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Abstract. The fuzzy rule based classification system (FRBCS) design methods, whose fuzzy rules

are in the form of if-then sentences, have been under intensive study during last years. One of the

outstanding FRBCS design methods utilizing hedge algebras as a mathematical formalism is pro-

posed in [9]. As in other methods, a difficult problem with the high-dimensional and multi-instance

datasets needs to be solved. This paper presents an approach to tackle the high-dimensional dataset

problem for the hedge algebras based classification method proposed in [9] by utilizing the feature

selection algorithm proposed in [20]. The experimental results over eight high-dimensional datasets

have shown that the proposed method saves much execution time than the original one, while re-

taining the equivalent classification performance as well as the equivalent FRBCS complexity. The

proposed method is also compared with three classical classification methods based on the statistical

and probabilistic approaches showing that it is a robust classifier.
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1. INTRODUCTION

The fuzzy rule based classification system (FRBCS) design problem is one of the concerned study

trends in the data mining field and has achieved many successful results. The advantage of this

model is that the end-users can use the high interpretability fuzzy rule based knowledge extracted

automatically from numerical data as their knowledge.

In the fuzzy set theory approaches for designing FRBCS [1,2,12,13], the fuzzy sets used to design

the fuzzy partitions are pre-specified and the linguistic labels are intuitively assigned to the fuzzy

sets, so there is not any constraint between the linguistic terms and their fuzzy sets. When necessary,

a genetic fuzzy system is developed to adjust the fuzzy set parameters to achieve the optimal fuzzy

partitions. Due to the separation between the term-meaning and their fuzzy sets, the fuzzy sets are

deformed after the learning processes. Therefore, it affects the interpretability of the fuzzy rule based

systems of the classifiers.

Hedge algebras (HAs) [6–8,10,11] take advantage of the algebraic approach that allows to model

and design the linguistic terms integrated with their fuzzy sets for FRBCSs. It exploits the inherent

semantic order of the linguistic terms that allows generating the semantic constraints between the

terms and their integrated fuzzy sets. By utilizing the values of the semantic parameters which include

fuzziness measures, fuzziness intervals of terms, semantically quantifying mappings (SQMs) of the

hedge algebras [7, 8] and a positive integer to limit the term lengths, denoted by ΠΠΠ , the triangular
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fuzzy sets of terms are generated automatically. Based on this, a genetic design of linguistic terms

of the fuzzy rule based classifiers is determined [9]. This method comprises two phases: the first is

the phase to design the optimal linguistic terms along with their triangular fuzzy set based semantics

for each dataset feature by adjusting only the semantic parameter values to find their optimal values

using an evolutionary algorithm. The second phase is to extract a near optimal FRBCS having a quite

suitable interpretability–accuracy trade-offs from the given dataset with the given optimal semantic

parameter values provided by the first phase using an evolutionary algorithm for fuzzy rule selection.

The main drawback of the FRBCS design method proposed in [9] which limits its application

to the high-dimensional datasets is that the number of fuzzy combinations grows with the increase

of the dataset features leading to the number of candidate fuzzy rules extensively increases, i.e.

the maximum number of fuzzy combinations is
L∑
i
Cin, and the maximum number of the generated

candidate fuzzy rules is |D| ×
L∑
i
Cin, where |D| is the number of data patterns, n is the number

of features and L is the maximum of rule length. The candidate fuzzy rules are obtained after

removing the inconsistent rules having identical antecedents, but different consequence classes and

their cardinality depend on the data distributions. Ex., the maximum number of the generated

fuzzy combinations is 36,050 and the maximum number of the generated candidate fuzzy rules is

7,498,400 for the Sonar dataset (see section 4) with n = 60, |D| = 208 and L = 3. The number of

fuzzy combinations is quite high, thus leading to a slow-running of the fuzzy rule generation process.

Therefore, a quite good technique [3, 14, 20] needs to be applied to reduce a large amount of fuzzy

combinations, but also tries to retain a suitable classification performance. For the example above,

if the number of features is reduced to 9, by making all possible combinations, the number of fuzzy

combinations is only 129, the number of generated fuzzy rules is 26,832 and after removing the

inconsistent rules, the number of generated candidate fuzzy rules is 15,482.

