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Abstract. In this paper, we describe a hedge algebras based approach to modelling uncertainty in

fuzzy object-oriented databases. Membership value reflects the degree of fuzziness existing in the data

values and uncertainty is extended to the class definition level and is the basis for the determination

of the membership of an object in a class. On this basis, we recommend methods of determining

the membership degree on characteristics of fuzzy attributes, object/class, class/superclass, and in

addition, multiple inheritance was discussed and analyzed.
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1. INTRODUCTION

The relational database model and fuzzy object-oriented database (FOODB) model and related prob-

lems have been extensively researched in recent years by many domestic and foreign authors [1–15].

To perform fuzzy information in the data model, there are several basic approaches: the model based

on similarity relation and the model based on possibility distribution, etc... All above approaches

aim to achieve and process the fuzzy values to build valuation and comparison methods among them

to manipulate data more flexibly and accurately.

Based on the advantages of the structure of hedge algebra (HA) [7, 8], the authors studied the

relational database model [9–15] and and fuzzy object-oriented database model [2–6] based on the

approach of HA, in which linguistic semantics be quantified by quantitative semantic mapping of

hedge algebra. In this approach, language semantics can be expressed in a neighborhood of intervals

determined by the fuzziness measure of linguistic values of an attribute as a linguistic variable.

As well as fuzzy database model, in the fuzzy object oriented databases also needs to a data query

language really flexible and the ”precision” high. In order to do that, we need to focus on building the

membership functions to determine the dependencies between the components in the model. Based

on approach to hedge algebras to performing fuzzy values and measure the semantic approximation

of two fuzzy data, in this paper, we present the method to determine the degree of the relationships

in the fuzzy object oriented database model.
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This paper is organized as follows: Section 2 presents some fundamental concepts related to hedge

algebraic as the basis for the next section. Section 3 proposes the method of determining the degree

of membership in the model fuzzy OODB, and section 4 concludes this paper.

2. FUNDAMENTAL CONCEPTS

This section presents a general overview of the complete linear hedge algebra proposed by Nguyen

Cat Ho and et al [7,8], [2,3] and some related concepts on quantifying mapping and how to determine

the quantitative semantic neighboring systems according to HA approach.

2.1. Hegde algebra

Consider a complete hedge algebra (Comp-HA) AX = (X,G,H,Σ,Φ,≤), where G is a set of

generators which are designed as primary terms denoted by c− and c+, and specific constants 0,

W and 1 (zero, neutral and unit elements, respectively), H = H− ∪ H+ and two artificial hedges

Σ,Φ, the meaning of which is, respectively, taking in the poset X the supremum (sup, for short) or

infimum (inf, for short) of the set H(x) - the set generated from x by using operations in H. The

word complete means that certain elements added to usual hedge algebras for the operations Σ and

Φ will be defined for all x ∈ X . Set textLim(X) = X H(G), the set of the so-called limit elements

of AX.

Definition 1. A Comp-HAs AX = (X,G,H,Σ,Φ,≤) is said to be a linear hedge alge-
bra (Lin-HA, for short) if the sets G = {1, c−,W, c+,0}, H+ = {h1, ..., hp} and H− =
{h−1, ..., h−q} are linearly ordered with h1 < ... < hp and h−1 < ... < h−q, where p, q > 1.
Note that H = H− ∪H+.

Proposition 1. Fuzziness measures fm and fuzziness measures of µ(h), ∀h ∈ H, has the
following properties:

(1) fm(hx) = µ(h)fm(x), ∀x ∈ X.
(2) fm(c−) + fm(c+) = 1.
(3)

∑
−q≤i≤p,i 6=0 fm(hic) = fm(c), where c ∈ {c−, c+}.

(4)
∑
−q≤i≤p,i 6=0 fm(hix) = fm(x), x ∈ X.

