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Abstract. This paper presents the results of an experimental system design for the optimization of

parallel manipulator control based on an optimal configuration. The experimental system is an open

design for various different configurations and controllers to support parallel manipulator research

and applications. Traditional PID control and self-tuning fuzzy PID control algorithm are applied for

motion control of parallel manipulator. The quality system standard will be analyzed and compared

with simulation results. The system can be a useful tool for research and training.

Keywords. Parallel manipulator, robot experimental system, robot controller, fuzzy theory, PID

controller, self-tuning.

1. INTRODUCTION

For recent years, parallel manipulators have been applied in several fields such as mechanical pre-

cision machining, assembly machinery, surgery equipment, astronomy, geodesy and moving simula-

tors. . . [1–4]. As it is well known, high stiffness, high precision with high speed of movements, heavy

load possibility and low inertia force are outstanding advantages of parallel robots. However, their

drawbacks are limited workspace, complicated design and manufacture, high cost and the existence

of singularities in their workspace [5–11]. Therefore, the study of optimization of design and control

is important to minimize their noted drawbacks. Example of optimization for parallel manipulators

papers in [12–17] and singularity in [5–11,18].

This paper presents a continuous research on optimal design and control for Gough-Stewart

platform. The multi-criteria optimization using genetic algorithm (GA) and a Pareto optimal set is

considered in [15–17], theory of screws for determination of singularity in [18]. Based on the optimal

design, controller improvement using a fuzzy combined genetic algorithm is proposed in [19]. In this

paper, an experimental system is reported to confirm the presented simulation results and support

for subsequent studies.

Because parallel robot can be defined as closed-loop chain mechanism, it has nonlinear behavior

and complex control [20, 21]. To make the payload platform moving, it is needed to synchronize the

movement of all actuators. Combined actuators must have smoothly and accurately controlled at
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the same time. It is a difficult requirement of controller design for parallel mechanism. In Vietnam,

some research results show that the parallel robots are gradually applied in areas such as mechanical,

industrial applications [22–30]. However, the open parallel experimental system for study and research

is still necessary.

2. SYSTEM DESIGN AND PERFORMANCE

2.1. Design and performance of mechanical part

The Stewart-Gough Platform [1, 2] has a base platform and a payload platform connected by six

prismatic joints attached via universal joints in figure 1. Normally, linear motors are used for actuators

of parallel robot to ensure needed precision in the mechanical machine [29]. However, with the goal

of building an experimental system with low cost, DC motor screw actuators are used in our system.

 

 
Payload platform 

Base platform 

Circle slides 

Prismatic joints 
(DC motor screw 

actuators) 

Universal joint 

Universal joint 

Figure 1: Stewart-Gough Platform

The universal joints were arranged in circle slides to study working variants and configurations

of the parallel manipulator. Inside encoders can feed back the real position of DC motor screw

actuators. Top and bottom switches were used to warrant the limited motion. The design and

technical parameters of mechanical part is illustrated in Figure 4 and Table 1.

2.2. Design and performance of control system

As mentioned above, the control of Stewart-Gough Platform is highly complicated due to the existence

of nonlinear features and complex dynamics [20, 21]. Therefore, the control system should be open,

flexible, and it must make it easy to apply different control algorithms with monitoring functions and

real-time data acquisition.

The proposed control system structure is shown in Figure 2. Control tasks of the control system

are distributed as follows:

The computer performs kinematic and dynamic calculations, monitoring, real-time data acqui-

sition with user interface and control communication. In the motion control of parallel robot, the

computer calculates the needed positions of manipulator and gets real actuators positions from master

controller. These data are scored to analyze and evaluate the controller quality. In addition, working

modes and control algorithms will be chosen on user interface.
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Base platform radius 0.2 (m)

Payload platform radius 0.15 (m)

Actuator limit 0.32 (m) ≤ li ≤ 0.52 (m)

Actuator max speed 16 (mm/s)

Rating Voltage 24 (VDC)

Encoder 100 (pulse per rotation)

Workspace limitation
X/Y/Z: 300/300/200 (mm);

α/β/γ (Roll/Pitch/Yaw): ±0.43 (rad)

Max load 2 (kg)

Static precision ±25 (µm)

Total weight 5 (kg)

Table 1: Technical parameters of the mechanical part

The experimental system has a master controller (CPU) and six slave controllers (Drivers). The

master controller plays an important role in the distribution of the motion control signals between

the actuators. In the control stages, the master controller receives the reference positions from the

computer and processes it together with the real position and speed data sent to it by the slave

controllers. Then the master controller also calculates and outputs the necessary speeds of actuators

to slave controllers. As a result, the robot system is ensured to combine the synchronized motion

between actuators. The real position and velocity of six actuators will be sent to the computer for

data monitoring and acquisition in real time.

Figure 2: Control system structure of the experimental system

The slave controllers execute motion control of DC motor screw actuators according to the refer-

ence position and velocity from master controller through power electronic driver and inside encoders.