This paper presents an approach to reduce a large amount of dataset features to tackle the

high-dimensional dataset problem for the method proposed in [9] by utilizing the feature selection

technique using dynamic weights proposed in [20]. Feature selection is a technique to select a small

subset of relevant features having the most discriminating information from the set of original features

because the data contain many redundant features. The advantage of this feature selection technique

is that it does not only eliminate redundant features and select the most relevant ones, but also tries to

retain useful intrinsic feature groups. By using two fundamental information theory concepts, mutual

information (MI) and conditional mutual information (CMI), a new scheme for feature relevance,

interdependence and redundancy analysis is introduced [20].

For the proposed method in this paper, the continuous valued features are partitioned into a

particular number of clusters by applying the fuzzy c-means clustering technique together with the

PBMF cluster validity index function [15,16] instead of discretizing them into multiple intervals using

MDL supervised discretization method [4] used in [20].

The paper is organized as follows: Section 2 is a short brief description of the FRBCS design based

on HAs. Section 3 presents the application of a feature selection technique for the FRBCS design

based on HAs. Section 4 represents our experimental results and discussion. Concluding remarks are

included in Section 5.
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2. FUZZY RULE BASED CLASSIFIER DESIGN BASED ON THE HEDGE
ALGEBRAS METHODOLOGY

The fuzzy rule based knowledge of FRBCS used in this paper is the weighted fuzzy rules in the

following form [9,12]:

Rule Rq: IF X1 is Aq,1 AND . . . AND Xn is Aq,n THEN Cq with CF q, for q = 1, . . . , N (1)

where x = {Xj , j = 1, . . . , n} is a set of n linguistic variables corresponding to n features of the

dataset D , Aq,j is the linguistic terms of the jth feature Fj , Cq is a class label, each dataset includes

M class labels, and CF q is the weight of rule Rq. The rule Rq can be written as the following short

form:

AAAq ⇒ Cq with CF q, for q = 1, . . . , N (2)

where AAAq is the antecedent part of the qth-rule.

A FRBCS design problem PPP is defined as: a set PPP = {(dp, Cp)|dp ∈ D , Cp ∈ C , p =
1, . . . ,m; } of m patterns, where dp = [dp,1, dp,2, . . . , dp,n] is the row pth of m data patterns,

C = {Cs|s = 1, . . . ,M} is the set of M class labels.

Solving the problem PPP is to extract from PPP a set SSS of fuzzy rules in the form (1) such as to

achieve a FRBCS based on SSS comes with high performance, interpretability and comprehensibility.

The FRBCS design method based on hedge algebras comprises two following phases [9]:

(1) Design automatically the optimal linguistic terms along with their fuzzy-set-based semantics

for each dataset feature by applying an evolutionary multi-objective optimization algorithm in

such a way that its outputs are the consequences of the interacting between the semantics of

the linguistic terms and the data.

(2) Extract the optimal fuzzy rule set for FRBCS from the dataset in such a way as to achieve

their suitable interpretability–accuracy tradeoff based on the optimal linguistic terms provided

by the first phase.

 

 
 

Figure 1: The fuzzy sets of terms in case of kj = 2.

In order to realize two phases mentioned

above, each jth feature of a specific dataset is

associated with a hedge algebrasAXj . With

the pre-specified values ofΠΠΠ , comprising the

fuzziness measure fmj(c
−) of the primary

term c−, the fuzziness measure µ(hj,i) of the

hedges and a positive integer kj for limiting

the designed term lengths of jth feature, the

fuzziness intervals Ik(xj,i), xj,i ∈ Xj,k for

all k ≤ k j and the SQM values v(xj,i) are

computed. By utilizing the generated values

Ik(xj,i) and v(xj,i), the fuzzy-set-based se-

mantics of the terms Xj,(kj) are computa-

tionally constructed. The triangular fuzzy set is commonly assigned to the term xj,i. The set of

terms Xj,(kj) is the union of the subsets Xj,k, k = 1 to kj , and the kj-similarity intervals Skj (Xj,i)
of the terms in each Xj,kj+2 constitute a binary partition of the feature reference space. For example,

the fuzzy sets of terms with kj = 2 is denoted in Figure 1.
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After all kj-similarity based binary partitions of all dataset features are constructed, the next step

is to generate fuzzy rules from the dataset PPP . With a specific binary partition at kj level, there is a

unique kj-similarity interval Skj (Xj,i(i)) compatible with the term xj,i(j) containing jth-component

dj,l of dl pattern. All kj-similarity intervals which contain dj,l component defines a hyper-cube Hl,
and fuzzy rules are only induced from this type of hyper-cube. So a basic fuzzy rule for the class Cl
of pl is generated from Hl in the following form:

IF X1 is x1,i(1) AND . . . AND Xn is xn,i(n) THEN Cl (Rb)

Each data pattern generates only one basic fuzzy rule with the length n. To generate the fuzzy

rule with the length L ≤ n, so-called the secondary rules, some techniques should be used for

generating fuzzy combinations, ex. generate all possible combinations or use search tree [3].

IF Xj1 is xj1,i(j1) AND . . . AND Xjt is xjt,i(jt)THEN Cq (Rsnd)

where 1 ≤ j1 ≤ . . .≤ jt ≤ n. The consequence class Cq of the rule Rq is determined by

the confidence measure c(AAAq ⇒ Ch) of Rq:

Cq = argmax{c(AAAq ⇒ Ch)|h = 1, . . . ,M} (3)

The confidence measure is computed as:

c(AAAq ⇒ Ch) =
∑
dddp∈Ch

µAAAq(dddp)/

m∑
p=1

µAAAq(dddp) (4)

where µAAAq(dddp) is the burning of pattern dp for Rq and commonly computed as:

µAAAq (dddp) =

n∏
j=1

µq,j (dddp,j) . (5)

The maximum of number fuzzy combinations is
L∑
i
Cin, so the maximum of the secondary rules

is m×
L∑
i
Cin.

There may be inconsistent rules which have the identical antecedents, but different consequence

classes generated from PPP . They are eliminated by confident measure and the rest of rules are called

the candidate fuzzy rules. To eliminate the less important rules, a screening criterion is used to select

a subset S0 with NR0 fuzzy rules from the candidate rule set, called an initial fuzzy rule set. This

process is done by a so-called initial fuzzy rule set generation procedure IFRG(ΠΠΠ,PPP ,NR0, L) [9],

where ΠΠΠ is a set of the semantic parameter values and L is the maximum rule length.

The different given values of the semantic parameters will generate the different binary partition

of the feature reference space leading to the different classification performance of a specific dataset.

Therefore, in order to get the best ones for a specific dataset, a multi-objective evolutionary algorithm

is used to find the optimal semantic parameter values for generating SSS0. The objectives of the applied

evolutionary algorithm are the classification accuracy of the training set and the average length of the

antecedent of fuzzy rule based system. After the applied algorithm produces a set of best semantic

parameters ΠΠΠopt, any one of the best solutions is taken, ΠΠΠopt,i∗ , to generate the initial fuzzy rule set
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SSS0(ΠΠΠopt,i∗) which contains NR0 fuzzy rules using IFRG(ΠΠΠopt,i∗ ,PPP ,NR0, λ). The problem now is

to select a subset of fuzzy rules SSS from SSS0 satisfying three objectives: the classification accuracy of

the training set, the average length of the antecedent and the number of rules of fuzzy rule based

system. An evolutionary algorithm is implemented to find the expected optimal solution. For more

details, see [9].

3. AN APPLICATION OF A FEATURE SELECTION TECHNIQUE FOR
THE FRBCS DESIGN BASED ON HEDGE ALGEBRAS

3.1. Some Concepts of Information Theory

This subsection presents a short brief description of some basic concepts of information theory [20]:

entropy and mutual information used to measure the uncertainty of random variables and the infor-

mation shared by them. Suppose X is a discrete random variable, the entropy H(X) of X is defined

as:

H (X) = −
∑
x∈X

p (x) log(p (x)). (6)

where p(x) = Pr(X = x) is the probability distribution function of X .

X and Y is a pair of discrete random variables, the joint entropy H(X , Y ) is defined as:

H (X,Y ) = −
∑
x∈X

∑
y∈Y

p (x, y) log(p (x, y)) (7)

where p(x, y) is a joint probability distribution which models the relationships between the variables.