(5)
∑
{µ(hi) : −q ≤ i ≤ −1} = α and

∑
{µ(hi) : 1 ≤ i ≤ p} = β, where α, β > 0 and

α+ β = 1.
In HA, each term x ∈ X always has negative sign or positive sign, is calle PN-sign and

is defined recursively as below:

Definition 2 (Sign function). Sgn: X → {−1, 0, 1} is the signum function defined as follows,
where h, h′ ∈ H, and c ∈ {c−, c+}:

(1) Sgn(c−) = −1, Sgn(c+) = +1.
(2) Sgn(h′hx) = 0, if hhx = hx, otherwise

Sgn(h′hx) = −Sgn(hx), if hhx 6= hx and h’ is negative with h
Sgn(h′hx) = +Sgn(hx), if hhx 6= hx and h’ is positive with h.

Proposition 2. with ∀x ∈ X, it yields: ∀h ∈ H, if Sgn(hx) = +1 then hx > x, if Sgn(hx)
= -1 then hx < x and if Sgn(hx) = 0 then hx = x.

From properties of fuzziness and sign function, semantically quantifying mapping ofHA is defined

as below.
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Definition 3. Let AX = (X,G,H,Σ,Φ,≤) is a complete, linear and free HA, fm(x)
and µ(h) are the corresponding fuzziness measures of linguistic and the hedge h satisfying
properties in Proposition 1. Then, we say that v is the mapping induced by fuzziness measure
fm of the linguistic if it is determined as follows:

(1) v(W ) = fm(c−), v(c−) = W − αfm(c−) = βfm(c−), v(c+) = W + αfm(c+).

(2) υ(hjx) = υ(x) + Sgn(hjx){
∑j

i=Sgn(j) µ(hi)fm(x)− ω(hjx)µ(hj)fm(x)}, where

ω(hjx) = 1
2 [1+Sgn(hjx)Sgn(hphjx)(β−α)] ∈ {α, β}, for all j,−q ≤ j ≤ p and j 6= 0.

(3) v(Φc−) = 0, v(Σc−) = k = v(Φc+), v(Σc+) = 1, and for all j,−q ≤ j ≤ p and j 6= 0.

we have: v(Φhjx) = v(x) + Sgn(hjx){
∑j−1

i=sign(j) µ(hi)fm(x)} and

v(Σhjx) = v(x) + Sgn(hjx){
∑j

i=sign(j)
µ(hi)fm(x)}.

Lemma 1. Let fm be a fuzziness measure on X. For each v on X associated with fm defined
as above, there exists an fm-decomposition system = associated with X such that the following
statement holds for all x ∈ X: v(x) ∈ Im(x) and v(x) divides the interval =(x) into two
subinterval in proportion α to β. Moreover, if Sgn(hjx) = +1, then the subintervals of the
length βfm(x) is greater than the other one of the length αfm(x); And if Sgn(hjx) = -1,
then the subinterval of length βfm(x) is less than the other one.

Proposition 3.

(1) For all x ∈ X, 0 ≤ v(x) ≤ 1
(2) For all x, y ∈ X,x < y implies v(x) < v(y)

Example 1. Let AX = (X,G,H,≤).

Where H+ = {More, Very} with More < Very and H− = {Little, Possibly} with Little >
Possibly. C = {low, high} with low is negative term, high is positive term.

Assuming let W=0.5, fm(Little) = 0.4, fm(Possibly) = 0.1, fm(More) = 0.1, fm(Very) = 0.4.

Now, we give some examples of computing some values of the quantified semantic mapping v.

+ For x = c− = low, we have v(low) = W − αfm(low) = 0.5 - 0.5x0.5 = 0.25.

+ For x = Verylow, we have j = p = 2, Sgn(h2low) = −1, Sgn(h2h2low) = −1
and ω(h2low) = 1

2 [1+(−1)(−1)(β−α)] = 0.5 and v(V erylow) = v(low)+(−1){fm(h1low)+
fm(h2low) − 0.5fm(h2low)} = v(low) + (−1){µ(h1)fm(low) + 0.5µ(h2)fm(low)} = 0.25 -

{0.1x0.5 + 0.5x0.4x0.5}=0.10.

