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Abstract. A Self-Organizing Map (SOM) has good quality when both of its measures, quanti-

zation error (QE) and topographic error (TE), are small. Many researchers have tried to reduce

these measures by improving SOM’s learning algorithm, however, most results only decrease either

QE or TE. In this paper, a method to improve the quality of the map obtained when the SOM’s

learning algorithm ended is proposed. The proposed method re-adjusts weight vector of each neuron

according to cluster’s center that neuron represents and optimizes clusters by “different elements”

competitive strategy. In this method, QE always decreases each time the competition “different
elements” occurs between all neurons, TE may reduce when the competition “different elements”

occurs between adjacent neighbors. The experiments are performed on assumed datasets and real

datasets. As the results, the average reduction ratio of QE is from 50% to 60%, TE gets the average

reduction ratio from 10% to 20%. This reduction ratio is larger than some other solutions but does

not need to adjust the parameters for each specific dataset.

Keywords. self-organizing map, competitive learning, different elements, quantization error, topo-

graphic error.

1. INTRODUCTION

The SOM neural network was proposed by Teuvo Kohonen in 1980s [16]. This is a feedforward neural

network model, using an unsupervised competitive learning algorithm. The SOM allows mapping

data from multi-dimensional space to less dimensional one (normally 2 dimensions), which makes up

the feature map of the data. So far, there have been many different variations of SOM proposed

[5] and there are many studies showing that feature map’s quality of SOM depends greatly on the

initialization parameters such as: Kohonen layer size, numbers of training and neighboring radius

[7, 10, 16, 19, 29].

The quality of SOM’s feature map is evaluated based on two criteria, learning quality and projec-

tion quality primarily [3, 13, 23, 27]. In particular, the learning quality is determined by measuring

the QE (demonstrates the data representation accuracy) [4, 16] and the projection quality determined

by measuring the TE (demonstrates the topology preservation) [2, 15, 20].

In fact, the method of “trying error” is used to choose suitable parameters [16]. According to

Chattopadhyay [6], with a particular dataset, the network size is chosen by “trying error” until

small QE and TE achieved. Polzlbauer indicates technical correlation between QE and TE [24], TE

usually increases when the QE decreases; besides, in case Kohonen layer’s size larges, QE reduces but

TE rises (i.e. increasing Kohonen layer’s size can lead to the map’s topographic deformation) and

whereas when Kohonen layer’s size is too small, TE may be not trustful. The use of small neighboring
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radius also leads to reduce the QE, if neighboring size is smallest, QE will achieve the minimum value

[26].

Beside the “trying error” method to determine an appropriate network configuration, the re-

searches for improving the learning algorithm are also developed by other researchers. Germen [8, 9]

optimized QE by integrating parameter “hit” when updating the weights of the neurons. The term

“hit” means the numbers of excitation of a neuron. As a consequence, the neurons representing ma-

jor samples will be adjusted less than the neurons representing the minor samples (to ensure no loss

of information). Neme [21, 22] proposed model SOM with selective refractoriness allows optimizing

TE. In this model, the neighboring radius of BMU does not reduce gradually during the learning

process, each training time, each neuron in the neighboring radius of BMU will decide whether the

next training is influenced by the BMU again or not. Kamimura [14] integrated “firing” rate into

distance function in order to maximize input information. The “firing” rate represents the impor-

tance of each feature compared to the remaining features. His method reduces both QE and TE,

however, its limitation is each dataset needs to do “trying error” to achieve the appropriate “fir-
ing”. Another research, Lopez-Rubio [18] gave out the cause of the TE due to the self-intersections

(Fig.3) as in following definition: A map is self-intersected if and only if there two triples of
adjacent units {i, j, k} and {r, s, t} that satisfy two conditions: {i, j, k} ∩ {r, s, t} = ∅ and
(∆wiwjwk) ∩ (∆wrwswt) 6= ∅ where, 4abc triangle defined by vertices a,b, c ∈ RD,

∆abc = {(1− u− v) a + ub + vc|0 ≤ u+ v ≤ 1}

Thereby, to reduce the TE, self-intersections have to be removed. He proposed the solution to detect

self-intersections and redid the learning steps which caused it. His solution has disadvantages that

when TE decreases, QE increases.

