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A MODIFICATION OF TUY'S ALGORITHM FOR CANONICAL
DC PROGRAMMING PROBLEM

NGUYEN TRONG TOAN '

Asbtract: A version of outer - approximation method is presented for the Canonical DC
optimization problem. Some computational experimens are described to compare it with other
methods.
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I. INTRODUCTION.

In this paper. we are concerned with the Canonical DC opimization problem
(CDC). also referred to as the reverse convex programming problem [3 - 7]:
Minimize f(x)
subject to:
X € DuntG,

Where D = {x: h(x) <0} and G~ |x: g(x) 2 )} h(x) and g(x) are bounded convex
functions in R"; f(x) = <c, x>, ¢, x < R". Assume that D is bounded. It has been proved
that any DC optimization problem can be reduced to the CDC (1),

CDC problem is a mathematical model for many practical applied problems.
Besides, it plays an important role m the global optimization theory. Therefore, is has
received much attention in recent vears (see (1) and its references). The main difticulty
for solving the problem is due to the presence of the reverse convex costraint g(x) - 0.
which destroys the convexity and even the adjacency of the feasible set of the problem.
Up to now. there were many different methods for solving CDC. However. several of
them have not vet been interested sufficiently ‘in their convergence. efficiency of
computational test.

This paper includes 4 sections. After the introduction. the second section describes
a typical outer-approximation algorithm for CDC. which presented by 1. Tuy (see [1]).
The thrid one presents our modification of Tuy's algorithm and its theoretical
background. The last one presents some computational experiences of the algorithms.

2. TUY'S OUTER- APPROXIMATION ALGORITHM
To slove the problem (1), it olten takes us a very great amount of calculation.
Besides. to meet the application necessary of the problem we can be completely
satisfied with an approximate optimal solution as follow:
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Definition: Given a sufficiently small positive number €, vector x, € R" is called
c-feasible solution of CDC if:
h(x;) <0, g(x¢) <0.
And it is called g-approximate optimal solution if:
h(xz) <0, g(xe) 0, fixe) - f <0;

where f is the optimal value of CDC.

It s clearly. when g J 0 all cluster points of sequence (Xg) (ex-approximate
optimal solutions of CDC) are exact optimal solutions of CDC. Furthermore. if an
optimal solution w of the convex program Min {f(x): x € D] satisfies inequality g(w) <
0. then it must be an optimal solution for CDC (1) as well. Therefore. the condition g(w)
> ( is always assumed. By translating the origine if necessary, we can always suppose
that:

OemtDnNint G(2)

ALGORITHM 1 (see [1])

Initialization.

Lety = <c. x >, where x"" is the current best solution (if there is on such solution
then let x™' = 0 and y=+ex). Letk = 1.

Build a polytope P, and its vertex set V|, such that:

{x e D: <c, x>Syl -ec Py c {x: <c, x>$y' - €},
Stepk=1,2... ‘

- Compute x" e arg min {g(x): x € Vi. If g(xk) > ( then terminate.

a. lf»,“ <+ x s an g-approximate optimal solution of CDC.

b. If .,,“' = += then the problem has no feasible solution. ‘

- Select w* € V that <c, w*> < min {<c.x<tx e Vy+e If h(w") < & and g(w") <
0 then terminate: w" is an g-approx:mate optimal solution of CDC.

-If h(ul‘) > ¢/ 2 then

a Letx™ ' '=x" xk =t

b. Let p'“ € (?h(wk) (such a pk exists because h(.) is convex. so 0h(w") * D).

Lix)= <fpk, X - wh> + l\(wk) (3)
¢. Compute the vertex set Vi .| of the polytope Py .| = Py n {x: [y(x) < 0}.
d.Gotostepk + 1.