+ For x = LittleVerylow, we have j = -q = -2, Sgn(h−2V erylow) = 1,

Sgn(h2h−2V erylow) = 1 and ω(h−2V erylow) = 0.5. Hence, v(h−2V erylow) = v(V erylow) +
(1){fm(h1V erylow)+fm(h−2V erylow)−0.5fm(h−2V erylow)}= v(V erylow) + {µ(Possibly)
µ(V ery)fm(low)+0.5µ(Little)µ(V ery)fm(low)}= 0.1 - {0.10x0.4x0.5 + 0.5x0.4x0.4x0.5}=0.16.

The other values of the quantified semantic mapping v are computed in a similar way and the

results are given in Table 1.
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Linguistic value function v Linguistic value function v

Very Very low 0.04 Very Very high 0.96

Very low 0.10 Very high 0.90

Possibly Very low 0.11 Possibly Very high 0.89

Little Very low 0.16 Little Very high 0.84

low 0.25 high 0.75

Very Possibly low 0.26 Very Possibly high 0.74

Little low 0.40 Little high 0.60

More Little low 0.41 More Little low 0.59

Very Little low 0.46 Very Little high 0.54

Table 1: Values function v

2.2. Fuzzy intervals of two fuzzy concepts

Assuming that attribute A has a real reference domain of the interval [a, b] to standardize, by a linear

transformation, we assume all such domain is the interval [0, 1]. Then, property (2) in Proposition 1

allows us to build two fuzzy intervals of two primitive concepts c− and c+, denoted by I(c−) and

I(c+) with length respectively fm(c−) and fm(c+) such that they form a partition of the reference

domain [0, 1], and I(c−) and I(c+) are covariance with c− and c+, i.e. c− ≤ c+ implicate I(c−) ≤
I(c+).

The fuzzy interval is established basing on inductive method. Suppose ∀x ∈ Xk−1 = {x ∈ X : x,

fuzzy interval system {I(x) : x ∈ Xk−1 and |I(x)| = fm(x)} has been built up so that they are

covariance and form a partition of the interval [0, 1]. Then, on each fuzzy interval I(x) with length

fm(x), of x ∈ Xk−1, due to the properties (4) in proposition 2.1, we can make {I(hix) : −q ≤
i ≤ p, i 6= 0, |I(hix)| = fm(hix)} so that they are a partition of fuzzy interval I(x). Its easy to

see that {I(hix) : −q ≤ i ≤ p, i 6= 0, |(hix)| = fm(hix) and x ∈ Xk−1} = {I(y) : y ∈ Xk and

|I(y)| = fm(y)} are a partition of [0, 1]. Theses intervals are called fuzzy intervals of depth k.

Definition 4. Let P k = {I(x) : x ∈ Xk} with Xk = {x ∈ X : |x| = k} is a partition of [0, 1].
It is to say that u is equals v by k level k in P k, denoted as u ≈k v, if and only if I(u) and
I(v) belong to the same interval P k. That is ∀x, y ∈ X, u ≈k v ⇔ ∃∆k ∈ P k : I(u) ⊆ ∆k

and I(v) ⊆ ∆k.

Lemma 2. Relation ≈k is an equivalence relation

Proof.
(1): Reflexivity

The proof is inductive method.
- ∀x ∈ Dom(Ai), if |x| = 1 then x = c+ or x = c−.
It yields, ∃∆1 = I(c+) ∈ P 1: I(c+) = I(x) ⊆ ∆1 or ∃∆1 = I(c−) ∈ P 1: I(c−) = I(x) ⊆

∆1. So, ≈k is true with k = 1, or x ≈1 x.
- Assuming |x| = n is true, to mean ≈k is true with k = n, or x ≈n x, it is needed to

prove ≈k is true with k = n + 1. Let x = h1x
′, with |x′|=n. Because, x ≈n x by definition it

yields: ∃∆n ∈ Pn : I(x) ⊆ ∆n. On the other hands, it yields Pn+1 = {I(h1x
′), I(h2x

′), ...},
with h1 6= h2 6= ... is a partition of I(x′). Hence, ∃∆(n+1) = I(h1x

′) ∈ P (n+1): I(h1x
′) =

I(x) ⊆ ∆(n+1). So, ≈k is true with k = n + 1, or x ≈(n+1) x.
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(2): Symmetry
∀x, y ∈ Dom(Ai), if x ≈k y then by definition ∃∆k ∈ P k : I(x) ⊆ ∆k and I(y) ⊆ ∆k or

∃∆k ∈ P k: I(y) ⊆ ∆k and I(x) ⊆ ∆k. So, y ≈k x then x ≈k y.