When the entropy of the variable X conditioned on the variable Y , the conditional entropy

H(X|Y ) is defined as:

H (X|Y ) = −
∑
x∈X

∑
y∈Y

p (x, y) log(p (x|y)) (8)

Mutual information (MI) of two random variables X and Y is a measure of their mutual depen-

dence and is defined as:

I (X;Y ) =
∑
x∈X

∑
y∈Y

p (x, y) log(
p (x, y)

p (x) p(y)
) (9)

The above expression can be re-expressed in terms of joint and conditional entropies, so it is

equivalent to as the following:

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X). (10)

Thus, the MI between X and Y can be interpreted as the reduction in uncertainty about X after

observing Y .

Conditional mutual information (CMI) is defined as the amount of information shared by variables

X and Y , when Z is known. It is formally defined by:

I (X;Y |Z) =
∑
z∈Z

∑
y∈Y

∑
x∈X

p (x, y, z) log(
p(z)p (x, y, z)

p (x, z) p(y, z)
) (11)

CMI can also be interpreted as the reduction in the uncertainty of X due to Y when Z is known.
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3.2. Feature Selection Technique Using Dynamic Weights

Feature selection is a way helps to reduce a large amount of dataset features by selecting a small

subset of relevant features from the set of the original ones in order to improve the performance

of the learning algorithms. This subsection presents the feature selection technique using dynamic

weight proposed in [20]. This technique does not only eliminate redundant features which are highly

correlated with the selected ones as other techniques, but also considers interdependent features

which are weak as individuals, but have strong discriminatory power as a group by introducing a new

scheme for feature relevance, interdependence and redundancy analyses.

Relevance analysis is used to overcome the drawback of mutual information which tends to favor

features with more values by using the symmetrical measure and it is defined as:

U (X,Y ) = 2× I(X;Y )

H (X) +H(Y )
(0 ≤ U (X,Y ) ≤ 1). (12)

The redundancy and the interdependence of the candidate features are evaluated by combining

MI and CMI. A feature which has one or more other features correlated with is considered to be

redundant and the relevance of it to the target class can be reduced by the knowledge of any one of

the correlated features. Thus, a feature fi is considered to be redundant with the feature fj if the

hereafter in-equation is satisfied:

I (fi; class|fj) ≤ I(fi; class). (13)

The relative Redundancy Ratio between two features RR(i, j) represents the reduction ratio of

relevance between the feature fi and the target class due to the feature fj and is defined as:

RR (i, j) = 2× I (fi; class|fj)− I(fi; class)

H (fi) +H(class)
(−1 ≤ RR (i, j) ≤ 0) (14)

Two features fi and fj are interdependent on each other if the hereafter in-equation is satisfied:

I (fi; class|fj) ≥ I(fi; class) (15)

The interdependent ratio IR(i, j) between fi and fj which denotes the increase’s ratio of rele-

vance between fi and the target class by new feature joining is defined as:

IR (i, j) = 2× I (fi; class|fj)− I(fi; class)

H (fi) +H(class)
(0 ≤ IR (i, j) ≤ 1) (16)

Both RR(i, j) and IR(i, j) are unified as correlation ratio CR(i, j):

CR (i, j) =

{
IR (i, j) , I (fi; class|fj) > I(fi; class)
RR (i, j) , I (fi; class|fj) ≤ I(fi; class)

(17)

It is obviously that −1 ≤ CR (i, j) ≤ 1.

Based on the above information metrics, a dynamic weighting-based feature selection algorithm

for ranking features, abbreviated as DWFS, is proposed in [20]. Hereafter is the pseudo code of the

algorithm described in details:
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Algorithm 1. DWFS: the adapted algorithm proposed in [20].

Input: A training sample D with feature space F and the target C .

Output: The subset S selected from δ features

Initialize parameters: k = 1, S = ∅;
Initialize the weight w(f) for each feature f in F to 1 equally;

Calculate the value of U(f , class) for each feature f in F ;

While k ≤ δ do

For each candidate feature f ∈ F do

Calculate J(f) = R(f, class)× w(f). ;

End;

Choose the candidate feature fj with the largest J(f);

Add f into the selected subset S = S ∪{fj};
F = F\{fj};
For each candidate feature i ∈ F do

Calculate the Correlation ratio CR(i, j);

Update w(i) by w(i) = w(i)× (1 + CR(i, j));

End;

k = k + 1;

End.