Obviously, trying to adjust learning algorithm to reduce both QE and TE is a difficult task.

Thus, our solution is to re-adjust obtained map after the learning algorithm ends. In the competitive

learning method [11, 25], the samples represented by each neuron are considered as a cluster, hence,

the weight vector of the neuron will best represent for samples if it is the codebook vector of the

cluster. In essence, a large QE is caused by the big difference of each data sample from its winner

neuron (eq(4)), so to reduce the QE, the weight vectors must be adjusted according to the codebook

vectors of the clusters and the clusters must be optimized according to the new weight vectors. This

optimizing cluster method is called the competition “different elements”. The “different elements”

competitive process will promote weight vector of each neuron to move closer towards the weights of

adjacent neighbors. This limits self-intersections status [18], so that reduces the TE.

The remaining of the paper includes: part 2 presents an overview of SOM and the quality measures

of feature map; part 3 presents our solution; part 4 offers experimental results and final part is

conclusions.

2. SOM NEURAL NETWORK AND FEATURE MAP QUALITY

2.1. An overview of SOM

The SOM neural network includes an input signal layer which is fully connected to an output layer

called Kohonen layer (Figure.1). Kohonen layer is often organized as a two dimensional matrix of

neurons. At t training times, a sample v is used to train the network. The training algorithm performs

three steps:
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Figure 1: Illustrations of SOM.

• Step 1: Finding the best matching unit (BMU ) with v as the eq(1) .

dist = ||v − wc|| = min
i
{||v − wi||} (1)

• Step 2: Calculating the neighboring radius of BMU as the eq(2).

Nc (t) = N0 exp

[
− t
λ

]
(2)

where, N0 is the initial neighboring radius;

λ =
K

log (N0)

is the time parameter, with K is the numbers of iterations.

• Step 3 : Updating the weight vector of BMU , and neurons in the neighboring radius of BMU
as the eq(3).

wi (t+ 1) = wi (t) +Nc (t)hci (t) [v − wi (t)] (3)

where,

hci (t) = exp

[
−||rc − ri||

2

2Nc
2 (t)

]
is the interpolation function over learning times, with ‖rc − ri‖2 is the distance from BMU
(neuron c) to neuron i in the Kohonen layer.

2.2. Quality measures

Quantization Error [16]: the average difference of inputs compared to their corresponding BMUs.

QE =
1

T

T∑
t=1

‖x (t)− wc (t)‖ (4)
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where, wc(t) is the weight vector of BMU corresponding to x(t), T is the total number of data

samples.

Topographic Error: the numbers of the samples whose the first best matching unit (BMU1) and

the second best matching unit (BMU2) are not adjacent [15, 20].

TE =
1

T

T∑
t=1

d (x (t)) (5)

where, d(x(t)) = 1 if BMU1 and BMU2 of x(t) are adjacent, and d(x(t)) = 0, vice verse.

Topographic Product (TP): assess the neighborhood relation preservation in the map [3]. How-

ever, TP is only reliable for linear datasets [28].

TP =

n×m∑
i=1

Hi (6)

where, Hi = 1 if k nearest neighbors of neuron i, which have the identical weight vector, n ×m is

the size of Kohonen layer.

Distortion Measure (DM): the overall quality of the SOM neural network is evaluated by energy

function Ed [17]. Ed is used to pick out the best map from different trainings with the same dataset.

However, Heskes [12] shows thatEd can only be optimized as training set that is finite and neighboring

radius fixed.

Ed =

T∑
t=1

q∑
i=1

hci (t) ‖x (t)− wi (t)‖ (7)

with q is the number of neurons in the neighboring radius of the BMU at iteration t.
Indeed, QE and TE are two main measures used to assess the quality of feature map [6]. The

next section presents the solution to reduce the QE and TE.

3. “DIFFERENT ELEMENTS” COMPETITIVE STRATEGY

Obviously, after the training process, each neuron in the Kohonen layer will represent a data cluster

including closest samples to weight vector of the neuron. So, the training dataset is divided into s
subsets corresponding to s neurons (with s = m × n, where m × n is the size of Kohonen layer).

