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A [VIODIFICATION OF TUY'S ALGORITHM FOR CANONICAL
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.vshtruct: 1\ version 01 outer - approximation method is presented Ior the Canonical I)C
optimization problem. Some computational cxpcrimcns arc dc~cribed to compare it with other
methods.
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I. INTRODLCTION.

In this paper. we are concerned with the Canonical DC opimization problem
(CDC). also referred to as the reverse convex programming problem [3 - 7]:

Minimize f(x)

subject to:
X EO l)\intG.

Where D = [x: h(x):::; 0: and G· :\ !!(x) 2 )1; lux) and g(x) arc bounded convex
functions in RIl; j(x) = <c. X>. c, x c RI'. Assume that D is bounded. It has been proved
that any DC optimization problem can he reduced to the CDC (I),

CDC problem is a mathematical model for many practical applied problems.
Besides, it plays an important role in the global optimization theory. Therefore. is has
received much attention in recent years (see (I) and its references). The main difficulty
for solving the problem is due to the presence of the reverse convex cosrraint g(x)· O.
which destroys the COI1\ exity and even the adjacency of the feasible set or the problem.
l.'p to now there \\ ere 11I(111) different methods for solving ('DC. However. several of
then: have not ye: been interested sufficiently in their convergence. efficiency or
computational test.

This paper includes 4 sections. Alter the introduction. the second section describe»
" t: pical outer-approximation algorithm for CDC. which presented by 11. Tuy (see rill.
The thrill one presents our modification of Tuys algorithm and its theoretical
b.ickuround. The last one presents some computational experiences of the algorithms.

2. TUY'S OUTER- APPROXI\lATION AL(iORITHI\1
To slovc the problem (I). it often takes us Cl vcry great amount of calculation.

Besides. to meet the application necessary of the problem we can be completely
satisfied with all approximate optimal solution as 1'0110\\:
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Definition: Given a sufficiently small positive number E. vector x, E RI! is called
c-fcasible solution of CDC if:

h(x,;) ::;0, g(x£) ::; 0.

And it is called s-approxirnate optimal solution if:
h(xE):::; 0. g(xE) ::; 0, t1xE) - r* ::;0:

where [' is the optimal value of CDC.

It is clearly. when E" J ° all cluster points of sequence (x£IJ (Ek-approximate
optimal solutions of CDC) are exact optimal solutions of CDC. Furthermore. if an
optimal solution w of the convex program Min (t(x): x E DJ satisfies inequality g(w)::;
O. then it must be an optimal solution for CDC (I) as well. Therefore. the condition g(w)
> 0 is always assumed. By translating the origine if necessary, we can always suppose
that:

,I a E int D r, int G (2)

ALGORITHM t (see [I])
Initialization.

Let y = <c, /1>, where /1 is the current best solution (if there is on such solution
then let x *1 = 0 and y = -+-0:;). Let k = I.

Build a polytope PI and its vertex set V I, such that:
(x E D: <c, x>::; yl - E C PI C [x: <c, x> $; yl - E}.

Step k = 1,2 ...
- Compute x" E arg min [gtx): x E Vk). If gtx") > 0 then terminate.
a. If/ < '1 o: X'k is an s-approximate optimal solution ofCDC. r

b. If)' cz +-J:: then the problem has no feasible solution.
- Select w'' E V" that <c, wk>::; ruin {<c, x<: x E Vk + E. If h(wk

) $; E and gtw") $;
a then terminate: wl.; is an s-approx.mate optimal solution of CDC.

- lf htu") ~ E/:2 then
*1 I I Ok k - I ka. Let x " = x ,x = '/ ;

b. Let p" E cJh(w") (such a pI.;exists because h(.) is convex. so Dh(wk
) 1:- 0).

