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Abstract. Building a large speech corpus is a costly and time-consuming task. Therefore, how to

build high-quality speech synthesis under limited data conditions is an important issue, specifically for

under-resourced language like Vietnamese. As the most natural-sounding speech synthesis is currently

concatenative speech synthesis (CSS), it is the target speech synthesis under study in this research.

All possible units of a specific phonetic unit set are required for CSS. This requirement might be easy

for verbal languages, in which the number of all units of a specific phonetic unit set such as phoneme

is relatively small. However, the numbers of all tonal phonetic units are significant in tonal languages,

and it is difficult to design a small corpus covering all possible tonal phonetic units. Additionally,

as all context-dependent phonetic units are required to ensure the naturalness of corpus-based CSS,

it needs a large database with a size up to dozens of gigabytes for concatenation. Therefore, the

motivation for this work is to improve the naturalness of CSS under limited data conditions, and

both of these two mentioned problems are solved. First, the authors attempt to reduce the number

of tonal units required for the CSS of tonal languages by using a method of tone transformation

and second to reduce mismatch-context errors in concatenation regions to make the CSS available if

matching-context units could not be found from the database. Temporal Decomposition (TD), which

is an interpolation method decomposing a spectral or prosodic sequence into its sparse event targets

and corresponding temporal event functions, is used for both tasks. Previous studies have revealed

that TD can efficiently be used for spectral transformation. Therefore, a TD-based transformation

of fundamental frequency (F0) contours, which represents the lexical tones in tonal languages, is

proposed. The concept of TD is also close to that of co-articulation of speech, which is related to

the contextual effect in CSS. Therefore, TD is also used to model, select, and modify co-articulated

transition regions to reduce the mismatch-context errors. The experimental results obtained from

a small Vietnamese corpus demonstrated that the proposed lexical tone transformation is able to

transform lexical tones, and the proposed method of reducing the mismatch-context errors in the

CSS of the general language is efficient. As a result, the two proposed methods are useful to improve

the naturalness of Vietnamese CSS under limited data conditions.

Keywords. Concatenative speech synthesis, temporal decomposition, co-articulation, tone trans-

formation, limited data, Vietnamese speech

1. INTRODUCTION

Building a large-scale speech corpus is a costly task requiring a long time and a great deal of effort by

engineers, acousticians, and linguists. Therefore, to build high-quality speech synthesis with limited
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data is an important and practical issue, specifically for under-resourced languages with which only

a few small speech corpora are usable.

CSS is based on the concatenation of segments of recorded speech [1, 2] and state-of-the-art CSS

is corpus-based that requires a large database to select the matching units for every concatenation.

As corpus-based CSS, which is usually referred to as the unit selection, is currently the most natural-

sounding speech synthesis [2], it is chosen as the target speech synthesis discussed in this paper.

Speech is the result of sequential linking of phonetic units such as phonemes, which are the minimal

distinctive units. Therefore, a speech synthesizer needs a database that covers all phonetic units in

a specific unit set to synthesize any input text content. In CSS, this database is used to concatenate

for synthesizing. The need of covering all possible units leads to a requirement of significant amount

of data to build a CSS. Since the number of all units of a specific phonetic unit set is limited in verbal

languages, this drawback is not serious for these languages. On the contrary, the numbers of all tonal

units significantly increases in tonal language like Vietnamese, and it is difficult to design a small

corpus that covers all possible tonal phonetic units. As a result, reducing the number of tonal units

for CSS of tonal languages is an important issue studied in this research to improve the usability of

CSS under limited data conditions.

The boundaries between adjacent phonetic units such as phonemes are usually blurred, resulting

in the lying of essential information in the sound transitions. This phenomenon of the mutual influence

of adjacent phones, which are the acoustic realization of phonemes, is called co-articulation. Due to

the efforts of co-articulation in speech synthesis, not only all context-independent phonetic units

but also all context-dependent phonetic units are necessary to synthesize natural speech. Therefore,

state-of-the-art CSS systems require large-scale speech corpora with sizes up to dozens of gigabytes

to synthesize natural speech [3]. On the contrary, mismatch-context error occurs frequently under

limited data conditions. Therefore, reducing mismatch-context error in CSS is one serious problem

also studied in this research to solve for constructing high-quality CSS under limited data conditions.