(3): Transitivity
The proof is by inductive method.
- Case k = 1: it results in P 1 = {I(c+), I(c−)}, if x ≈1 y then y ≈1 z then ∃∆1 =

I(c+) ∈ P 1: I(x) ⊆ ∆1 and I(y) ⊆ ∆1 and I(z) ⊆ ∆1 or ∃∆1 = I(c−) ∈ P 1: I(x) ⊆ ∆1 and
I(y) ⊆ ∆1 and I(z) ⊆ ∆1, the mean is ∃∆1 ∈ P 1 : I(x) ⊆ ∆1 and I(z) ⊆ ∆1 or x ≈1 z. So,
≈k is true with k = 1.

- Assuming relation ≈k is true with case k = n, the mean, it yields ∀x, y, z ∈ Dom(Ai)
if x ≈n y and y ≈n z then x ≈n z.

- It is needed to prove relation ≈k is true with case k = n +1. The mean is ∀x, y, z ∈
Dom(Ai) if x ≈n+1 y and y ≈n+1 z. Assuming that if x ≈n+1 y and y ≈n+1 z then
∃∆(n+1) = I(x) ⊆ ∆(n+1) and I(y) ⊆ ∆(n+1) and I(z) ⊆ ∆(n+1), the mean is ∃∆(n+1) ∈
Pn+1 : I(x) ⊆ ∆(n+1) and I(z) ⊆ ∆(n+1). So, x ≈n+1 z.

3. FUZZY OBJECT-ORIENTED DATABASE MODEL

FOODB model is first proposed as a similarity-based data model. FOODB model focuses on the

representation of ambiguous information, in other words, the fuzziness in FOODB is shown at three

levels: attribute level, object/class level and class/superclass level. In addition, in this paper, we

continue to expand study of issues related to the fuzzy object-oriented database model that we have

presented in [2]

3.1. Attribute level uncertainty

3.1.1. Attribute uncertainty

FOODB deals with 3 types of uncertainty at the attribute level.

(a) The first type is the type of incomplete occurs when the value of the attribute is determined to

be a range of values. For example, the number of viewers watching a football match is about

10000-20000 people. This type uncertainty is called ”incompleteness”.

(b) The second type of uncertainty occurs when the value of the attribute is unknown (unk), does

not exist (dne) or there is no information on whether a value exists or not (ni). For instance,

the description of a video which may be unknown (unk), the description of a video does not

exist (dne) or we may not know whether a description for a video exists or not (ni). This type

of uncertainty is called ”Null”.

(c) The third type of uncertainty occurs when the value of the attribute is vaguely determined.

This type of uncertainty is called ”fuzzy”. For example, weather condition in a football match

can be described with a fuzzy term ”very hot”.

A similar relationship or the fuzzy equivalence relationship, is represented by a similarity matrix,

the basis for similarity-based FOODB model. A similarity matrix defines the similarity of each pair

of other elements in fuzzy domain. In next section, an method similar matrix construction based on

semantic approximation of HA is presented.
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3.1.2. Similarity matrix

Definition 5. To evaluate the semantic approximation of each pair of elements in fuzzy
domain of a attribute, we construct function SP (Semantic Proximity) as follows:

SP (x, y) = 1− |v(x)− v(y)|

where, v(x) and v(y) respectively is quantitative semantics value of the linguistic x and y.