Suppose I is training dataset, it yields

I = {I1, I2, ..., Is}

where, Ii is a subset including samples represented by neuron i (with i = 1..s).
Call Qi the difference of neuron i (total of the distance of the samples of Ii to weight vector wi):

Qi =

p∑
v=1

d (xv, wi) (8)

where,

d (xv, wi) = ‖xv − wi‖

with xv ∈ Ii, p = |Ii| is the number of samples represented by neuron i.
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The eq(4) is equivalent to the eq(9) below:

QE =
1

T

s∑
i=1

Qi (9)

The eq(9) shows that: QE is minimized if Qi is minimized, with ∀i = 1..s.
Call ci the codebook vector of Ii (ci is closest to all samples of Ii):

ci =
1

p

p∑
v=1

xv (10)

Let Qc
i the total of the distance of the samples of Ii to the ci.

Qc
i =

p∑
v=1

d (xv, ci) (11)

Hence, Qi is minimized if it satisfies the eq(12)

Qi = Qc
i ⇔

p∑
v=1

d (xv, wi) =

p∑
v=1

d (xv, ci) (12)

In other words, Qi is minimized if and only if wi = ci, with ∀i = 1..s
From all above, a definition about the smallest quantization error is proposed:

Definition 1. Quantization error of self-organizing map is the smallest if and only if
wi = ci, with ∀i = 1..s, where wi is the weight vector of neuron i; ci is the codebook vector
of Ii, including samples represented by neuron i.

Therefore, to reduce the QE we assign wi = ci, with i = 1..s. However, this leads to the

consequence that some samples have to change its representative neuron, because it fits better with

another neuron (compared with the neuron to which it belongs), i.e. the elements of each subset Ii
need to be redefined. The samples which need to change representative neuron are called “different
elements”, as the following definition:

Definition 2. x is called “different elements” of neuron i to neuron j (with ∀j 6= i) if
and only if x ∈ Ii and d (x,wi) > d (x,wj).

In the Figure.2, x1 is the “different elements” of neuron i to neuron j, with x1 ∈ Ii :
d (x1,wi) > d (x1,wj); x2 is the “different elements” of neuron i to neuron k, with x2 ∈ Ii :
d (x2,wi) > d (x2,wk); x3 ∈ Ii is not the “different elements” of neuron i to neuron g because

the condition d (x3,wi) > d (x3,wg) is not satisfied.

From above definition results in the following theorem:

Theorem. Give x is a “different elements” of neuron i to neuron j (with x ∈ Ii, i 6= j),
we have QE∗ < QE if and only if Ii = Ii\x and Ij = Ij ∪x. In which QE is the quantization
error before removing sample x from set Ii and updating x to Ij, QE

∗ is the quantization
error achieved after removing sample x from set Ii and updating x to Ij.

Proof.
Eq(9) ⇔ QE = 1

T (Q1 +Q2 + ..+Qi + ..+Qs) Let

Q = Q1 +Q2 + ..+Qi + ..+Qs = Q+Qi +Qj (13)
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Figure 2: Illustrations of the “different elements” of neuron i.

with

Q =
s∑

k=1,k 6=i,k 6=j

Qk

Let Qi = Qi − d (x,wi) is the difference of the neuron i on the set Ii = Ii\x

⇔ Qi = Qi + d (x,wi) (14)

Let Qj is the difference of the neuron j on the set Ij = Ij ∪ x

Qj = Qj + d (x,wj) (15)

Calling Q∗ the total of the difference of all neurons after removing sample x from set Ii and updating

x to set Ij , yields:

Q∗ = Q+Qi +Qj (16)

From the hypothesis

x ∈ Ii : d (x,wi) > d (x,wj)

with i 6= j, it yields:

Qi + d (x,wi) > Qi + d (x,wj) (17)

Replacing (14) to (17), results in:

Qi > Qi + d (x,wj)

⇔ Qi +Qj > Qi + d (x,wj) +Qj (18)

Replacing (15) to (18), yields:

Qi +Qj < Qi +Qj

⇔ Q+Qi +Qj < Q+Qi +Qj (19)

Replacing (13) and (16) to (19), results in the following:

Q∗ < Q⇔ QE∗ < QE (20)
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Lemma. Give x is “different elements” of neuron i (x ∈ Ii) to two neurons j and k
(wih i 6= j, i 6= k, j 6= k), we have

QE∗(j) < QE∗(k)

if and only if d (x,wj) < d (x,wk), with QE∗(j) is the quantization error achieved if x is
updated to set Ij; QE

∗
(k) is the quantization error achieved if x is updated to set Ik.