The complexity of DWFS algorithm is O(n×δ) as already proofed in [20], where, n is the number

of original features and δ is the number of selected features.

3.3. The Application of the DWFS for the FRBCS Design Based on Hedge
Algebras

The FRBCS design based on hedge algebras methodology proposed in [9] is an efficient way to extract

the fuzzy rule based systems from a given numeric dataset for the fuzzy rule based classifier. However,

as described in the first section, dealing with the high-dimensional datasets is still a critical issue

needed to be considered. This subsection presents an approach to tackle the high-dimensional dataset

issue for the FRBCS design based on hedge algebras by utilizing the DWFS algorithm described in

the previous subsection. Hence, the extended method proposed in this paper comprises three phases

by inserting the feature selection preprocessing mechanism into the original method as the first phase:

(1) For a given dataset, the continuous valued features are partitioned into a particular number of

clusters by applying the fuzzy c-means clustering technique together with the PBMF cluster

validity index function [15, 16] and then apply the DWFS algorithm to select a subset of the

most discriminating features.

(2) Design automatically the optimal linguistic terms along with their fuzzy-set-based semantics

for each feature of the subset of the dataset having only the features selected by the first phase,

so-called the selected training set.

(3) Extract the optimal fuzzy rule set for the FRBCS from the selected training set.

In the first phase, the continuous valued features are clustered by the fuzzy c-means clustering

technique. After the clustering process, the real-valued data is partitioned into v > 0 clusters
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produced by the process and each cluster is assigned a sequence number in order to achieve the

discrete values of the processed feature.

Let Y = {y1, . . . , ym} be the dataset of jth-feature. Fuzzy c-means clustering technique opti-

mizes the following objective function:

Jα =
m∑
i=1

v∑
j=1

µαi,j‖yi − vj‖2, 1 < α <∞, (18)

where v is the number of clusters, µi,j is the membership degree of yi in the cluster j, vj is the

centroid of the cluster, α > 1 is the fuzzifier exponent which make the partions more or less fuzzy.

The membership degree µi,j and the cluster centroid vj updated by the optimization process:

µi,j =
1∑v

k=1

(
‖yi−vj‖
‖yi−vk‖

) 2
∝−1

(19)

vj =

∑m
i=1 µ

α
i,j × yi∑m

i=1 µ
α
i,j

(20)

The optimization process stops when the number of iterations reaches the maximum number or

|J (k+1)
α − Jkα| < ε, where 0 < ε < 1 and k is the current number of iterations.

The PBMF index method [15, 16] is used for optimizing the number of clusters and it is defined

as:

VPBMF =

(
1

v
× E1

Jα
× Zv

)2

(21)

 

Figure 2: The flow chart of the fuzzy c-means clustering tech-
nique together with the PBMF index validation.

where E1 =
m∑
j=1
‖yj − e‖ with

e is the dataset’s centroid and

Zv = maxvi,j=1‖vi − vj‖.
The flow chart of the fuzzy

c-means clustering technique to-

gether with the PBMF index val-

idation is denoted in Figure 2.

After the clustering pro-

cesses, all real-valued features are

discretized for the input of the

feature selection process using

the DWFS algorithm described

above.

The two last phases are the

two phases of the FRBCS de-

sign based on hedge algebras pro-

posed in [9], except the training

set is the selected set instead of

the original one.
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4. EXPERIMENTAL RESULTS AND DISCUSSION

This section presents the experimental results of applying the feature selection technique described in

the above sections as a preprocessing method to the FRBCS design based on hedge algebras method-

ology proposed in [9] in comparison with the original method over some real world high-dimensional

datasets that can be found on the KEEL-Dataset repository: http://sci2s.ugr.es/keel/datasets.php.

All the implementations for validating have been implemented using C#, and all the experiments

have been performed using an Intel Core i3-3110M, 2.4-GHz CPU with 4 GB of memory and running

Microsoft Windows 7 64-bit.The 8 high dimensional datasets used to validate and compare with the

original method in this study are listed in the Table 1.