Control algorithms, such as PID, Fuzzy-PID... are designed and integrated with the subprograms in

C language. It can easily adjust control parameters according to the requirements of the study. The

controller part of the experimental system is illustrated in Figure 3 and Table 2.
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Power electronic driver 

Master controller 

Slave controllers 

Power supply 

Figure 3: Controller part of the experimental system

Masters chip PIC18F4550
Slavers chip DSPIC30F4011
PC-Master communication RS232 (115.2 Kps)
Master–Slaver communication SPI (clock 1 Mbps)
Power electronic driver LM18200 (20 kHz)
2 cascades loop controller (speed, position) PID, Fuzzy-PID
Sample time 1 (ms)
Support software Real-time Windows Targets – MATLAB 2014
Programming for PIC, DSPIC CSS-C Compiler v4.114

Table 2: Technical parameters of control system

Figure 4: The experimental system (Stewart –
Gough Platform)

The implemented experimental system for

the optimization of the parallel manipula-

tor (Stewart–Gough Platform) control is illus-

trated in Figure 4.

The experimental system is designed for

the study of parallel manipulator configura-

tions and optimized controller. On this sys-

tem, the control algorithms can be tested re-

garding their ability to monitor, control and

applicability for the optimization of the mo-

tion of the parallel manipulator. The following

section presents results of the optimal control

of Stewart-Gough platform.
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3. OPTIMAL CONTROL FOR STEWART–GOUGH PLATFORM
6 NGUYEN XUAN VINH ccs 

 

 
 
 

 
 
 

 
 

Figure 5: Multi-criteria design optimization process for parallel manipulator (Stewart-Gough Platform). 
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Figure 5: Multi-criteria design optimization process for
parallel manipulator (Stewart-Gough Platform).

Figure 6: The optimal configuration used for control
optimization of parallel manipulator.

As mentioned above, it is difficult to con-

trol the motion of parallel mechanisms. Be-

cause of having combined actuators, their

workspace is multi-form and the control

solutions are normally complicated. Ac-

tuators must be controlled synchronously

and precisely. In this section, a multi-

criteria optimal configuration of Stewart-

Gough platform will be designed to apply

control algorithms with fixed work space.

The kinematic and dynamic properties of

the optimal configuration are calculated

by MATLAB-SIMULINK. The traditional

PID and self-tuning fuzzy PID (Fuzzy-

PID) algorithms will be designed and ap-

plied for motion control with the optimal

configuration of Stewart-Gough platform.

The experimental results will be examined

and analyzed based on the quality stan-

dards of the system through the actua-

tors transient responses with different al-

gorithms.

Based on results in [15–17], PSI algo-

rithm combined with the Pareto optimal

set is used to optimize parallel manipula-

tor configuration with limited survey work

space in Table 1. Number of steps of the

scanning of these parameters is 10 for co-

ordinates x, y, z and is 5 for coordinates

α, β and γ. Each one of optimization cy-

cles which runs with the priority of opti-

mization criteria is following: 1) Stiffness

of configuration: mean value of the deter-

minant formed from the coordinate axes

drives [15]; 2) Number of valid working

points of the center of the output links; 3)

Number of valid working configurations of

the robot. The parallel mechanism optimal

design process is shown in Figure 5. Figure

6 shows the optimal configuration used for

control optimization of parallel manipula-

tor with different control algorithms.
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The real-time control model of the parallel manipulator in Simulink is following:

Figure 7: The real-time control model in Simulink

Positions of universal joints on the base platform (Bi) are:

Bi =

 0.1952 0.1952 −0.0601 −0.1315 −0.1315 −0.0601
−0.0432 0.0432 0.1907 0.1475 −0.1475 −0.1907

0 0 0 0 0 0


The initial positions of universal joints on payload platform (Ai) are:

Ai =

 0.1088 0.1088 0.0350 −0.1438 −0.1438 0.0350
−0.1033 0.1033 0.1459 0.0426 −0.0426 −0.1459

0.03 0.03 0.03 0.03 0.03 0.03


In several published papers, PID algorithms were used to control independent actuators of serial

mechanisms. For parallel mechanisms, the application of this control algorithm requires the synchro-

nization of position and velocity between interlock actuators. In our system, the moving combination

is carried out by distributing control process (see 2.2). Therefore, moving of joints has been ensured

correlation and synchronization in the all motion control. The designed PID and Fuzzy-PID algo-

rithms are integrated to actuator controllers with the same conditions and studied parameters in

Figure 8.
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Figure 8: Actuator control model. ri(t): reference position of ith actuator. ei(t): position error of
ith actuator. ui(t): control force of ith actuator. ci(t): real position of ith actuator.
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The reference motion for the center of the output links control is following:

xang =zang = 0.02 sin(0.1πt); yang = −0.02 sin(0.1πt);

xpos =0.02 sin(0.1πt); ypos = 0.02 sin(0.1πt);

zpos =0.33 + 0.02 sin(0.1πt);

(1)

The evaluation criteria elaborated to measure the quality of the controllers will be analyzed by the

use of the transient response of the first actuator and the synchronization of position and velocity

between interlock actuators.