Proof.

Calling Q∗(j) the total of the difference of all neurons if x is updated to Ij , yields:

Q∗(j) = Q− d (x,wi) + d (x,wj) (21)

Calling Q∗(k) the total of the difference of all neurons if x is updated to Ik, results in:

Q∗(k) = Q− d (x,wi) + d (x,wk) (22)

From hypothesis

d (x,wj) < d (x,wk)

yields:

Q∗(j) < Q∗(k) ⇔ QE∗(j) < QE∗(k)

Thus, optimizing process of QE repeats two following steps: firstly, assign the weight vector

of each neuron to the cluster’s center that it represents; secondly, compete “different elements”

between neurons to redetermine the data subset that each neuron represents.

The “different elements” competitive strategy is performed for all neurons aiming to optimize

clusters’s elements, which reduce QE and may also restrict the self-intersections [18] resulting in

reducing TE. Figure.3 illustrates the self-intersections given by Lopez-Rubio. In particular, the

weight vector of neuron i matches with other units rather than adjacent neighbors j, k, p, q, that is

the cause of self-intersections.

The “different elements” competitive process will adjust the weights of i and its adjacent neigh-

bors closer if between i and its adjacent neighbors exist “different elements”. Hence, if there exist

“different elements” of j, k, p, q to i, the cluster Ii will extend towards Ij , Ik, Ip, Iq and if there

exist the “different elements” of i to j, k, p, q, the clusters Ij , Ik, Ip, Iq will extend towards Ii, vice

verse. As a result, the corresponding cluster centers ci, cj , ck, cp, cq approach closer to each other. In

principle, the clusters which have large differences tending to shrink (to reduce the difference), and

the clusters have small differences tending to expand and move towards the clusters which have big

differences.

Thus, the competition “different elements” directly reduces QE but only contributes to reduce

TE. In which, QE always decreases when competition occurs, while reduction of TE depends on the

number of “different elements” between the neuron which causes self-intersection and its adjacent

neighbors. If the neuron which causes self-intersection is too different from its adjacent neighbors,

there is non-existent of “different elements” between them, hence, the competition “different ele-
ments” can not remove the self-intersection status in this case.

We propose the IMQS algorithm which used to improve the feature map’s quality, including the

following steps:

• Step 1: Determine the subset Ii of I = {I1, I2, .., Is}, with i = 1..s
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Figure 3: Illustrations of seft-intersections.

• Step 2: Repeat competition “different elements” between all neurons until satisfying one of

the following stopping conditions: there is no existence of any “different elements” between

all neurons or ||QE −QE∗|| < θ, with θ is option threshold value.

The competition “different elements” procedure between neuron i and others is as follows:

With ∀x ∈ Ii, i 6= j, i 6= k, j 6= k,

if d (x,wi) > d (x,wj) and d (x,wi) > d (x,wk) and d (x,wj) < d (x,wk) then

Ii = Ii\x; Ij = Ij ∪ x;

ci =
1

|Ii|

|Ii|∑
v=1

xv; cj =
1

|Ij |

|Ij |∑
v=1

xv;

wi = ci; wj = cj

For ease of installation, the Batch-IMQS version is recommended, allowing batch processing.

Repeat two following steps until the stop condition is satisfied:

• Step 1: Determine the subset Ii of I = {I1, I2, .., Is}, with ∀i = 1..s.

• Step 2: Calculate the codebook vectors ci, and assign wi = ci, with ∀i = 1..s.

The Batch-IMQS is suitable for the case that the dataset’s size and Kohonen layer’s size are

small. The next section presents experiments of the method and evaluates the effectiveness of the

algorithm through measures, QE and TE.