No. Dataset name
Number of Number of Number of

attributes classes patterns

1 Bands 19 2 365

2 Dermatology 34 6 358

3 Hepatitis 19 2 80

4 Ionosphere 34 2 351

5 Sonar 60 2 208

6 Spambase 57 2 4597

7 Spectfheart 44 2 267

8 Wdbc 30 2 569

Table 1: The high dimensional datasets used in this study

No. Dataset name Number of attributes SSSn SSS2n

1 Bands 19 6 8

2 Dermatology 34 7 10

3 Hepatitis 19 6 8

4 Ionosphere 34 7 10

5 Sonar 60 9 12

6 Spambase 57 9 12

7 Spectfheart 44 8 11

8 Wdbc 30 7 9

Table 2: The number of selected features of thevalidated datasets

First of all, the feature selection preprocessing technique is applied to each dataset to select the

most discriminating feature subset. Two feature’s quantities of
√
n + 1 and

√
2n + 1 are used

to validate, where n is the number of the original dataset, for convenience, named as Sn and S2n
respectively. The feature’s quantity of the original dataset is named as N . After this phase, the

number selected features of the validated datasets are listed in the Table 2.

The subsets of data with the selected features of the corresponding validated datasets after apply-

ing the feature selection preprocessing are taken into account. The same ten-folds cross validation
method is applied to every subset of the validated datasets and the original ones, i.e. each of them is

randomly partitioned into 10 folds, 9 folds for the training phase and one fold for the testing phase.
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Three trials of the FRBCS design method based on HAs are executed for each of ten folds and, hence,

it permits to extract 30 (= 3 times × 10 folds) FRBCSs from the data.

To limit the searching space in the learning process, the same constraints on the semantic param-

eter values is applied as examined in [9]. i.e. we have: the number of both negative hedge and positive

hedge is 1, and assume that the negative hedge is L and the positive hedge is V ; 0 ≤ kj ≤ 3;

0.2 ≤ fmj(c
−) ≤ 0.8; fmj(c

−) + fmj(c
+) = 1; 0.2 ≤ µj(L) ≤ 0.8 and µj(L) + µj(V ) = 1.

The optimization algorithm used in this study is the multi-objective particle swarm optimization

with fitness sharing proposed in [19]. It is an efficient algorithm as presented in [17].

The semantic parameter optimization process [9] has been run with the following parameters: the

number of generations = 250, the same as examined in [9]; the number of particles of each generation

= 300; Inertia coefficient = 0.4; the self-cognitive factor = 0.2; the social cognitive factor = 0.2; the

number of initial fuzzy rules is equal to the number of attributes; the maximum of rule length is 1.

The fuzzy rule selection process [9] has been run with the same parameters of the semantic

parameter optimization process, except the number of generations = 1000; the number of particles

of each generation = 600; the number of initial fuzzy rules |SSS0| = 300 × number of classes ; the

maximum of rule length = 3.

The running time in the hh:mm:ss format of the initial fuzzy rule generation processes from

the validated datasets with and without applying the feature selection preprocessing are listed in the

Table 3, where noted that L2 and L3 are the running time in case the maximum of fuzzy rule length

is 2 and 3 respectively.

No. Dataset name
N SSSn SSS2n

L2 L3 L2 L3 L2 L3

1 Bands 00:00:20 00:20:15 00:00:01 00:00:02 00:00:02 00:00:16

2 Dermatology 00:02:28 07:41:03 00:00:00 00:00:05 00:00:04 00:00:06

3 Hepatitis 00:00:01 00:01:52 00:00:00 00:00:00 00:00:00 00:00:07

4 Ionosphere 00:12:14 39:54:06 00:00:02 00:00:21 00:00:14 00:02:16

5 Sonar 01:59:24 - 00:00:02 00:00:30 00:00:09 00:04:30

6 Spambase 03:34:44 - 00:01:03 00:29:40 00:03:26 02:23:42

7 Spectfheart 00:22:53 68:18:37 00:00:00 00:00:07 00:00:03 00:00:52

8 Wdbc 00:04:58 13:21:14 00:00:00 00:00:03 00:00:02 00:00:17

Table 3: The comparison of the running times of the initial fuzzy rule generation processes