The motivation for this work is to improve the naturalness of Vietnamese CSS under limited

data conditions. Therefore, we solve both problems aforementioned are solved. A method of tone

transformation is proposed to reduce the number of tonal units required for Vietnamese CSS. Other

methods of reducing mismatch-context errors in concatenation regions are also proposed to make

Vietnamese CSS available even if the matching-context units are not found from the database. Al-

though there are many researches on Vietnamese speech synthesis using large corpus [4, 5, 6], the

problem of Vietnamese speech synthesis under limited data conditions mentioned in this paper have

not been considered.

2. PROPOSED TONE TRANSFORMATION FOR CSS OF TONAL
LANGUAGES

2.1. Using Tone Transformations in CSS of Tonal Languages

Changing the tone for each pronunciation in tonal languages provides a set of tonal units, referred to

as a same-phonation set in this paper. An example of a same-phonation set for monophone /a/ in

Vietnamese is (a, à, á, a?, a. , ã ). The spectral envelope features for all units in a same-phonation set

are almost the same because they are related to similar vocal tract parameters produced by similar

pronunciation behaviors. Therefore, tone transformation can be applied to the CSS of tonal languages

by combining the transformed F0 contours of tonal units such as (à, á, a?, a. , ã ) with the original

spectral envelope of a representative unit in a same-phonation set such as a to produce synthetic



IMPROVING THE NATURALNESS OF CONCATENATIVE VIETNAMESE SPEECH ... 3

sounds of these tonal units with a source/filter vocoder. A neutral unit with neutral tone, which is

a tone with a flat F0 contour that is usually found in tonal languages [7], can be used as the easiest

representative unit of a same-phonation set [8]. In some voice transformation systems [9], the spectral

envelope features are also preserved and only F0 contours are transformed. Therefore, F0 contour

of a lexical tone of a unit can be transformed to those of other units in a same-phonation set with

the manner similar to that in voice transformation systems. As a result, in this paper, the proposed

F0 contour transformation method for converting lexical tones is based on the general framework of

voice transformation systems.

Assuming that all tonal units are converted instead of the original ones being stored and denote

the theoretical percentage of data reduction as rf . Then, rf can be approximately computed as given

in Eq. (1),

rf = (1−Nn/Nt)× 100% (1)

where Nn is the number of neutral units and Nt is the number of tonal units.

There are a total of approximately 7000 meaningful tonal syllables and 1200 neutral syllables in

Vietnamese [10]. Thus, rt ≈ 83% with Vietnamese CSS if the tones are transformed for all tonal

syllables. As a result, transforming the F0 contour of lexical tones reduces a significant amount of

the tonal units required for the CSS of tonal languages.

2.2. Proposed MRTD-GMM for Transforming F0 Contours of Lexical Tones

The state-of-the-art F0 transformation in voice transformation is based on the Gaussian-Mixture-

Model (GMM) [9]. However, although the conventional GMM-based voice transformations have many

advantages such as the use of a few target data, they suffer from several drawbacks, including insuf-

ficiently precise GMM models and parameters, insufficiently smooth converted parameters between

frames, and over-smooth converted frames [11]. A framework for spectral sequence transformation

combined by GMM and Modified-Restricted-Temporal-Decomposition (MRTD) [12], named MRTD-

GMM [11], is proposed to overcome these drawbacks of conventional GMM-based voice transformation

with significant improvements. The results on transformation of spectral sequences obtained by B.

Nguyen and Akagi [11] demonstrate that converting only static event targets and preserving dynamic

event functions could efficiently improve the estimates of GMM parameters as well as efficiently elim-

inate the frame-to-frame discontinuities compared with conventional GMM voice transformations,

resulting in natural and smooth transformed speech. However, MRTD-GMM still suffers from two

main drawbacks when being applied to prosodic features such as the F0 contour. Because dynamic

features of F0 are important, both static and dynamic features of F0 need to be transformed. Nor-

mally, transforming the dynamic features with TD requires the transformation of dynamic event

functions, which is not usable in original MRTD-GMM.

There are two options of transforming dynamic features with TD [13], one is transforming the

dynamic event functions and the other is transforming the deltas of static event targets. As the

dynamic event functions presents the relations between sparse event targets and static frames, trans-

forming them means transforming dynamic features in all frames. This is sophisticated and may not

suitable to transform the lexical tones because F0 contours of a source neutral unit and a target tonal

unit are usually distinct in their approximations rather than in their details [7]. On the contrary,

transforming the deltas of event targets is easy, suitable for statistical training, and also suitable to

transform the lexical tones because only the dynamics between sparse event targets are transformed.

It has been found that low-dimensional vectors are not suitable for modeling with GMM because they
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might cause GMM over-fitting. Therefore, using the delta features of F0 to extend the dimensions of

F0 vectors can also improve the accuracy wherein GMM parameters are estimated [9].