Ij..\x) = <pk, x _ w"> + htw'') (3)

c. Compute the vertex set Vk+1 of the polytope Pj , I = Pk r, {x: I,,(x) $; a}.

d. Go to step k + 1.
, I I" 'I "k·· k k- Select -I' E IW'x so that gt,") = E er exists since g(x ) $; a and g(w) > 0). If

h(/) .> E then:
Ok· I Ok" • I k

a. Let x-= x . '/= 'I :

b. Select uk
E Iw". x'\ such that luu") == E (/ exists since htw'') $; EI2 and h(/ > E):

Let p" E ()h( 1I"). and:
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k kh;(x) = <p ,x - u )(4)

c. Compute the vertex Vk+ 1 of the polytope Pk+1 = Pk n {x: k(x) ~ O};
d. Go to step k + 1.

k *k + 1 *k I; -t- 1 I;- If h(.! ) ~ E then let x = x '·f = <c, y >.

a. If <c, w" - / > ~ 0 then terminate: x *1; t- 1 is an s-approximate optimal solution of
CDC;

b. Otherwise, let
I;

lk(x) = <c. x - -r > + E (5)

c. Compute the vertex set Vk +1 of the polytope PI; + 1 = Pk n {x: lk(x) ~ 0)
d. Go to step k + 1.
The finiteness of the algorithm is guaranteed by the following theorem:

Theorem 1 ([ ID. The algorithm 1 terminates after a finitely many steps by an E-

approximate optimal solution or by the evidence that the problem has no feasible
solution.

Remark
- Algorithm 1 uses a large number of cut-hyperplanes of different types in the

solution process. Therefore, the total number of vertices Pk may quickly become quite
large. and it makes increasing the computational cost and amount of memory for its
storage. It causes a certain difficulty in using this algorithm.

- Algorithm I pays a great attention in solving be convex programming problem
min {<c, x>: x E D}. Only if it had found such wl; that htw") < E/2 (it means wk is the E-

approximate optimal solution of the above convex program) and g(wk) > 0, then ./ or uk

in turn are calculated and their cuts are built. That maybe unreasonable if the solution w
did not satisfy the reverse - convex constraint.

3. THE MODIFICATION ALGORITHM
The following algorithm is a modification of the above algorithm. In order to

prevent the number of verties of the approximate polytopes Pk from increasing, too
quickly, in each step, after finding xk and wk as the above algorithm we solve equation

I k ~I k k I; I;g(x) = 0 on w .x to find vector u (or let u = w if g(w ) ~ 0) and to cut it from PI; + 1

if h( lh > E. The selection of such uk bases on the following property of CDC.

Theorem 2. ([1]). If convex programming problem Min {f(x): x E D} has a
optimal solution w, satisfies g(w) > 0, and the CDC problem (1) has a feasible solution,
then there exists such an optimal solution x* ofCDC that:

•g(x ) = 0 (6)
I; k k kFurthermore, since hex) is convex. so h(u ) ~ max {hew ), hex )}; and ifh(u ) > E,

I; k I;
then either x or w is cut from PI; + 1 as u . That is also the reason we attemps to find an
s-approximate optimal solution satisfies the equality (6).
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ALGORITHM 2
Initialization.

Build a poly to pe PI ::::l D and its vertex set V I. Select £ > O.
Let w' == arg ruin l<c. x>: x E VI J.

x ' = arg mill {gtx): x E VIJ.

I 2 max «c. x>: x E D l -;-£
Stepk=I,2 ...

If g(xk
) > 0 then terminate
I-; I-; k k I ~ ~I kIf g(w ) $ 0 let u = w ; otherwise compute U E ,w , x such that g(u) ::::0

(u'' exists because g(wk) > 0 and g(Xk) $ 0). There are two cases:
• I-; I 1-;+1 k· k k kl I .

8. It h(u ) $ e, et , = <c, u >, x ::::U , P, - I :::: W • X :::: arg 111111 : g(x): x E Pk
~ < h -t- I \ (7)'I, -·c, x> -.-'f - £,

and go to step k + I.
b. Ifh(uk) E, let p, E Dh(lh (since h(.) is convex, ah(lh i:- 0),

I-; t I _ k
'{ -- '( .
Ik(X):::: <p", x - u'> + htu'') (8)

Compute the vertex set VI-;-I of the polytope
1\ ' 1 == Pk n :x: Id x ) $ 0 l

If Idxk) $ 0 then let Xk r- I =.: xk. otherwise compute:

Xk , 1 = arg ruin : g(x): x E Ph ' I. <c. x> $ / ' 1 - c} (9)
k I 1 1-;.; I I-; .If lk(w ) $ 0 t ten et w = w . otherwise compute:

k + I •
W == arg mm {<c, x>: x E VI-;' I}.

Then go to step k + I.
Theorem 3. The algorithm 3 terminates after a finite number of step and yields

either s-approximate aptimal solution or an evidence that the problems has no feasible
solution.

Proof. Suppose that the algorit+m is infinite. Clearly, PI ::::l P2 ::::l .... ::::l Pk .. ::::lD.