No.
Dataset N SSSn 6=C 6=Pte

SSS2n 6=C 6=Pte
name #R*#C PPP tr PPP te #R*#C PPP tr PPP te #R*#C PPP tr PPP te

1 Bands 52.20 76.17 72.80 63.60 73.63 70.60 -11.40 2.20 70.62 73.21 69.67 -18.42 3.13
2 Dermato. 198.05 98.03 96.07 229.72 97.48 96.08 -31.66 -0.01 178.67 91.28 89.81 19.39 6.26
3 Hepatitis 26.16 95.83 88.44 25.60 96.48 88.64 0.56 -0.20 21.16 96.53 89.67 5.00 -1.23
4 Ionosphere 90.33 95.35 90.22 108.00 94.83 90.23 -17.67 -0.01 66.75 93.89 91.46 23.58 -1.24
5 Sonar 79.76 88.39 76.80 67.98 88.99 80.41 11.78 -3.61 61.98 87.25 79.69 17.78 -2.89
6 Spambase 30.00 84.83 84.62 37.60 86.57 86.10 -7.60 -1.48 26.92 86.34 85.98 3.08 -1.36
7 Spectfheart 22.52 83.08 81.28 26.80 84.03 80.80 -4.28 0.48 35.32 84.41 82.02 -12.80 -0.74
8 Wdbc 37.35 97.62 96.96 55.00 97.92 96.60 -17.65 0.36 34.35 97.12 95.66 3.00 1.30

Mean 67.05 89.91 85.90 68.31 90.00 86.20 61.97 88.75 85.50

Table 4: The comparison of the classification performances of the original datasets and their subsets
of
√

2n+ 1 and
√
n+ 1 features

As shown in the Table 3, the running time of the initial fuzzy rule generation processes after

applying the feature selection to the original datasets are reduced very much, especially, in case the

fuzzy rule length is 3 (in case of L3 as in the Table 3). Ex., the initial fuzzy rule extraction time from
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the original Dermatology dataset in case of L3 is 07:41:03 or 27,663 seconds, which is greater than

5,532 and 4,610 times in case of the feature’s quantities of
√
n + 1 (05 seconds) and

√
2n + 1 (06

seconds) respectively. The “-“ characters mean that the fuzzy rule generation processes are too slow

that the results cannot be obtained. That while we usually limit the maximum of rule length to 2

with the datasets having the number of features greater than and equal to 30 in the previous studies.

The experimental results of the classification performance of the application of the feature se-

lection technique presented in the above sectionfor the FRBCS design are shown in the Table 4,

where noting that #R,#Cand #R*#C are the number of fuzzy rules, the number of conditions and

the complexity of the extracted fuzzy rule setrespectively; Ptr := the performance in the training

phase and Pte :=the performance in the testing phase; The 6=C and 6=Pte columns represent the

differences of the complexities and the performances of the compared methods respectively. Specifi-

cally, the average results of the three validated methods are not much different. Therefore, the final

conclusion should rely upon the statistic studies given in the Table 5 and the Table 6 in which the

Wilcoxon’s signed-rank tests have been applied to test the complexities and performances of the fuzzy

rule bases extracted by three methods respectively. It is assumed that the two compared versions are

statistically equivalent (null-hypothesis).

VS R+ R− E. PPP -value A. PPP -value Conf. Inte. Exact. Conf. Hypothesis
SSS2n 30 6 0.10938 0.080058 [-17.9715 , 0.192] 0.92188 Not rejected
SSSn 10 26 ≥ 0.2 1 [-6.71055 , 17.784] 0.92188 Not rejected

Table 5: The comparison result of the fuzzy rule complexitiesusing the Wilcoxon’s signed rank test
at levelα= 0.05

VS R+ R− E. PPP -value A. PPP -value Conf. Inte. Exact. Conf. Hypothesis
SSS2n 16 20 ≥ 0.2 1 [-1.625 , 1] 0.92188 Not rejected
SSSn 19 17 ≥ 0.2 0.833635 [-1.36 , 2.515] 0.92188 Not rejected

Table 6: The comparison result of the fuzzy rule based classification performancesusing the
Wilcoxon’s signed rank test at level α= 0.05

The abbreviation terms used in the Table 5 and 6: VS column is the list of the name of the

method which we want to compare with; E. is Exact; A. is Asymptotic; Inte. is Interval and Conf.

is Confidence.