Assuming that there are M F0 targets for the aligned source and target speech, where {f0xi and

f0y
t
i} correspond to the static F0 targets for the source F0 contour x and target F0 contour yt with

tone tth. Here, i = 1, 2, · · · ,M , and t = 2, 3, · · · ,=. The = is the number of tones and = = 6
in Vietnamese. The two-dimensional (2-D) source and target F0 target vectors f0X and f0Y

t
are

represented as given in Eqs. (2) , (3), and (4).

f0X = [f0X1
T
, ..., f0Xi

T
, ..., f0XM

T
], (2)

f0Y
t

= [f0Y
t
1
T
, ..., f0Y

t
i
T
, ..., f0Y

t
M

T
] (3)

where

f0Xi = [f0xi ,∆f0xi ]T , f0Y
t
i = [f0y

t
i ,∆f0y

t
i ]T (4)

The joint source-target vector of F0 targets z is computed as in Eq. (5).

z = [f0X
T
, f0Y

tT
]T (5)

The distribution of z is modeled by GMM λ, caculated as presented in Eq. (6).

p(z|λ) =

Q∑
q=1

αqN(z;µq,Σq), (6)

where Q is the number of Gaussian components, N(z;µq,Σq) denotes the distribution with mean

µq and covariance matrix Σq, and αq is the prior probability of z generated by component q. The

parameters (αq, µq,Σq) are estimated using EM algorithm and the transformed F0 contour ŷt with

target tone tth is determined by maximizing the likelihood following Toda et al. [14].

2.3. Proposed NNS-based Alignment for Transforming F0 Contour of Lexical
Tones

The parallel phoneme-based target alignment and training inside MRTD-GMM require large database

covering all phonemes to train all phoneme-based GMMs. Therefore, it is difficult to accomplish with

limited amounts of training data, especially when some tonal phonemes only occur in a few samples.

The non-parallel method of alignment using nearest neighbor search (NNS) [9] can be used with

limited amounts of training data. However, Wu et al.’s method of alignment [9] searches the closest

neighbors in the whole data space, which may reduce the accuracy of alignment.

Wu et al.’s NNS-based alignment [9] is modified in this research, and is integrated with the

modified MRTD-GMM for F0 transformation by clustering available phonetic units based on their

articulatory similarities. The easies mode is using each phoneme for each cluster. Each cluster pro-

duces a phonetic-dependent subspace for searching in the modified NNS-based alignment. Thus, the

source and target units for each aligned source-target pair are selected from corresponding subspaces

to which the source/target units belong.

When the F0 contour of lexical tones is transformed, the spectral envelope parameters for all

units in each same-phonation set are almost the same because they are related to similar vocal tract

parameters produced by similar pronunciation behaviors. Thus, spectral envelope feature LSF is used
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for the alignment instead of directly using F0. Then, the F0 targets in the positions of the aligned

LSF target pairs are used as the inputs of the phonetic-dependent GMM models for training.

Assume that the source LSF target vector computed from neutral units is {lsfm} and m =
1, 2, · · · ,M , where M is the number of event targets of these neutral units. When training for

target tone tth, and t = 2, 3, · · · ,=, the set of all tonal units with tone tth is ŵst. The ŝst,m is a

tonal subspace of ŵst containing all units belonging to the phonetic unit cluster that lsfm belongs

to. The target vector for alignment is computed as given in Eq. (7).

˜lsfm = NNS(lsfm, ŝs
t,m), ŝst,m ∈ ŵst. (7)

The NNS function here returns the closest neighbors found in target space. The aligned LSF target

pairs are therefore {lsfm, and ˜lsfm}. The positions of the aligned LSF target pairs are needed for

F0 transformation rather than their values. The positions of aligned pairs are {m,p( ˜lsfm)} in this

case, where p( ˜lsfm) is the position of ˜lsfm.

Target-source alignment is also used. If it is assumed that the target LSF target vector computed

from tonal units with tone tth, is { ˜lsf
t
n}, the source vector for alignment is computed as presented

in Eq. (8).

lsf tn = NNS( ˜lsf
t
n, ŝs

1,n) (8)

where ŝs1,n ∈ ŵs1, n = 1, 2, · · · , N , N is the number of event targets of these tonal units, ŵs1 is the

set of all neutral units, and ŝs1,n is a neutral subspace of ŵs1 containing all neutral units belonging

to the phonetic unit cluster that lsf tn belongs to. The position of aligned pairs is {p(lsf tn), n} where

p(lsf tn) is the position of lsf tn.