3.1. PID Controller

First of all, the traditional PID control algorithm is applied into slave controllers. Control forces of

actuators are calculated as:

u(t) = KP e(t) +KD
de(t)

dt
+KI

∫
e(t)dt (2)
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Figure 9: PID controller.

Figure 10: First actuators transient response with
PID algorithm.

Figure 11: First actuators position error with PID
algorithm.

Base on Ziegler-Nichols [31], simulation results [19] and auto-tuning method [32], PID control co-

efficients are chosen as follows: KP = 105; KI = 0.2; KD = 0.1. The experimental results of tran-

sient response and position error of the first actuator (Figure 10, Figure 11) show that PID controller
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has good stability, low overshoot (POT%=2.77%), low rise time (trise = 5 s) with moving distance

about 75 mm. But this response has long established time txl = 9.2 s and considerable established

error exl = 0.2408 mm. Actuator position error oscillates following the moving of payload platform

Figure 12: All actuators responses withPID algorithm

causes manipulators vibration in

the control process. When con-

sidering the synchronization of

positions and velocity between

actuators in Figure 12, the over-

shoots causing the established

time of all actuators are not iden-

tical. This effect causes the con-

trol force tension between actu-

ators, unsafe for structural me-

chanics and controller system.

As the results of experiments,

PID controller with choosing

KP , KI , KD coefficients has sta-

bility and acceptable quality standards of the system but needs to be improved. As a first step, PID

controller is suitable for the control of the motion of the Stewart–Gough Platform.

3.2. Self-tuning Fuzzy PID controller
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Figure 13: Self-tuning Fuzzy-PID controller

One of the limitations of PID

controller is that the KP , KI ,

KD coefficients cannot be changed

in the control process. For

this reason, the systems response

does not often get optimal re-

sults and the control of moving

of combined actuators is difficult.

In order to improve these limi-

tations, a self-tuning Fuzzy PID

(Fuzzy-PID) algorithm for slave

controllers [33] is proposed. The

simulation results [19] show that Fuzzy–PID controller can change KP , KI , KD coefficients in con-

trol process based on fuzzy rules and the change of e(t) and de(t)/dt. The result shows significant

improvement in transient response. Figure 13 shows a self-tuning Fuzzy-PID control model with the

reference moving (see 3.1). The KP , KD coefficients is in range: KP min = 30; KP max = 150;

KDmin = 0.1; KDmax = 1;

Linearize KP, KI, KD coefficients as [19,33], yields:

KP = (KP max −KP min).K ′
P +KP min,

KD = (KDmax −KDmin).K ′
D +KDmin,KI = K2

P /(β.KD),
(3)
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Figure 14: Transient response of first actuator with Fuzzy-
PID algorithm.

Figure 15: Position error of first actuator with Fuzzy-PID
algorithm.

Figure 16: Response of all actuators with Fuzzy-PID algo-
rithm.

With K ′
P , K ′

D are defined

from fuzzy logic controller (49 fuzzy

rules) and normalized in range [0, 1],
is defined by parameter KP , KD
coefficients. Membership functions

of KP , KD and β have triangu-

lar forms with linguistic variables

from [19]. The result of Fuzzy-

PID control shows that transient re-

sponse (Figure 14) and position error

of first actuator are significantly bet-

ter than that of the PID controller

(Figure 15). The output re-

sponse has no overshoot (POT%=0%),

established error is reduced from

exl = 0.2408 mm to exl =
0.1076 mm (reduced 44.68%), estab-

lished time is reduced from txl =
9.2 s to txl = 5.8 s and the

rise time trise is unchanged com-

pared with the case of PID con-

troller. In addition, oscillation of po-

sition error is significantly reduced.

This result is annulment of vibra-

tion and noise of manipulator mo-

tion. Beside that the motion syn-

chronization of combined actuators

(Figure 16) is significantly improved

when the established time is un-

changed compared with Section 3.1.

Specially, possibilities for safety work-

ing of the manipulator are increased

when control signals are suddenly

changed.

Experimental results in sections

3.1 and 3.2 show that the traditional

PID algorithm is optimized by com-

bination with Fuzzy control theory

for self-tuning the PID coefficients.

These results exactly confirm the con-

clusions in optimal design and con-

trol for the Stewart-Gough platform

in [15–19]. Thus, it can be affirmed

certainly that the optimal design and

self-tuning Fuzzy-PID controller used
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well in practice (Figure 17). The quality standards of the system are improved while the stability and

fast control response are still preserved. The experimental system could be applied to other control

algorithms in further studies.

Figure 17: The motion control of the experimental system using Fuzzy-PID controller.

4. CONCLUSIONS

The experimental system for the optimization of Stewart-Gough Platform is open, low cost, and is

flexible to adjust and choose different control algorithms. This experimental system is used to check

simulation results of optimal design and controller realized before in [15–19].
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The experimental results show that the experimental system has worked well with the optimal

configuration designed in fixed workspace. Besides that, the use of self-tuning Fuzzy-PID controller

is better compared with a traditional PID controller in motion control of parallel mechanism.

The results of optimization in this paper are executed for one configuration. A load factor and

comparison of other control algorithms are not considered. These problems will be considered in

subsequent studies.
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