The SP function have the following properties:

1. 0 ≤ SP (x, y) ≤ 1

2. SP (x, x) = 1

3. SP (x, y) = SP (y, x)

Example 2. Build quantitative semantics for attribute in the case where attribute values are

linguistic values. Consider HA of linguistic variable height, where Dheight = [0, 2], generating

elements {0, low, W, high, 1}, the set of hedges is {little, possibly, more, very} (correspond L, P, M,

V), FDheight = Hheight(old) ∪ Hheight(young). Choose fm(low) = 0.5, fm(high) = 0.5, µ(P ) =

0.3, µ(L) = 0.2, µ(M) = 0.3 and µ(V) = 0.2.

Based on the Definition 2, there are values of the quantitative values of linguistics term for

attribute height, results as follows: v (V low) = 0.05; v (M low) = 0.175; v (low) = 0.25; v (P low) =

0.425; v (L low) = 0.3; v (L high) = 0.55; v (P high) = 0.675; v (high) = 0.75; v (M high) = 0.825; v (V

high) = 0.95.

Now, based on the Definition 5, we have the similarity relationship matrix between each pair of

elements in the fuzzy value domain of the attribute height as follows:

+ For v (V low) = 0.05, and v (V low) = 0.05, then SP(v (V low),v (V low)) = 1 - |v(V low) −
v(V low)| = 1 - |0.05− 0.05| = 1.

+ For v (V low) = 0.05, and v (V high) = 0.95, then SP(v (V low),v (V high)) = 1 - |v(V low)−
v(V high)| = 1 - |0.05− 0.95| = 0.2.

The other values of the semantic approximation SP are computed in a similar way and the results

are given in Table 2.

height V low M low low P low L low L high P high high M high V high

V low 1 0.875 0.8 0.625 0.75 0.5 0.375 0.3 0.225 0.1

M low 0.875 1 0.925 0.75 0.875 0.625 0.5 0.425 0.35 0.225

low 0.8 0.925 1 0.825 0.95 0.7 0.575 0.5 0.425 0.3

P low 0.625 0.75 0.825 1 0.875 0.875 0.75 0.675 0.6 0.475

L high 0.5 0.625 0.7 0.875 0.75 1 0.875 0.8 0.725 0.6

P high 0.375 0.5 0.575 0.75 0.625 0.875 1 0.925 0.85 0.725

high 0.3 0.425 0.5 0.675 0.55 0.8 0.925 1 0.925 0.8

M high 0.225 0.35 0.425 0.6 0.475 0.725 0.85 0.925 1 0.875

V high 0.1 0.225 0.3 0.475 0.35 0.6 0.725 0.8 0.875 1

Table 2: Similarity matrix for attribute height
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In the Fuzzy Object-Oriented model, fuzzy attribute is a multi-valued attribute, and so it can get

a set of values and these values are linked by one of the semantic components AND, OR, or XOR.

The attributes can have a set of values (leading to multi-valued attributes) connected with a logical

operator AND/OR/XOR. The attribute value sets are differentiated according to their semantics.

The following representations are used for multi-valued attributes.

Logical operator Indicate

AND <...>

OR {...}
XOR [...]

Assuming the domain of weather attribute has the value domain = {cloudy, sunny, cool, cold,

hot}. The following interpretations are valid:

AND: The value of the attribute weather is <cloudy, cold>, i.e. the weather is cloudy and cold.

OR: The value of the attribute weather is {cool, hot}, i.e. the weather is cool or hol, or maybe

both.

XOR: The value of the attribute weather is [sunny, cold], i.e. the weather is sunny or cold, but

not both. This different interpretation from the logical XOR operator, which returns true for an odd

number of true’s, has to be noted.

3.2. Object/Class Level Uncertainty

The level of uncertainty at the object/class refers to the existence of a part of its members object

to the class. In FOODB model, the boundaries of a class may be uncertain because it has fuzzy

attributes. The range of a fuzzy attribute shows the ideal value for that attribute.

Since a fuzzy attribute may take any value from its value domain regardless of its range definition,

some objects are full members of their classes with a membership degree of 1 whereas some other

objects are member of their classes with a membership degree changing between 0 and 1. The values

of fuzzy attributes of an object determine the membership degree of that object to its class. The closer

the value of fuzzy attributes of an object to range definitions is, the higher the object membership

degree is. The relevance of the fuzzy attributes and the similarity between the fuzzy attributes values

and define their range determine the membership degree of an object with class.

