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T6m tat. Phan tich va dy doan thi trudng c6 phiéu 1a mot trong nhitng linh vie tha vi ma trong dé
dit lieu lich sit ¢6 thé dugce sit dung dé uée tinh va dy doan dit lieu va thong tin ciia tuong lai. Vé miit
k¥ thuat ma néi, linh vigc nay c6 tam quan trong cho cac chuyén gia trong tai chinh va thi trudng
chitng khoan nhu viéc ho c6 thé ndm b#t va diéu chinh xu huéng tuong lai hodc quéan ly khiing hoang
theo thai gian. Bai béo st dung tién ich ctia m6 hinh Markov 4n dé phan tich, mo hinh va du bao dit
lisu mong mudn khi ¢6 dit lisu qua khi.

Abstract. Stock market analysis and prediction are one of the interesting areas in which past data
could be used to anticipate and predict data and information about the future. Technically speaking,
this area is of high importance for professionals in the industry of finance and stock exchange as they
can lead and direct future trends or manage crises over time. In this paper, we try to take advantage
of Hidden Markov Models to analyze, model and predict the required data having the past data.

1. INTRODUCTION

Stock market analysis and prediction have a great significance for many professionals in the
fields of finance and stock exchange. There are a lot of models fitting the data of many stock
prices, hence they estimate the trends, the option prices and give some predictions. Hidden
Markov Models is a good candidate to do this.

Hidden Markov Model (HMM) is a widely tool to analyze and predict time series phe-
nomena. HMM has been used successfully to analyze various types of time series including
DNA sequence analysis (Cheung, 2004)[2], Speech Signal recognition (Xie, Andreae, Zhang,
& Warren, 2004)[12], ECG analysis (Coast, Stern, Cano, & Briller, 1990)[3] etc. In finance, an
earlier study (Hassan & Nath, 2005)[8] HMM has been used to generate one-day forecasts of
stock prices in a novel way. Other study of Hassan (M. Rafiul Hassan, et al, 2007)[5] combined
the HMM used in Hassan and Nath (2005) with an Artificial Neural Network (ANN) and
a Genetic Algorithm (GA) to achieve better forecasts. We can refer a more recent study of
Rafiul Hassan (Hassan, Elsevier Ltd, 2009)[6] as the other combination of HMM and fuzzy
model for stock market forecasting.

In Vietnam, study of financial models is a new issue. There are some studies which used
to predict stock price mainly are not based on HMM. A study of Bui Cong Cuong, Pham
Van Chien ([1]) based on adaptive Neuro-Fuzzy inference system to predict stock price. In the
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same way, the authors of [11] have presented an application of a computational intelligence
technique - a fuzzy inference system, namely Standard Additive Model (SAM), for predicting
stock price time series data.

In this paper, we use HMM with Normal distribution to find out the optimal number
of states fitted VN-Index (Vietnam) data from 4/11/2009 to 13/5/2011. After training the
model, we propose some predictions and compare with the real data in some days later.

Section 2 gives an over view of HMM and definitions, problems, EM algorithm. Section 3
trains the model with EM algorithm to VN-Index data. Section 4 introduces some predictions
about states and close prices in the short future. Throughout the experiment, we used R
software for calculations and data source in http://www.cophieu68.com website.

2. HIDDEN MARKOV MODELS

The HMM can be described by different ways of notation, but it has only single interpre-
tation. The EM algorithm is an popular algorithm which used to estimate parameters that
maximizing the likelihood function. The Viterbi algorithm finds the best states sequence with
respect to the sequence of observations which maximize the likelihood function. These can be
found in [13, 10] for more detail of solving HMM problems. In this regard, we use notations and
algorithms similar to [13]. The algorithms are built up for HMMs with any probability distri-
butions. In the case of Normal distribution, we replace the algorithm’s parameters by Normal
distribution’s parameters. We then write R codes for the algorithms with this replacement,
using VN-Index data.

2.1. Definitions

A hidden Markov model (HMM) is a statistical Markov model in which the system being
modeled is assumed to be a Markov process with unobserved (hidden) states. An HMM can
be considered as the simplest dynamic Bayesian network. In a regular Markov model, the
state is directly visible to the observer, and therefore the state transition probabilities are
the only parameters. In a hidden Markov model, the state is not directly visible, but output,
dependent on the state, is visible. Each state has a probability distribution over the possible
output tokens. Therefore the sequence of tokens generated by an HMM gives some information
about the sequence of states.

Figure 2.1. Probabilistic parameters of a hidden Markov model (example)

¢ - state;
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x - possible observation;
I" - state transition probability; u - output probability.