4. EXPERIMENTS

The experiments are performed with two assuming datasets (XOR, Odd-Even) and eleven real

datasets [1]. In each dataset, the experiment includes two phases: the first phase is training SOM

neural network; the second phase is improving feature map’s quality obtained of SOM by IMQS. In

both phases, the QE, TE values are tracked for comparison. Kohonen layer’s size is 15 × 15 which

is used for all datasets. The IMQS algorithm has stop condition parameter θ = 10−4, it is used to

improve the map’s quality obtained of SOM in two cases:

In the first case, the SOM algorithm’s stop condition is when the number of training times is

three times the size of the dataset (because the number of samples of some datasets is small). Table

1 is the result of QE, TE before and after applying IMQS.
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No. Dataset Vectors(N) Features
SOM IMQS

QE TE QE TE

1 XOR 4125 2 0.0483 0.9707 0.0311 0.9350

2 Odd-Even 400 8 130.3291 0.85 67.6296 0.39

3 Iris 150 4 0.5593 0.8 0.2098 0.4467

4 Glass 214 9 4.0375 0.3879 1.6695 0.3411

5 Flame 240 2 0.9542 0.5708 0.3723 0.4125

6 Pathbased 300 2 3.2396 0.5833 0.9751 0.5067

7 Spiral 312 2 3.0021 0.5769 0.8925 0.4071

8 Jain 373 2 1.6923 0.4987 0.7313 0.4745

9 Compound 399 2 1.6329 0.6090 0.7192 0.6040

10 Aggregation 788 2 2.3739 0.5584 1.0257 0.4251

11 R15 600 2 0.6842 0.8917 0.2532 0.7283

12 D31 3100 2 4.8514 0.6468 1.0631 0.4958

13 Wine 178 13 63.4801 0.3146 13.0856 0.2753

Table 1: Results of QE, TE with training times of SOM by 3×N .

No. Dataset Vectors(N) Param k
SOM IMQS

QE TE QE TE

1 XOR 4125 10 0.0385 0.9685 0.0294 0.9372

2 Odd-Even 400 60 98.5358 0.8975 56.5497 0.4925

3 Iris 150 30 0.3553 0.8733 0.1177 0.6733

4 Glass 214 60 2.9664 0.4439 1.4712 0.4626

5 Flame 240 30 0.4684 0.9292 0.2184 0.8625

6 Pathbased 300 30 0.9543 0.8367 0.4825 0.74

7 Spiral 312 30 1.1807 0.8462 0.5970 0.7981

8 Jain 373 30 0.7374 0.8794 0.4187 0.8231

9 Compound 399 30 0.8649 0.9599 0.5373 0.8747

10 Aggregation 788 30 1.1502 0.8363 0.7541 0.75

11 R15 600 30 0.2724 0.8817 0.1623 0.76

12 D31 3100 10 1.7487 0.7916 0.7336 0.7103

13 Wine 178 60 19.5587 0.4270 6.2342 0.3764

Table 2: Results of QE, TE with training times of SOM by k ×N .

Table 1 shows that all the QE and TE values of algorithm IMQS decrease compared with the

corresponding values of SOM. The average reduction ratio of QE is 61.2% and TE is 20.6%.

In the second case, the number of training times of the SOM algorithm is increased to test the

ability of its convergence compared with IMQS. Although the number of training times of datasets

increases largely (k times the size of the dataset), the QE and TE values of SOM in Table 2 are

still greater than the QE, TE values of IMQS in Table 1. This means that, instead of increasing

the number of SOM’s training times too many, the IMQS algorithm should be used to optimize the

feature map to achieve more optimal QE and TE values, in less time. In fact, the larger number of

SOM training times is, the less fluctuation of QE and TE will be, however, only QE tends to decrease
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Figure 4: Chart of QE and TE of XOR. Figure 5: Chart of QE and TE of Odd-Even.

Figure 6: Chart of QE and TE of Iris. Figure 7: Chart of QE and TE of Glass.

gradually, TE tends to increase gradually. Thus, further increasing the number of training SOM is

not as effective as using IMQS.

