1 \land S_2) = 0.7 > 0 \) then put

\[
\mu_{R_{SD}}^{+}(S_1 \land S_2, D) = \beta_{SD}^{tot}(D|S_1 \land S_2) = 0.7
\]
We receive the following new rule base:

\[S_1 \rightarrow D(0.7), \ S_1 \rightarrow \neg D(0) \]

\[S_2 \rightarrow D(0.3), \ S_2 \rightarrow \neg D(0) \]

\[S_1 \land S_2 \rightarrow D(0.7), \ S_1 \land S_2 \rightarrow \neg D(0) \]

such that

\[\mu_{PD}^{tot}(P_q, D) = \beta_{SD}^{tot}(D|S_1 \land S_2) = 0.7 \quad (29) \]

c) Verifying (29):

From (6) we have

\[
\begin{align*}
\mu_{PD}^{tot}(P_q, D) &= \mu_{PD}^{+}(P_q, D) \odot \mu_{PD}^{-}(P_q, D) \\
&= \max(0.7, 0.3, 0.7) \ominus \max(0, 0, 0) = 0.7 \ominus 0 = 0.7
\end{align*}
\]

Thus

\[\mu_{PD}^{tot}(P_q, D) = \beta_{SD}^{tot}(D|S_1 \land S_2) = 0.7 \]

and the equation (29) holds.

4. CONCLUSION

In this study, we have described an algorithm using Möbius transform to compute new rule base for CADIAG-2. We have extended CADIAG-2 by including fuzzy negative knowledge. To apply Möbius transform for CADIAG-2 means to find new weights \(\mu_{PD}^{+}(S_i, D_j) \) and \(\mu_{PD}^{-}(S_i, D_j) \) of fuzzy rules that for each patient \(P_q \) whose data \(\mu_{SD}^{+}(P_q, S_i), \mu_{SD}^{-}(P_q, S_i) \) are three-valued (therefore \(E_q \) exists) such that

\[\mu_{PD}^{tot}(P_q, D_j) = \beta_{SD}^{tot}(D_j|E_q) \]

Thus this algorithm guarantees that using generalized MaxMin inference of CADIAG-2 the inference machine will reproduce the expert’s stated beliefs as total degrees of confirmation and exclusion. To illustrate this algorithm, several examples are examined.

Acknowledgment

This work was supported by grant through COPERNICUS Project No. 10053 (MUM).
REFERENCES

(1) Institute of Computer Science, Academy of Science of the Czech Republic
Pod vodarenskou vesi 2, 182 07 Praha 8, Czech Republic.

(2) Institute of Information Technology
National Center for Science and Technology of Vietnam.

Received: March 2, 1997