Combining both source-target and target-source alignments, GMM transformation function F is

trained from the aligned pairs of F0 vectors: {f0X(m), f0Y
t
(p( ˜lsfm))} and

{f0X(p(lsf tn)), f0Y
t
(n)}. Here, f0X and f0Y

t
correspond to the F0 target vectors combined

from static F0 targets and their deltas of source neutral units and target tonal units with tone tth

which are the same as those in Eqs. (2) and (3).

2.4. Implementation and evaluations

2.4.1. Data preparation

Vietnamese is a tonal monosyllabic language [10] that has six distinct tones. Each tone has a distinct

F0 contour shape [4, 7]. More detail on Vietnamese language can be found in [10].

The small Vietnamese corpus DEMEN567, which is also called TTSCorpus [15], is used in this

paper. DEMEN567 includes 567 utterances with a total time duration of less than one hour. The size

of DEMEN567 in 16bit PCM format is approximately 70 MB and the sampling frequency is 11025

Hz.

The original DEMEN567 corpus is extracted into a syllable-based dataset of 1000 tonal syllables,

covering all six Vietnamese tones, to train the tone transformations. A group of neutral syllables

is used as the source while five other tonal syllable groups are used as targets for the F0 contour

transformations. The numbers of syllables in each group differ between the tones. For evaluations,

ten tonal syllables of mono-syllable words are evaluated for each tone. Thus, a total of 50 syllables

are used for these evaluations.
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2.4.2. Experimental setup

The frame sizes are set to 20 ms and the update intervals to 1 ms for two transformations for F0

contours of lexical tones, which are the proposed method and the GMM-based method of Wu [9].

The orders of LSF are 32 for the alignments. The numbers of GMM mixtures are 4. When using TD

analysis/synthesis, each phoneme is represented by five F0 event targets. STRAIGHT version 4 [16]

is used to synthesize the transformed tonal syllables in both methods.

2.4.3. Evaluation results

Subjective tests on intelligibility and naturalness were conducted with five subjects who were native

Vietnamese speakers with normal hearing. The intelligibility scores were measured by using word

error rates (WER) while mean opinion scores (MOS) was used to evaluate the naturalness of tone

transformations.
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Figure 1: MOS scores for tone transformations: Wu’s method and proposed method, calculated for
all tones.

Tonal syllables of single-syllable words transformed by the state-of-the-art F0 transformation

using frame-based GMM [9], and by the proposed F0 transformation, and original tonal syllables were

used for evaluations. The results on naturalness are in Figure 1 and on intelligibility are in Figure 2,

which indicate that the proposed MRTD-GMM F0 transformation significantly outperformed the

state-of-the-art F0 transformations [9] in terms of both naturalness and intelligibility. The results

on intelligibility also reveal that the proposed tone transformation is efficient for three Vietnamese

tones rising, broken, and falling, while its performance is reduced with two tones curve and drop.

The reason that why the proposed method not useful for some tones is the lack of a method of

transforming the power. It has been known that although F0 contours can represent Vietnamese

tones, the power contours also affect to some Vietnamese tones [4].
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Figure 2: WER scores for tone transformations: Wu’s method and proposed method, calculated for
each separate Vietnamese tone, where Tone 1 is Rising, Tone 2 Broken, Tone 3 Curve, Tone 4 Drop,
Tone 5 Falling.

3. PROPOSED METHOD FOR REDUCING MISMATCH-CONTEXT
ERROR IN VIETNAMESE CSS UNDER LIMITED DATA

CONDITIONS

3.1. Modeling co-articulated transition region between phonemes in CSS

This section presents the proposed model of the co-articulated transition region between two adjacent

phonemes, using a framework for the proposed speech modification method presented later in sub-

section 3.3.

Figure 3: Modeling contextual effects using TD, STM and folded STM (FSTM): PBs are phoneme
boundary points extracted from label data, Nus are nuclei points, Trs are onsets and Tls are offsets
of joint transition regions.
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3.1.1. General model

The basic supposition in the proposed model is the assumption that each phoneme can be divided

into one nucleus interval and two co-articulated transition intervals at two sides. The proposed

model attempts to determine the positions and the durations of these intervals. The existence of

the stationary and quasi-stationary intervals inside vowels, semi-vowels and vowel-like consonants

has been confirmed [17, 18]. General Locus theory [19] suggests that there is also a nucleus interval

inside a non-vowel-like (or non-stationary) consonant, referred to as the narrow region around the

ideal articulatory target of consonant. These nuclei intervals are referred to as pseudo-stationary

intervals in this paper due to similarities between their behaviors and those of stationary and quasi-

stationary intervals under the effect of co-articulation. All of the stationary, quasi-stationary and

pseudo-stationary intervals of phonemes, called nuclei intervals for short, in the proposed model are

supposed to be context-less-sensitive and can be preserved for concatenation within different contexts.