2.2. Elements of Hidden Markov Models

Briefly to delve into the concepts of HMM proposed in [13, 7, 9, 4, 14] , an HMM is a
state machine for a system adherent to a Markov process with unobserved states. Specifically,
regarding the time series analysis applications, if we denote the hidden state at time t as C}

and the observation at the same time as X; then the following facts are always true in the
HMM:

1. CY is dependent only on Cy_;.

2. Xy is dependent only on C;.

To define an HMM, we need

States Q: An HMM has a number of states m and it is usually desired to denote the
state that the model goes through in time as {q1, ¢2, ...¢,} with n as the time length of the
observation.
Observations O: in any HMM, during time till n, there is a sequence of observations as
{271, Ly veey xn}
Transition Matrix I';,x,,: Each element v;; denotes the probability of transition from state
1 to state j.
Observation Emission Matrix B: in which u;(z;) denotes the probability of observing x;
in state j.
Prior Probability d,,x1: in which ; denotes the probability of being in state i when at time
t=1.

We denote, for i =1, 2,...,m,

pi(z) = Pr(X; = z|Cy =1).
That is, p; is the probability mass function of X, if the Markov chain is in state ¢ at time t.

The continuous case is treated similarly with p; to be the probability density function of X;.
For discrete-valued observation Xy, defining u;(t) = Pr(Cy =) for t = 1,...,n, we have

Pr(X;=x) =Y Pr(C,=i)Pr(X;==z|C=i) =) u(t)pi().
=1

=1

Note that u(t) = u(1)T®1) hence

Pr(X; =z) =u(1)P¢YP(x)1".
where, u(t) is the row vector and 1’ is the column vector elements 1. P(x) is the diagonal

matrix with ¢ th diagonal element p;(t).
Thus, we have the likelihood function as

L, = 6P(x1)TP(x2)TP(x3)..TP(x,)1".
If 9, the distribution of C1, is the stationary distribution of the Markov chain, then

L, = 0TP(x1)I'P(x2)T'P(x3)..['P(x,)1’.
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2.3. Three basic problems

1. Given observations {z1, z2, ..., ,,} and model A = (T, B, ¢), effeciently compute P(x1, x2, ...,

- Hidden states complicate the evaluation.
- Given two models A\; and g, this can be used to choose the better one.

2. Given observations {z1, x2, ..., x5} and model A = (I, B, ), find the optimal state se-

quence {qi, g2, -, qn}:
- Optimality criterion has to be decided (e.g. maximum likelihood).
- "Explanation" for the data.

3. Given observations {x1, z2, ..., Tn}, estimate model parameters A = (I', B, §) that maxi-
mize the probability P(z1, 2, ..., Tp|A).

2.4. The EM algorithm (Solution to problem 3)

Since the sequence of states occupied by the Markov chain component of an HMM is not
observed, a very natural approach to parameter estimation in HMMs is to treat those states as
missing data and to employ EM algorithm [13] in order to find maximum likelihood estimates
of the parameters.

In the case of an HMM it is here convenient to represent the sequence of states ¢y, ca, ..., ¢y,
followed by the Markov chain by the zero-one random variables defined as:

uj(t) =1lifonlyif ¢, =4, (t=1,2,...,n)

and v, = lifand only if ¢,y =j and ¢, = k (t =2,3,...,n).
By this notation, the complete-data log-likelihood (CDLL) of an HMM plus the missing
data c1, ca, ..., ¢y is given by

log <PT($(n),C( ") ) 10g< c1 H’YCt 1,Ct Hpct Ty )

= log 501 + Z log Pth_th + Z logpct (‘/'Ut)
t=2 t=1

Hence, the CDLL is

log (Pr( ) Zuj )logd; + ii (Z vkt ) log vk

Jj=1 k=1

+ZZuJ ) log p; () (2.1)

j=1 t=1
= terml + term2 + term3.

The EM algorithm for HMMs proceeds as follows.

¢ E step Replace all the quantities vj;, and u;(t) by

;(t) = Pr(Cy = j]2™) = 04(j)Be(j) / Ln

Tp|A)
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and
Ui (t) = Pr(Ci1 = j, Cy = k|2'™) = ar1(4)vjupn (20 Bi(k) / L,
where oy and (3 are coresponding to forward and backward probabilities (see [13]).
e M step Having replaced v;;(t) and w;(t) by u;(t) and Vj,(t), maximize the CDLL, ex-
pression (2.1), with respect to the three sets of parameters: The initial distribution §, the
transition probability matrix I' and the parameters of the state-dependent distribution.

The solution is given as follows.
1. For terml: Set 6; = (1)/ X700, ;(1) = u;(1).
2. For term2: Set vjx = fjr/ D pey fik, where fi = >0 o Ujn(t).