Based on the considerations of relevance and inclusion of attribute values, to find the membership

degree of object oj in class C (class C have n attribute) is defined as:

µC(oj) =

∑n
i=1 INC(rngC(ai)/oj(ai)) ∗RLV (ai, C)∑n

i=1RLV (ai, C)

Where:

- INC(rngC(ai)/oj(ai)) denotes the degree of inclusion of the attribute values of oj in the

formal range ai in the class C. The degree of inclusion, determines the extent of similarity

between a value (or a set of values) in the denominator with the value in the numerator (or a

set of values).

- RLV (ai, C) is the relevance of the attribute ai to the class C. This membership degree show

the importance of attribute ai to the class C. This membership degree is determined based on

the concept of attribute affinity proposed by Hoffer and Severance and cosin measure.
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In addition, the weighted average is used to calculate the membership degree of objects. All

attributes, therefore, affect the membership degree proportionally to their relevance.

INC has two following cases:

- Case 1: If oj(ai) = ∅ then INC = 0.

- Case 2: INC will consider for each case the semantics of attribute values.

Now, consider and calculate the degree of inclusion for the different semantics are explained below:

AND semantics

AND semantics is strong because it requires all values to exist simultaneously. AND semantics

arise when data is nested, the INC formulation for AND semantics as follows

INC(rngC(ai)/oj(ai)) = Min[Min[Max(SP (x, y))],Min[Max(SP (z, w)]],
∀x ∈ rngC(ai),∀y ∈ oj(ai),∀z ∈ oj(ai),∀w ∈ rngC(ai).

Note that the basis of comparison is the range definition, comparing all of the elements in the

object attribute to each of the entries in the range definition. Then the order is reversed (i.e. x ∈
rngC(ai)). That is, the attribute definition is the reference point.

Example 3. Consider Employee class is definition as follows:

class Employee

{ FuzzyInteger age;

FuzzyString coloreye;

}
Given the relevance of the attribute, define the range values of the attributes age and value of

o1, o2 for the attribute age as follows:

RLV(age, employee)=0.8, RLV(coloreye, employee)=0.2.

rngemployee(age)= <old, very old>.

o1(age)= <young, old>.

o2(age)= <old>.

The value degree of inclusion for attribute is calculated as follows:

INC(rngemployee(age)/o1(age)) = Min[Min[Max(SP(old, young), SP(old, old)), Max(SP (very

old, young), SP(very old, old))], Min[Max(SP(young, old), SP(young, very old)), Max(SP (old, old),

SP(old, very old))]] = Min[Min[Max(0.5, 1), Max(0.35, 0.85)], Min[Max(0.5, 0.35), Max(1, 0.85)]] =

0.5.

INC(rngemployee(age)/o2(age)) = Min[Min[Max(SP(old, old), Max(SP(very old, old)], Min[

Max (SP(old, old), Max(SP(old, very old)]] = Min[Min[Max(1), Max(0.85)], Min[Max(1), Max(0.85]]

= 0.85.

OR semantics

Under OR semantics an attribute takes more than one value, all or some of which may exist

simultaneously (are true). Reformulation is required since the model treats both the connectives the

same way ignoring the semantic difference between them. So here we find the value of to be

INC(rngC(ai)/oj(ai)) = Min[Max(SP (x, z)), Threshold(oj(ai))],
∀x ∈ oj(ai),∀z ∈ rngC(ai)

Here, the threshold value indicates that the minimum level of similarity between the values of an

attribute and is built as follows

Threshold(oj(ai)) = Min[SP (x, z)], ∀x, ∀z ∈ oj(ai)
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Example 4. Given class Employee and similarity matrix above, and define the values range of the

attribute age and value of the two objects o1, o2 for the attribute age as follows:

rngemployee(age)={old, very old}.
o1(age) = {young, old}.
o2(age) = {old}.
Threshold(o1(age)) = Min[SP(young,young),SP(old,young), SP(old,old)] = Min[1,0.5,1] = 0.5.