The spectral transition measure (STM) [20] and MRTD [12] are respectively used to determine

the positions and the durations of the nuclei and transition intervals of phonemes, to interpolate

speech parameters and to modify the joint transition intervals.

The context-sensitive co-articulated transition region between adjacent phonemes in proposed

model is described by the TD event targets and the overlapping TD event functions restricted by

the two event targets located at the onset and offset of the co-articulated transition region shown in

Figure 3.

3.1.2. Estimating co-articulated transition region and TD event locations

Previous research on the co-articulation of speech has revealed that the transition movements caused

by co-articulation can be observed by analyzing the transitions of formant frequencies [19]. STM [20],

which is one representation of the first-order derivative of the spectral sequence, has also been used

to detect the spectral transition rates of speech. STM can be used with any spectral parameter. The

STM of LSF is used in this paper to estimate the nuclei and co-articulated transition intervals due

to the close relations between LSF and formant frequency.

The STM at time t, STM(t) is defined in Eqs. (9) and ( 10), where time t refers to the location

of the frame in the time domain.

STM(t) =
∂LSF

∂t
= (

P∑
i=1

a2i )/P (9)

where

ai = (

n0∑
n=−n0

LSF i(n).n)/(

n0∑
n=−n0

n2) (10)

Here LSF i(n) is LSF coefficient ith, (1 < i < P ), in frame nth inside a window whose center is

time t, and −n0 < n < n0. The regression coefficient ai, corresponds to the linear variation in the

spectral envelope pattern in a unit time. Consequently, STM(t), which is the mean-square value of

ai, i = 1..P , corresponds to the variation in the spectral envelope smoothed by polynomial fitting.

The nucleus interval for interpolation with TD is represented by one central event target with the

location determined based on criteria that maximize the stability of spectral transition [12], which is

referred to as the location where STM is minimized. The three-step algorithm used to estimate this

central event is:
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Step 1. Initialize window size n0 = 1.

Step 2. Detect local minima of STM. If there is 1 minima, return, else move to step. 3

Step 3. - If there is more than 1 minima, increase n0 = n0 + 1, and return to step. 2

- If there are no minima, the location of the central event target is determined as the central
location of the phoneme.

When moving from a stable nucleus interval to a dynamic transition interval (and in the inverse

case), the rate at which speech is changing is maximum at the onset and offset of the dynamic interval.

Therefore, the onset and offset of the co-articulated transition region are estimated based on criteria

that maximize the dynamics of spectral transition, referred to as locations where FSTM, which is

one representation of the second-order derivative of spectral sequence ∂2LSF/∂t2, is maximized.

FSTM(t) =
∂2LSF

∂t2
= (

m0∑
m=−m0

STM(m).m)/
m0∑

m=−m0

m2 (11)

The three-step algorithm to estimate the two events located at the onset and offset of the joint

co-articulated transition region is:

Step 1. Initialize window size m0 = 1.

Step 2. Detect local maxima of FSTM(t). If there is 1 maxima, return, else move to step.
3

Step. 3.

- If there is more than 1 maxima, increase m0 = m0 + 1, and return to step. 2

- If there are no maxima, the locations of outermost event targets are determined as the
central locations of the left and right half-phonemes.

A total of three true event targets, including one central event target where STM is minimum and

two event targets where FSTM is maximum, are used to interpolate each phoneme with TD. Two

pseudo-targets at phoneme boundaries are also used to represent, select, and modify the co-articulated

transition region, as explained in Sub-sections 3.1.3., 3.2., and 3.3.

3.1.3. Representing co-articulated transition regions with pseudo-targets

A simple and unique parameter representing a co-articulated transition region is necessary to easily

modify the joint co-articulated transition regions. In this research, TD [13] is used to present co-

articulated transition regions. It has been known that TD [13] decomposes a time sequence of speech

parameters y(n) into K dynamic event functions φk and K static event targets ak and k = 1..K, as

given in Eq. (12). Here, ŷ(n) is the approximation of y(n). As there are K event targets in the total

of N frames and K << N , then TD is a sparse representation of speech. The event functions are

interpolation functions representing the temporal transition movements between sparse event targets.