- Select .* 5w“ . x*! so that g(-,k) =g (1,k exists since g(xk) <0 and g(w") = 0% It

h(.,k) > ¢ then:
gLt g, L
b. Select u* € |w*, x“! such that h(u") = ¢ (,* exists since h(w") < &/2 and h(,* > g):

Let p* & Ch(u"). and:

(U]
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L(x) = <p", x - u) (4)
c. Compute the vertex Vi .| of the polytope Py +; = Py m {x: lk(x) < 0};
d. Gotostepk + 1.
-Ifh(*) <ethen let x *°

Lok k+l k
=X k. -/k =< ¥ 2

k

a. If <c, w* - ‘/“ > < 0 then terminate: x * "' is an e-approximate optimal solution of

CDC:
b. Otherwise, let
L(x) = <c, x - > + & (5)

c. Compute the vertex set Vy ;| of the polytope Py« = Py N {x: Iy(x) < 0)

d.Gotostepk + 1.

The finiteness of the algorithm is guaranteed by the following theorem:

Theorem 1 ([1]). The algorithm 1 terminates after a finitely many steps by an ¢-
approximate optimal solution or by the evidence that the problem has no feasible
solution.

Remark

- Algorithm 1 uses a large number of cut-hyperplanes of different types in the
solution process. Therefore, the total number of vertices Py may quickly become quite
large. and it makes increasing the computational cost and amount of memory for its
storage. It causes a certain difficulty in using this algorithm.

- Algorithm 1 pays a great attention in solving be convex programming problem
min {<c, x>: x € D}. Only if it had found such w* that h(w*) < €/2 (it means w* is the &-
approximate optimal solution of the above convex program) and g(w*) > 0, then ~,k or u*
in turn are calculated and their cuts are built. That maybe unreasonable if the solution w
did not satisfy the reverse - convex constraint.

3. THE MODIFICATION ALGORITHM

The following algorithm is a modification of the above algorithm. In order to
prevent the number of verties of the approximate polytopes Py from increasing, too
quickly. in each step, after finding x* and w" as the above algorithm we solve equation
g(x)=0on lwk . x‘[ to find vector u* (or let u* = w* if g(w") < 0) and to cut it from Py . |
if h(u*) > €. The selection of such u* bases on the following property of CDC.

Theorem 2. ([1]). If convex programming problem Min {f(x): x € D} has a
optimal solution w, satisfies g(w) > 0, and the CDC problem (1) has a feasible solution,
then there exists such an optimal solution x  of CDC that:

g(x") =0 (6)

Furthermore. since h(x) is convex. so h(u*) < max { h(w"), h(xk)}-: and if h(u*) > &,
then either x* or w* is cut from Py as u®. That is also the reason we attemps to find an
g-approximate optimal solution satisfies the equality (6).
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ALGORITHM 2
Initialization. A
Build a polytope P; > D and its vertex set V. Select € > 0.
Letw' = arg min {<c,x>:x € V}.
x| =arg min {g(x): x € Vi}.
.’_,' >max {<c.x>:x € D} +¢
Stepk=1,2...
If g(x*) > 0 then terminate
If g(w") <0 let u* = w¥; otherwise compute u* e !wL . x“* such that g(u*) = 0
(u" exists because g(wk) > ( and g(xk) < 0). There are two cases:
a. If h(u*) < g, let :,"' g S Sgh Py =, R = arg min {g(x): x € Py
s <€, X> < ,1‘ L el (7)
and gotostepk + 1.
b. If h(u“) g, letpy € é’h(uk) (since h(.) is convex, oh(u") # @),
kel k

b/ T
I(x) = <pk. X - u> + h( ) (8)
Compute the vertex set Vi .; of the polytope
. Py . 1 = P ix: l(x) £ 0)
If lk(x“) <0 then let x* ' = x*, otherwise compute:
x" "' =argmin {g(x): x € P .| <c.x>< .,,..k gl (9)
If I(w") < 0 then let w* ' = w*, otherwise compute:
w7 T arg min {<c, x>:x € V. }.
Then gotostepk + 1.
Theorem 3. The algorithm 3 terminates after a finite number of step and yields
either e-approximate aptimal solution or an evidence that the problems has no feasible
solution.

Proof. Suppose that the algorithm is infinite. Clearly, Py > P, o> .... o Py .. oD.