3. For term3: This may be easy or difficult, depending on the nature of the assumed state-
dependent distributions. For a normal - HMM the state-dependent density is of the

form p;(z) = (27rcr]2)_1/2 exp (—#(w — ,uj)2>, and the maximizing values of the state-
J

dependent parameters p; and 0]2 are

i =Y ui(t)z/ Y u(t),
t=1 t=1

and

2.5. Forecast distributions

For discrete-valued observations the forecast distribution Pr(X, , = z|X ™ = z(™) can
be computed in essentially the way as a ratio of likelihoods:

Pr X(n):[lj(n)’X A=
Pricnen = $|X(n) B $(n)) N : Pr(X® = a:(nn—i)—) )
_ 6P(x1)B2Bs..BaI'"P(x)1/
0P (x1)B2Bj3...BL1’
_ anIMP()1

anl’
Writing ¢n = an/anl’, we have
Pr(Xpyn = z| X = 20) = ¢, ThP(x)1".

The forecast distribution can therefore be written as a mixture of the state-dependent proba-
bility distribution:

Pr(Xp4n = $|X(n) = fb(n)) = Z &i(h)pi(x),
=1

where the weight &;(h) is the i th entry of the vector ¢,I'P.
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2.6. Viterbi algorithm (Solution to problem 2)

The aim of the algorithm is to find the best states sequence i1, i9, ..., i, With respect to
the sequence of observations 1, x2, ..., £, which maximize the likelihood function.

We begin by defining
£1i = PT(Cl =1, X = $1) - ipi(xl)v
and for t =2,3,...,n,

b= max  Pr(CUD = 7D, 0, = i, X0 = o),

C1,€2,.+,Ct—1

It can then be shown that the probabilities &;; satisfy the following recursion, for ¢t = 2,3, ...,n
and ¢ =1,2,...,m:

&tj = (m?X (ft—Lmj)) pj(xt).
The required maximizing sequence of states 41, i, ..., i, can be detemined recursively from

in, = argmaxép;
=1,..,m

and, fort=n—1,n—2,...,1, from

i = argmax(ﬁtm,it+1)'
i=1,....m

2.7. State prediction

For:=1,2,...,m,
PT(On+h = ’LlX(n) = $(n)) = Oénrh(7 i)/Ln = ¢nrh(a i)

Note that, as h — 0o, ¢’ approaches the stationary distribution of the Markov chain.

3. NORMAL - HMM FOR VN-INDEX

Now we use Normal distribution to HMM with different states to fit VN-Index data with
376 close prices from 11/4/2009 to 13/5/2011. The plots of VN-Index data were presented in
Figure 3.2. It means the 7 th state, the probability density p;(x) ~ Normal(x, p;, 0;). The first
thing to do is to train the model to find number of states best and estimate the parameters
in the model. The EM algorithm would help us in this.

3.1. Finding the best model

A problem which aries naturally when one uses HMM is that of selecting an appropriate
model, e.g. of choosing the appropriate number of states m, or of choosing between the com-
peting state-dependent distributions such as Poisson and binomial or Normal. There are two
criteria called Akaike information criterion (AIC) and Bayesian information criterion (BIC)
to do that (see [13]).
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Figure 3.2. Plots of VN-Index with 376 close prices from 11/4/2009 to 13/5/2011

Table 1. VN-Index data: comparison of (stationary) hidden Markov
Model -log L AIC BIC
2-state HM 1597.832 3205.664 | 3225.312
3-state HM 1510.989 3043.978 | 3087.204
4-state HM 1439.179 2916.358 | 2991.02
5-state HM | not converge

For the VN-index series, AIC and BIC both select four states. The values of the two criteria
are given in Table 1. According to both AIC and BIC, the model with four states is the most

appropriate.
Four-state model with initial distribution (1/4,1/4,1/4,1/4), fitted by EM:

0.9717 0.0283 0.0000
0.0927 0.8106 0.0804
0.0000 0.0748 0.8624
0.0000 0.0000 0.0818

0.0000
0.0163
0.0628
0.9182

I =

= (453.9839, 484.6801, 505.9007, 530.8300)
o = (10.6857,7.1523,6.4218, 13.0746)

Figure 3.3 shows us comparison between VN-Index data and a sample data generated by
our 4-state HMM. It shows that the model fits the data well.

Figure 3.4 displays, for the fitted four-state model for the VN-Index data, the paths ob-
tained by the Viterbi algorithm. The Viterbi algorithm gives a sequence of states for sequence
of data. This figure illustrates the sequence of states which starts at state 4 and ends of state
2. Each dotted line in figure 3.4 presents a state of the fitted HMM.

4. PREDICTIONS

4.1. State prediction

Table 2 gives, for range of the days, the state predictions based on the four-state model
for the VN-Index data. The last day of the data is 13/05/2011, we predict for 30 days later
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Figure 3.3. A generated sample in dotted line with VN-Index data in continuous line

] "E«\ft i\
< _| T 1
B e S S o e
\ IR .« A
O A1 o K s e
i R
g4 ... ﬁnf. ----------------------------- ﬁg. i S sl
8 i | Y
S 4 W
:# T T T T
o 100 200 300

Figure 3.4. VN-Index data: global decoding according to four-state HMMs. The horizontal
lines indicate the state-dependent means

and see the state which is the most probability for each day.