ŷ(n) =
K∑
k=1

akφk(n), 1 ≤ n ≤ N (12)

Equation (12) can be written in matrix notation as Eq. (13), where P is the dimension of the speech

parameter. The original TD [13] is proposed for the spectral linear prediction (LP) parameter with

order P . However, TD can be used for both the spectral and prosodic parameters of speech [12].

ŶP×N = AP×KΦK×N (13)
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After event functions are estimated, event targets of both the original TD and MRTD are re-estimated

as given in Eq. (14), where T is matrix transpose transformation.

A = Y ΦT (ΦΦT )−1 (14)

Following Eqs. (12) and (13), the acoustical parameters for the joint transition region between two

units L (left), which is restricted in locations from nL(K − 1) to nL(K), and R (right), which is

restricted in locations from nR(1) to nR(2), of one concatenation are represented in Eqs. (15) and

(16), and are described in Figure 4. Here, nL(i) and nR(j) return the locations (frame indexes) of

the targets ith and jth of the left and right units, respectively. Note that the indexes of y are the

locations of frames, those of a are the locations of the sparse event targets, and the first-ordered

indexes of φ are the locations of event targets and the second-ordered indexes of φ is the locations of

frames.

The pseudo-event-targets are the two outermost events: event Kth of left unit L and event 1th

of right unit R. Therefore, the pseudo-target-vectors of left unit L and right unit R are aL(K) and

aR(1).

yL(nL(K − 1) : nL(K)) = aL(K − 1,K)

×φL(K − 1 : K,nL(K − 1) : nL(K))
(15)

yR(nR(1) : nR(2)) = aR(1, 2)× φR(1 : 2, nR(1) : nR(2)) (16)

Following the determination of event functions of MRTD [12], at the locations of event targets, the

event function in the current interval approximates to one and other event functions approximate to

zeroes. Therefore, the re-estimated target vectors, followed Eq. 14, are just slightly different from the

frame-based vectors at the same locations. However, while modifying frame-based vectors just affects

to these frames, when two pseudo-targets aL(K), aR(1) are modified, all frames in the transition

parts of left unit L and right unit R will be gradually modified respectively, derived from Eqs. (15)

and (16). Therefore, while pseudo-targets and frame-based vectors are equivalent when computing

concatenation costs for CSS presented in Sub-section 3.2., only pseudo-targets can be used as unique

paramaters for the modification task, presented in Sub-section 3.3..

Figure 4: Modify joint transition regions of left unit L (left panel) and right unit R (central panel)
for concatenation of unit L+R (right panel): φL and φR represented by the curves are event functions
of units L and R; aL and aR represented by the solid bars are event targets of units L and R; the
two pseudo-targets aL(KL) and aR(1) are averagely modified to âL(KL) and âR(1) represented by
the dot bars.
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3.2. Proposed phoneme-based selection cost with pseudo-targets

In conventional unit selection CSS, the most important part is the methods of selecting units that

uses both target cost and concatenation cost [1]. The concatenation cost is to find the best match

units which join together most smoothly. The target cost is to find units in the database which

best match their target predictions. It is clear that the actual target speech units are unknown in

synthesis stage. Thus, the target predictions are usually determined as the centroids of the clusters

of phonetic units existed in the database [21]. The conventional methods of unit clustering, such

as CART method [21], need sufficient number of candidates for each unit and significant differences

between candidates to ensure the accuracy of the clustering algorithm [21]. However, under limited

data conditions, the number of candidates for each unit is usually small, resulting in the inaccuracy

of the unit clustering and the target prediction. Therefore, determining an efficient target cost under

limited data conditions is difficult and target cost is not considered in this work. Although the lack

of target cost for unit selection may reduce quality of synthesized speech, especially in the timing and

segmental duration, this research focuses on reducing the mismatch-context error for CSS and the

use of only concatenation cost can be still sufficient to observe the efficiency of the proposed method.

Conventional concatenation cost includes both the cost of spectral features and prosody features

such as F0 and power [1]. Hence, this research also uses concatenation costs that are computed by

the distances between two pseudo-targets for LSF, F0, and PL of two joint phonemes (or two joint

boundary phonemes of non-uniform units). Equation (17) describes the summed concatenation cost

with a set of three acoustical parameters of LSF, F0, and PL.