Threshold(o2(age)) = 1.

INC(rngemployee(age)/o1(age)) = Min[Max(SP(young,old), SP(young, very old), SP(old, old),

SP(old, very old)), Threshold (o1(age))] = Min[Max(0.5, 0.35,1, 0.85), 0.5] = 0.5.

INC(rngemployee(age)/o2(age)) = Min[Max(SP(old, old), SP(old, very old)), Threshold (o2(age))]

= Min[Max(1, 0.85),1] = 1.

XOR semantics

For XOR semantics, only one of the attribute values exists at a time. Assume the equal proba-

bilities for the values of an attribute. The INC formulation for XOR semantics as follows

INC(rngC(ai)/oj(ai)) = Avg[Max(SP (x, y))],∀x ∈ oj(ai), ∀y ∈ rngC(ai)

Example 5. Given class Employee and similarity matrix above, define the range values of the

attributes age and value of o1, o2 for the attribute age as follows:

rngemployee(age) = [old, very old].

o1(age) = [young, old].

o2(age) = [old].

INC(rngemployee(age)/o1(age)) = Avg[Max(SP(young, old), SP(young, very old)), Max(SP(old,

old), SP(old, very old))]= Avg[Max(0.5, 0.35), Max(1, 0.85)]=0.5.

INC(rngemployee(age)/o2(age))= 1.

3.3. Class/Subclass Level Uncertainty

The level of uncertainty of the class/superclass refers to the existence of a member of a class part

of its superclass. This type shows fuzzy uncertainty occurs in the hierarchy of inheritance from a

class hierarchy can not be built correctly in some cases. The membership degree of a class C to its

superclass Cj is calculated using the following formula:

µCj (C) =

∑n
i=1 INC(rngCj (ai)/rngC(ai)) ∗RLV (ai, Cj)∑n

i=1RLV (ai, Cj)

INC has two following cases:

- Case 1: If rngC(ai) = ∅ then INC = 0.

- Case 2: INC = Min(Max[SP(x,y)]), ∀x ∈ rngCj (ai),∀y ∈ rngC(ai).

Example 6. Consider class hierarchies as follows:

Build quantitative semantics for attribute in the case where attribute values are linguistic values.

Consider HA of linguistic variable salary, where Dsalary = [0, 50], generating elements are {0, low,

W, high, 1}, the set of hedge is {little, possibly, more, very} (correspond L, P, M, V), FDsalary =
Hsalary(high)∪Hsalary(low). Chosse fm(high) = 0.5, fm(low) = 0.5, µ(P) = 0.3, µ(L) = 0.2, µ(M)

= 0.3 and µ(V) = 0.2.

Based on the Definition 2, we can calculate quantitative values of linguistic term for attribute

salary, results as follows: v (V low) = 0.005; v (M low) = 0.175; v (low) = 0.25; v (P low) = 0.325;
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Figure 1: Inherited relationship model

v (L low) = 0.45; v (L high) = 0.55; v (P high) = 0.675; v (high) = 0.75; v (M high) = 0.825; v (V high)

= 0.95.

Based on the Definition 5, there is the similarity matrix for attribute salary as follows

salary V low M low low P low L low L high P high high M high V high

V low 1 0.875 0.8 0.725 0.6 0.5 0.375 0.3 0.225 0.1

M low 0.875 1 0.925 0.85 0.725 0.625 0.5 0.425 0.35 0.225

low 0.8 0.925 1 0.925 0.8 0.7 0.575 0.5 0.425 0.3

P low 0.725 0.85 0.925 1 0.875 0.775 0.65 0.575 0.5 0.375

L low 0.6 0.725 0.8 0.875 1 0.9 0.775 0.7 0.625 0.5

L high 0.5 0.625 0.7 0.775 0.9 1 0.875 0.8 0.725 0.6

P high 0.375 0.5 0.575 0.65 0.775 0.875 1 0.925 0.85 0.725

high 0.3 0.425 0.5 0.575 0.7 0.8 0.925 1 0.925 0.8

M high 0.225 0.35 0.425 0.5 0.625 0.725 0.85 0.925 1 0.875

V high 0.1 0.225 0.3 0.375 0.5 0.6 0.725 0.8 0.875 1

Table 3: Similarity matrix for attribute salary

We have the value range and membership degree for attributes as follows:

rngperson(salary) = {little high, high}.
RLV(salary, person) = 0.5.