We see that the most probability for the first 7 days is the state 2, and the left days is
the state 1 and the predicted state sequence converges to state 1. Therefore, the model is not
good to predict for long time but it is significant for short time. However, we can update new
data to have the new predictions.

Now we update the VN-Index data from 14/5/2011 to 23/6/2011 with 30 close prices in
oder to compare the real states with the predicted states.

Figure 4.5 shows that the close prices for this 30 days are almost in state 1. It is clear that
our predictions are correct.

4.2. Forecast distributions

As we mentioned in Section 2.2, the figure 4.6 which displays ten of the forecast distri-
butions for the VN-Index data finds out that the forecast distribution approaches its limiting
distribution quite fast.

Since the entire probability distribution of the forecast is known, it is possible to make in-
terval forecast. This is illustrated in Table 3, which lists statistics of some forecast distributions
for the VN-Index data fitted with four-state Normal HMM.



214 LUC TRI TUYEN, NGUYEN VAN HUNG, THACH THI NINH, et al.

Table 2. VN-Index data. State prediction using a four-state Normal HMM: the probability
that the Markov chain will be in a given state in the specified day.

Days [ (2 [3  [4 [ [
State=[1,] 0.0975 0.1695 0.2261 0.2709 0.3065 0.3350
(2,] 0.8062 0.6622 0.5517 0.4665 0.4005 0.3492
(3,] 0.0799 0.1351 0.1724 0.1971 0.2128 0.2223
[4,] 0.0162 0.0330 0.0496 0.0653 0.0800 0.0933
[ 8 [ [10] [ [12]  [13]
[1,] 0.3579 0.3764 0.3915 0.4039 0.4141 0.4225 0.4296
(2,] 0.3092 0.2778 0.2530 0.2334 0.2177 0.2052 0.1951
[3,] 0.2274 0.2296 0.2298 0.2288 0.2270 0.2248 0.2224
[4,] 0.1053 0.1160 0.1255 0.1338 0.1410 0.1473 0.1527
(4] [15]  [16]  [17  [18  [19]  [20]
[1,] 0.4355 0.4405 0.4448 0.4484 0.4515 0.4542 0.4565
(2,] 0.1870 0.1803 0.1749 0.1705 0.1669 0.1639 0.1614
(3,] 0.2200 0.2176 0.2154 0.2133 0.2113 0.2096 0.2080
[4,] 0.1573 0.1613 0.1647 0.1676 0.1701 0.1722 0.1739
(2] [22] [23 (24 [25] [20] [27
[1,] 0.4586 0.4604 0.4619 0.4633 0.4646 0.4657 0.4667
(2,] 0.1593 0.1576 0.1561 0.1549 0.1539 0.1530 0.1523
(3,] 0.2066 0.2053 0.2041 0.2031 0.2022 0.2014 0.2007
[4,] 0.1754 0.1766 0.1776 0.1784 0.1791 0.1797 0.1801
(28] [20]  [30
[1,] 0.4676 0.4684 0.4692
[2,] 0.1517 0.1512 0.1507
(3,] 0.2000 0.1995 0.1990
[4,] 0.1805 0.1807 0.1809

376 data+30

550
|

500
|

close

Figure 4.5. The comparison between state-predictions and real data-state for 30 days.

5. CONCLUSION AND FUTURE WORK

In this paper, we have modeled the stock return as a mixture of Gaussian and discrete
Markov Chain in order to improve the predictability of the stock model. We simply see that
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Figure 4.6. VN-Index data, four-state Normal HMM: forecast distributions for 1 to 10 days
ahead.

Table 3. VN-Index data, four-state Normal HMM: forecasts

horizone 1 2 3 4 5 6
forecast mode 484.9625 484.9625 484.9625 484.9625 484.9625 484.9625
forecast mean 484.0872 483.7894 483.5800 483.4329 483.3288 483.2544

forecast interval | [469; 499] | [454; 504] | [449; 507] | [450; 500] | [434; 494] | [420; 504]
probability 0.805 0.807 0.806 0.680 0.682 0.791
observations 479.7 471.5 464.4 454.9 444.9 432.9

the model gives the predictions correctly.

As a future work, we can test the effectiveness of other economic data. We used default data
for the economic states. However, the volatility index data can be a good candidate to extract
the economic situation because it can give us direct estimation of variance. As we mentioned in
the introduction, the macroeconomic data is also directly connected to the economic situation.
By testing the effectiveness of the candidates, we can improve the predictability. Moreover, if
we can construct a choosing algorithm that chooses the most effective candidate by learning,
then we might build efficient trading machine.
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