C = ωLSF cLSF + ωF0cF0 + ωPLcPL (17)

The component costs cLSF , cF0 and cPL are computed in Eqs. (18), (19) and (20). The ωLSF , ωF0

and ωPL are weighted factors that can be chosen from experiments.

cLSF =
|aL LSF (K)− aR LSF (1)|

π
(18)

cF0 =
|log(aL F0(K))− log(aR F0(1)|)

max(log(F0))
(19)

cPL =
|aL PL(K)− aR PL(1)|

max(PL)
(20)

3.3. Proposed phoneme-based method of modifying co-articulated transition
regions

The two units selected from the selection process need to be modified to smooth out the discontinuity

and reduce the mismatch-context error.

Since modifying two pseudo-targets aL(K) and aR(1), all frames in the transition regions of

the two phonemes L and R as shown in Sub-section 3.1.3. can be modified. The modification of

the co-articulated transition region here is the average one of two pseudo-targets for each acoustical

feature given in Eqs. (21), (22).

∆Xi =
aR Xi(1)− aL Xi(K)

2
(21)

aL Xi(K) = aL Xi(K) +
∆Xi

2
, aR Xi(1) = aR Xi(1) −

∆Xi

2
(22)
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Here, i = 1..3, X1 is LSF, X2 is F0 and X3 is PL. Since two pseudo-targets aL(K), aR(1) are

modified, all frames in the transition parts of left unit L and right unit R are gradually modified re-

spectively. The proposed modification method can approximate the recovery of the smooth transition

between adjacent phones that occurred in their original contexts.

Component thresholds δF0, δLSF and δPL for the decision to modify the targets of F0, LSF, and

PL are determined by experiments to avoid the modification of the joint concatenated phonemes or

units that are already smooth.

3.4. Implementations and Evaluations

3.4.1. Data preparation

To evaluate the proposed CSS, a “limited data condition” for CSS is simulated. None of definitions

of “limited data conditions” for CSS have been proposed. The speech corpus for state-of-the-art CSS

is usually gigabytes in size. A dataset in this paper is considered to be under “limited data condi-

tions” the threshold when the monophone coverage reaches approximately 100 %. This requirement

means that although all phonemes exist, their frequencies of occurrence are limited. Therefore, the

possibility of selecting matching-context units for concatenation is small, and the role of modification

tasks is more important. A “limited data condition” with a dataset of 300 utterances extracted from

DEMEN567, simulated by taking this requirement into account. The tonal Vietnamese phoneme cov-

erage is nearly 100 %. Although some monophones are still missing, most of widely-used Vietnamese

monophones appear in this dataset. The size of this dataset in PCM 16bit format is approximately

30MB and its duration is approximately 20 minutes. This dataset is used for concatenation in the

proposed TD-based CSS and also used to concatenate the two non-uniform unit selection CSS for

Vietnamese in comparison with the proposed CSS. The first CSS does not have spectral smoothing,

which is referred to as CSS A, and the second has spectral smoothing, which is referred to as CSS B

in this paper.

Semantically unpredictable sentences (SUS) have been used as a standard measure to evaluate

the intelligibility of speech synthesis, but there are no designs on Vietnamese SUS lists at present.

Therefore, 20 testing sentences were chosen to evaluate intelligibility with four restricted rules (rules

1–4) that prevented the subjects from easily predicting meanings, and two restricted rules (rules 5–6)

that ensured the evaluation were reliable. The six rules were: (1) the Vietnamese words in the testing

sentences were all low frequency, (2) only sentences composed of monosyllabic words were used to

prevent subjects from predicting the meanings of compound words from their constituent parts, (3)

repeating the words between testing sentences was avoided to prevent subjects from remembering

words they had heard previously, (4) sentences with fewer semantic relations were selected to prevent

subjects from predicting the meanings of sentences, (5) sentences covering all Vietnamese tones that

minimized the repetition of tonal phonemes were selected, and (6) only short sentences were selected

to avoid the difficulty for subjects to remember syllables that they had heard in each testing sentence.

These 20 testing sentences were chosen from a set of sentences that were not used to concatenate

the proposed CSS and two conventional unit selections of CSS A and B.

Another testing dataset of 20 short sentences were used to evaluate naturalness, but not for

concatenating three CSSs.

Since prosody trajectories are not controlled in the three CSSs, the authors focus on improving

the quality of synthesized speech in terms of the local smoothness and the short-term naturalness

in synthesized speech, which are the smoothness and naturalness that can be observed in short
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sentences with a few words. Therefore, both testing sentences for evaluating the intelligibility and

the naturalness are short sentences with a few words.
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Figure 5: MOS scores (CSS A is without linear smoothing and CSS B is with linear smoothing)

3.4.2. Experimental setup

There are three CSSs used for comparisons, including two conventional ones: CSS A without smooth-

ing methods and CSS B with a conventional smoothing method, and the proposed CSS.