In the Table 2, the reduction ratio of QE, TE (of IMQS compared with SOM) is less than that

in Table 1. In which, the average reduction ratio of QE is 47.5%, TE is 11.8%. It is caused by when

the training times of SOM increases, the data representation accuracy increases (in other words,

the difference reduces or the number of “different elements” reduces), but the nature of IMQS

algorithm is trying to decrease the difference to reduce QE and TE, so IMQS will be less effective

if the number of “different elements” is small. In the result of Glass dataset, the IMQS algorithm

couldn’t reduce TE while QE still decreased. This shows that the self-intersections are not removed

(the cause is explained above). The reason that TE of IMQS rises slightly compared to TE of SOM

is the correlation between QE and TE [24].
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Figure 8: Chart of QE and TE of Flame. Figure 9: Chart of QE and TE of Pathbased.

Figure 10: Chart of QE and TE of Spiral. Figure 11: Chart of QE and TE of Jain.

The figures from Figure.4 to Figure.16 are the charts which present the fluctuation process of

QE and TE of datasets in the second test case (details of all experimental results are presented in

appendix). In particular, the vertical axis represents the value of the measures; a horizontal axis

represents the times of training; the gap in the line represents the ending of SOM and the beginning

of IMQS algorithm; dashed line shows trends.

Observing the charts of SOM (from the starting point to the gap) it is found that: Initially, the

values of QE and TE fluctuates dramatically, but when the number of training times increases, the

fluctuation decreases. It is because the neighboring radius gradually decreases in the training process.

There is a tradeoff between QE and TE, where QE decreases gradually to 0, whereas, TE increases

gradually to 1.

The charts of IMQS (from the gap to the end) is much shorter than the chart of SOM, because the
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Figure 12: Chart of QE and TE of Compound.

Figure 13: Chart of QE and TE of Aggregation.

Figure 14: Chart of QE and TE of R15. Figure 15: Chart of QE and TE of D31.

IMQS algorithm converges quite quickly. QE steadily decreases with all datasets, but TE has different

reduction rate with each dataset because it depends on the ability to remove the self-intersections

status. In most of the datasets, IMQS’s TE has a downward trend. It is rare that TE does not

reduce.

In both cases, the reduction ratio of TE is always less than the reduction ratio of QE because QE

always decreases when competing “different elements” between all neurons occurring, but TE may

only reduces when competing “different elements” between the neurons which cause self-intersection

and its adjacent neighbors occurs.

Beside experiments on 13 datasets above, some experiments on other datasets such as image data,

sound and the results are similar are also conducted.
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Figure 16: Chart of QE and TE of Wine.

5. CONCLUSIONS

Theoretically, the original SOM and some improved SOMs can achieve good map quality if the suitable

configuration parameters of the network are determined. However, in reality, it is time consuming and

very difficult to perform because we must be “trying error” several times to determine the parameter’s

value of each dataset. Thus, the map obtained by the unsuitable parameters is a common outcome

in practice. Therefore, our solution does not aim to adjust the configuration parameters as well as

learning algorithm, but to optimize obtained map after learning algorithm ends. The final obtained

map has better quality because QE plummets and TE decreases in most cases, except that the

number of “different elements” between the neuron which cause self-intersection and its adjacent

neighbors is small or non-existed. Although our method can not reduce TE in all cases, but in

reality, this is an effective method to improve the feature map quality. Compared with the method

by Kamimura [14], our method has a larger reduction rate of QE and TE and can be applied to all

datasets without valuating private parameters for each dataset. In addition, the proposed method

completely appropriates the original SOM or any other variants of SOM, because we do not impact

on learning algorithm but only optimize the obtained maps of those models.

The reduction ratio of TE may greater if IMQS algorithm prioritizes to competition between

adjacent neighbors first, then to the remaining neurons (Batch-IMQS is unable to prioritize competing

since the data is processed in batch), because self-intersection status will be eliminated sooner when

the weights of the adjacent units move closer together faster. In fact, the reduction of TE is only

effective if we exclude self-intersection status as soon as it appears in the training process.

APPENDIX

The following link provides detail of the experiments, including the value of QE, TE tracked in real

time and the charts which show the process of the fluctuation of QE and TE in both experimental

cases.

http://www.mediafire.com/view/hrdpyoc3znot5y7/experimental_results.xlsx

http://www.mediafire.com/view/hrdpyoc3znot5y7/experimental_results.xlsx
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