As shown in the Table 5, the complexities of the FRBCSs extracted from the original datasets (n
features) are compared with the complexities ofthose extracted from the datasets with the subsets of

selected features in both cases of the feature’s quantities of
√
n+1 and

√
2n+1 using the Wilcoxon’s

signed-rank test at level α = 0.05. Since all R− values which are the sum of the ranking results of

the FRBCSs extracted from the original datasets are greater than the critical value of T Wilcoxon

distribution [21] associated with the number of datasetsNds = 8 and p = 0.05, where the critical value

is 5, all the null-hypotheses cannot be rejected. Therefore, it is not needed to take the complexity of

the FRBCS into account in the comparisons.

The comparison of the extracted FRBCS performances using Wilcoxon’s signed-rank test at level

α = 0.05 is shown in the Table 6. All the null-hypotheses cannot be rejected, so it is possible to state

that both the feature’s quantities of
√
n+1 and

√
2n+1 do not affect the classification performance

of the FRBCS design based on the hedge algebras methodology. To reduce the running time of the

fuzzy rule generation process of the FRBCS design based on the hedge algebras methodology for the

high dimensional datasets, the proposed feature selection preprocessing should be applied.
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It does not make sense when comparing the experimental results of the FRBCS with other classical

classification methods based on the statistical and probabilistic approaches because those methods

do not have the complexity objectives in the learning processes. To show the efficiency of the FRBCS

design based on the hedge algebras methodology, the proposed method in this paper is compared with

three well-known learning algorithms regardless of the complexity objectives. The compared methods

are Näıve Bayes, a probabilistic classifier based on Bayesian model; nearest neighbour algorithm (k-

NN), an example is classified with the majority class of its k nearest neighbours; and support vector

machine (SVM) with polynomial kernel [5, 18, 20]. The datasets used to validate are shown in the

Table 7 and the experimental results of the classification performances on the test sets are shown in

the Table 8.

No. Dataset name
Number of Number of Number of Number of

attributes classes patterns selected features
1 Dermatology 34 6 358 10
2 Lung cancer 56 3 32 8
3 Prostate cancer 12,600 2 102 30
4 Sonar 60 2 208 12
5 wdbc 30 2 569 9
6 wpbc 33 2 198 10
7 Zoo 17 7 101 7

Table 7: The high dimensional datasets used to compare with other algorithms

No. Dataset name Our method SVM Naive Bayes k-NN
1 Dermatology 97.21 97.01 97.82 96.45
2 Lung cancer 90.83 83.33 85.83 80.00
3 Prostate cancer 97.09 99.00 98.09 98.09
4 Sonar 83.64 85.50 69.7 84.00
5 wdbc 97.02 97.60 93.10 96.80
6 wpbc 81.34 81.20 69.4 78.80
7 Zoo 98.67 97.8 94.50 90.5

Table 8: The comparison of the classification performances with other algorithms

With all null-hypotheses which cannot be rejected by the Wilcoxon’s signed-rank test at level

α = 0.05, shown in the Table 9, it is impossible to find any meaningful differences between the

proposed method and the rest of three learning algorithms. This test result proves that the proposed

method presents a good accuracy on the test set in comparison with other well-known algorithms.

VS R+ R− E. PPP-value A. PPP-value Conf. Inte. Exact. Conf. Hypothesis

SVM 14 14 ≥ 0.2 0.932647 [-1.86 , 3.85] 0.95312 Not rejected

Näıve Bayes 25 3 0.07812 0.051913 [-0.61 , 11.94] 0.95312 Not rejected

k-NN 22 6 ≥ 0.2 0.150786 [-0.39 , 6.685] 0.95312 Not rejected

Table 9: The comparison result of the classification performances of the proposed method and three
well-known algorithms using the Wilcoxon’s signed rank test at level α = 0.05
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5. CONCLUSION

This paper presents an application of a feature selection technique as the preprocessing mechanism

for the fuzzy rule based classifier design based on the hedge algebras methodology for the high-

dimensional datasets. By utilizing this technique, the extended method for the fuzzy rule based

classifier design based on hedge algebras is proposed to tackle the high-dimensional datasets compris-

ing three phases by inserting the feature selection preprocessing mechanism into the original method

as the first phase. The experimental results over 8 high-dimensional datasets have shown that the

proposed method saves much execution time than the original one, while retaining the equivalent

classification performance as well as the equivalent FRBCS complexity. Furthermore, the proposed

method is also compared with three other well-known learning algorithms and the results on the

accuracy of the test set are comparable with the results obtained by those compared algorithms.
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