As analysed in sub-section 3.2., it is difficult to determine an efficient target cost under limited

data conditions and the proposed CSS uses only concatenation cost. Therefore, CSS A and CSS

B also used only concatenation cost for selecting units to ensure fair comparisons. Same as in the

proposed CSS, three acoustical parameters of LSF, F0, and PL are used. The concatenation cost for

CSS A and CSS B approximate to that in the proposed CSS as described in Sub-section 3.1.3..

Although there are some sophisticated smoothing methods in CSS [22, 23], the linear spectral

smoothing by Paliwal [24] is still one of the most popular and efficient methods for smoothing CSS

[25]. Therefore, linear spectral smoothing with LSF interpolation is adopted to build CSS B in this

research, in which two new frames at both sides of each concatenation are interpolated from the

boundary frames (anchor frames) and were inserted as in [25].

The frame lengths are 20 ms and the frame steps 5 ms in there CSSs. The orders of LSF in three

CSSs 24. The wLSF , wF0 and wPL correspond to 0.8, 0.05 and 0.15 in Eq. (18), these weighting

coefficients are also adopted to the compute concatenation costs of CSS A and CSS B. The component

Table 1: Word Error Rates for CSSs(%)

CSS A CSS B Proposed Original
(without linear (with linear CSS

smoothing) smoothing)

Mean 10.33 10.83 5.5 0

95% 0.88 0.80 0.36 0
confidence



14 PHUNG TRUNG NGHIA, LUONG CHI MAI AND MASATO AKAGI

thresholds for the decision on modification in the proposed TD-based CSS are δLSF = 0.01, δF0 =
0.1 and δPL = 0.01, Max(F0) = 800 and Max(PL) = 0.1 in Eqs. (19), (20).

STRAIGHT version 4 [16] is also used as a vocoder to generate the output waveform of three

CSSs.

Since both the text-searching algorithms are same in for all three CSSs, the methods of unit

selection in three CSSs are similar, and as STRAIGHT is used for all CSSs with the same manner,

the differences on the performance of three CSSs can be mostly caused by the modification methods

inside these CSSs.

3.4.3. Evaluation results

Subjective tests on intelligibility and naturalness were conducted with five subjects who were native

Vietnamese speakers with normal hearing. The intelligibility scores were measured by using word

error rates (WER) while mean opinion scores (MOS) was used to evaluate the naturalness of CSSs.

The results obtained from evaluating intelligibility are summarized in Table. 1 and they indicate

that the WERs of the proposed TD-based CSS are minimal, and vastly superior to both CSS A and

B.

The results from evaluating naturalness are presented in Fig. 5, where the proposed TD-based

CSS is also superior to both CSS A and B.

The results from the intelligibility and naturalness evaluations confirmed that the proposed CSS

efficiently reduces the mismatch-context errors in concatenations, and the proposed CSS runs effi-

ciently under limited data conditions.

The results also show that CSS B just slightly outperforms CSS A. Thus, the linear spectral

smoothing is not efficient under limited data conditions. On the contrary, the modification method

inside the proposed CSS shows its efficiency in terms of both intelligibility and naturalness.

All sentences used to evaluate the three CSSs are very short sentences. Therefore, the perfor-

mances of the three CSSs on segmental duration and timing is not clearly observed. In further

experiments not presented in this paper, the authors find out that extending the sentence length for

evaluation would increase the un-naturalness due to the mismatched segmental duration and timing.

Therefore, the proposed CSS should be improved by supplementing target cost for unit selection and

controlling prosodic trajectories, which are important for segmental duration and timing of synthe-

sized speech. This is one of the authors’ future works.

4. CONCLUSIONS

A method of reducing the number of stored units and a method of reducing mismatch-context errors

in Vietnamese CSS are proposed. The experimental results with Vietnamese datasets revealed that

the proposed lexical tone transformation is efficient for the CSS of tonal Vietnamese languages, while

the proposed CSS convincingly outperforms two conventional unit selection CSSs with and without

speech modifications in terms of naturalness and intelligibility. Consequently, the proposed speech

modification and transformation methods presented in this paper appear to be capable of resolving the

problems with Vietnamese CSS under limited data conditions. The naturalness of speech synthesized

by the proposed methods under limited data conditions is significantly improved compared with using

conventional methods.
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