Kk k+1 K Kk

From (7) and (9), it implies <c, w'> <." " " =<¢c,u> < <¢, x> < .‘,“' -¢. Itiseasy to

| | ‘ “
see that the case a never occurs more than ;(y' —< X, W >) lel + / time. So that, the case

b must occur infiniely many times. Because P is bounded, there exists a convergent
subsequence of the sequence {u*}. It means that there exist two sufficiently large
number k and s (s 2 k + 1) such that <pk. u’ - u* > > -g. But h( u") . €, it confliets with
(8):
w e Pyl ) = <ph. vt - u*> + hu*) < 0.
By the above contradiction, it is evident that the algorithm must be finite.



Suppose now that the algorithm terminates at step k. Since (7) and (9), Py has no
such feasible solution x that g(x) < 0 and <c, x> < .* - €. If the case a has ever occurred
then the recent X is an g-approximate optimal solution. Otherwise, it means that A," =t
since Py o D. it shows that the problem has no feasible solution.

NGUYEN TRONG TOAN

The theorem has been completely proved.
4. COMPUTATIONAL EXPERIENCE

The algorithms were coded in PASCAL and run on a personal computer AT
386DX to test 12 different problems. The result is described in the following table:

Ls0

Dimension Algorithm 1 Algorithm 2
N | Ml | M2 | STEP | VER | VER | CUT | CUT | TIME | STEP | VER | VER | CUT cuT
1 2 1 2 1 2 l 2
1 2| 3 0 2 3 5 1 0 0 2 3 5 N
2 8 | 6 0 4 45 | 69 1 2 50 3 24 | 27 1| 3
3 |2 4 0 4 3 5 0 1 6 1 3 3 0 i
4 |2 5 0 2 3 5 0 1 22 1 3 3 0 1
5 |3 8 0 9 12 | 32 5 3 1 6 7 19 4 6
6 | 2 5 0 13 9 29 4 8 1 1 5 9 3 1
7 |2 1 2 15 7 31 12 2 22 11 6 15 6 9
8 | 2| 4 0 9 5 19 2 6 1 8 4 7 2 8
9 3 1 2 64 123 | 380 51 12 9079 28 24 52 13 25
10 | 3 1 2 54 99 | 282 | 48 5 3877 27 40 | 85 | 20 | 25
1|3 3 1 3 4 10 1 1 5 2 4 7 1 2
12 5] 6 1 28 20 | 301 | 8 19 | 401 6 2 | 55 5 5
Table: Computational result of the algorithm 1 & 2
Where:

- N: Number of variables;
- M1: Number of linear constrains, sign constrains not include;

- M2: Number of convex constrains;
- STEP: Number of iterations;
- VER 1: Maximal number of vertices of polytope Py;

- VER 2: Surn of generated vertices;

- CUT 1: Number of cuts (3) and (4);
- CUT 2: Number of cuts by levels of the function f(x) (in (5), (7), and (9)).
- TIME: CPU time in % of second; I/0 time not includes.
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From the above table we note that: because the cuts by levels of the objectie
function f(x) (CUT 2) are not used to make new polytopes algorithms 2, this leads to
lower VER 1 and TIME. In the case wher f(x) is convex, the problem may be
formulated as: Minimize t, h(x) = f(x) < | and the old constraints. Two among the
tested problems cited in the above table are of this form:

Problem 9. f(x) = (x; - 3.69)1 + (X2 - 12)2 — min

X1 +xX:<30.x,20,x2>20
h(x) = -x; + 18x">/484 - 10 <0
g(x) = -x:| - ng +484 <0
The optimal solution X =(6.48079,21.02378). f = 89.21686 with £ = 0.001.

Problem 10. f(x) = (x, - 2) + (x> - 1)2 — min
' X1 hX2<5, % 20,x220
h(x) =% -4.4x" +x%-24x,+4.03<0
g(x) = 4x, - x| - 0.36x% - 2.56 < 0
The optimal solution x” = (2.77534, 1.526646), f = 0,87743 with € = 0.0001.
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