rngstudent(salary) = {possibly low, little high}.
We calculate the degree of inclusion for attributes as follows:

INC(rngperson(salary)/rngstudent(salary)) = Min[Max(1, 0.8), Max(0.9, 0.575)] = 0.9.

Applying formula calculating membership degree of class student to the class person, we have:

µperson(student) = [INC(rngperson(salary)/rngstudent(salary)) * RLV(salary, person)] /

[RLV(salary, person)] = (0.9*0.5)/0.5=0.9.

In some applications, we may be faced with a problem of multiple inheritance when multiple

superclasses for an object with different values for a field. This problem is not specific to the model

FOODB, but in all manifestations decentralized system. In the document, it was pointed out that

there is no general solution to fully resolve all cases of multiple inheritance conflict.

One approach to the problem of conflict in multiple inheritance might be to define a default

method in the most general superclass are inherited by other classes. The subclass then override
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the default class to handle the conflict between the values possible. An alternative approach may

inherit values from the layer in which the object has the largest number of members. However, other

solutions may be used in combination of two weighted value of the inherited.

The conflicts arise when more than one super class and subclass common attributes not explicitly

declare the class where the properties are inherited (see Figure 2).

Figure 2: multiple inheritance model

The attributes of ClassD is attrib1, attrib2, attrib3, attrib4, and attrib5, Attrib4, and attrib5

defined in class and others inherited from the superclass. The contradictions exist for attrib1 and

attrib2. We suggest that there is no need to consider the super class from which a attribute is not

inherited, if it does not have such attributes in the class/superclass calculating membership degree.

Figure 3: multiple inheritance of ParTimeStudent class

With this review may reflect the change from the defined range of the superclass. In prin-

ciple, each class was forced to declare its range to all its translucent attributes. This ensures a

defined scope for a property published contradictory as attrib1 and attrib2 available in the class

definition. The rest is handled by the new formula for calculating the membership degree of the

ClassD to ClassA, ClassB and ClassC. For example, consider multiple inheritance of ParTimeStu-

dent class in Figure 3. All of the superclasses have the same attribute salary. The range definitions
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are shown, with rngsalary(employee) = <high>, rngsalary(student) = <little high, little low>
and rngsalary(parttimestudent) = <low, little low>.

The salary attribute of the parttimestudent class appears to be inherited from employee class.

When applying the INC formula on each superclass to determine the class/subclass membership, this

fact is showed in the results. The values included in the range of parttimestudent salary in employee

salary will result in a value INC is one, as expected. However the results for the student class are

much less

INC = Min(Max[SP(little high, low), SP(little high, little low)], Max(SP(little low, low), SP(little

low, little low)])

shows the bond between employee and parttimestudent is more powerful than student and parttimes-

tudent for attribute salary. Of course, one important point is that the relevant rules defined in the

class. If the salary values of the RVL for employee or student is high, the effect of any deviation will

be higher.

4. CONCLUSION

In the context of modeling fuzzy object-oriented database, to have a data query language, we first

need to build the membership functions for the relationships in the FOOD model. Based on ap-

proach to hedge algebras to represent the fuzzy values and semantic approximation measure for fuzzy

data. In this paper, the authors focus on building some of the most important member functions in

the fuzzy object-oriented database model, that is membership functions for attribute, object/class,

class/superclass relationships. However, for multiple inheritance relationship, we have not mentioned

in this paper. On the basis of the definitions of member functions of this, the methods the fuzzy

object query and the membership functions for multiple inheritances will be presented in next studies.
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