From (7) and (9), it implies <c. wk> s /' + I = <c, u"> $ <c. x"> «; -e. It is easy to

see that the case a never occurs more than I( y 1 - < x, w 1 »11£1 + I time. So that. the case
b must occur infiniely many times. Because PI is bounded. there exists a convergent
subsequence of the sequence [u"}. It means that there ex ist two sufficiently large
number k and s (s ~ k + I) such that <pk. US - lIk > > -E. But htu'') . E, it confliets with
(8):

u' E Pk I I. k(lIS
) == <p'', LIS - u'> + htu'') ~ o.

By the above contradiction. it is evident that the algorithm must be finite.

37



NGUYEN TRONG TOAN

Suppose now that the algorithm terminates at step k. Since (7) and (9), Pk has no
such feasible solution x that g(x) ::::;0 and <c, x> ::::;/ - E. If the case a has ever occurred
then the recent x' is an s-approximate optimal solution. Otherwise, it means that ./' =-= .,1:
since Pk :::> D. it shows that the problem has no feasible solution.

The theorem has been completely proved.

4. COMPUTATIONAL EXPEIUENCE
The algorithms were coded in PASCAL and run on a personal computer AT

386DX to test 12 different problems. The result is described in the following table:

Dimension Algorithm I Algorithm 2

N MI M2 STEP VER VER CUT CUT TIME I STEP VER VER CUT Cl
v I 2 I 2 I 2 1

r-t-- -
I 2 3 0 2 3 5 I 0 0 2 3 5 I

2 8 6 0 4 45 69 I 2 50 3 24 27 1

3 2 4 0 4 3 5 0 1 6 1 3 3 0

4 2 5 0 2 3 5 0 1 22 1 3 3 0
I

5 3 8 0 9 12 32 5 3 11 6 7 19 4
I

6 I 2 5 0 13 9 29 4 8 11 11 5 9 3
I

1

7 2 1 2 15 7 31 12 2 22 11 6 15 6

8 2 4 0 9 5 19 2 6 11 8 4 7 2

9 3 I 2 64 123 380 51 12 9079 28 24 52 13 .
.:

10 3 I 2 54 99 282 48 5 3877 27 40 85 20 .
.:

11 3 3 1 3 4 10 1 1 5 2 4 7 1

12 5 6 1 28 20 301 8 19 401 6 22 55 5

Table: Computational result of the algorithm 1 & 2
Where:
- N: Number of variables;
- Ml: Number of linear constrains, sign constrains not include;
- M2: Number of convex constrains;
- STEP: Number of iterations;
- VER 1: Maximal number of vertices ofpolytope Pk;

- VER 2: Sum of generated vertices;
-cut 1: Number of cuts (3) and (4);
- CUT 2: Number of cuts by levels of the function f(x) (in (5), (7), and (9».
- TIME: CPU time in % of second; 110 time not includes.

38

------_._-;

______J
rtxu- I

\J

16

-~

17

:.

11

6

160

396

I :i
I

" I -0~--::--



..\ \10DIFICATIOr--; OFTUY'SALGORITI-IM FOR CA"-fONICAL PROGRAMMING PROBLE\I

From the above table we note that: because the cuts by levels of the objectie
function f(x) (CUT 2) are not used to make new polytopes algorithms 2, this leads to
lower VER I and TIME. In the case wher f(x) is convex, the problem may be
formulated as: Minimize t, hl(x) = f(x) :::; I and the old constraints. Two among the
tested problems cited in the above table are of this form:

Problem 9. fix ) = (x I - 3.69)~ + (x: - 12)~ ~ min

x I + x~ :::;30, x I 2: 0, Xl 2: 0
)

hex) = -XI + 18x-~/484 - 10:::; 0
) ,

g(x) = -X-I - x-~ + 484:::; 0

The optimal solution / = (6.48079,21.02378), r* = 89.21686 with E = 0.001.

f(x) = (XI - 2)2 + (X2 - 1)2 ~ min

XI + x~ :::;5, XI 2: 0, X22: 0
h(x) = x21 - 4.4.x I + X22- 2.4X2 + 4.03 :::;0

g(x) = 4xI - X21- 0.36x2
2 - 2.56:::; 0

The optimal solution / = (2.77534, 1.526646), r* = 0,87743 with E = 0.0001.

Problem 10.
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