
Journal of Computer Science and Cybernetics, V.31, N.1 (2015), 43–53

DOI: 10.15625/1813-9663/31/1/4630

DO-TPR*-TREE: A DENSITY OPTIMAL METHOD FOR
TPR*-TREE

NGUYEN TIEN PHUONG1, DANG VAN DUC2

Institute of Information Technology, Vietnam Academy of Science and Technology
1phuongnt@ioit.ac.vn; 2dvduc@ioit.ac.vn

Abstract. This paper proposes a density optimal method, named as DO-TPR*-tree, which improves

the performance of the original TPR*-tree significantly. In this proposed method, the search algorithm

will enforce firing up MBR adjustment on a node, if the condition, based on density optimal for the

area of its MBR, is satisfied at a query time. So, all queries occurred after that time will be prevented

from being misled as to an empty space of this node. The definition of Node Density Optimal is also

introduced to be used in search algorithm. The algorithm of this method is proven to be correct

in this paper. Several experiments and performed comparative evaluation are carried out. In the

environment with less update rates (due to disconnected) or high query rates, the method can highly

enhance query performance and runs the same as the TPR*-tree in other cases.

Keywords. DO-TPR*-tree, MODB, R-tree, TPR-tree, TPR*-

1. INTRODUCTION

The recent advances of technologies in mobile communications, GPS and GIS have increased users’

attention to an effective management of location information on the moving objects. Their location

data has a spatio-temporal feature, which means spatial data is continuously changing over time [1].

So it needs to be stored in a database for efficient use. Such a database is commonly termed as

the moving object database [2]. A moving object database is an extension of a traditional database

management system that supports the storage of location data for continuous movement. The number

of moving objects in the database can be very large. Therefore, to ensure the system performance

while updating or processing queries, it is needed to reduce the cost of object updates and have an

efficient indexing method.

Some efforts to reduce the cost of object updates have been proposed, such as the RUM-tree [3],

or FD-tree [4]. The RUM-tree processes updates in a memo-based approach that avoids disk accesses

for purging old entries during an update process. Therefore, the cost of an update operation in the

RUM-tree is reduced to the cost of only an insert operation [3]. Whereas, the FD-tree, a tree index

that is aware of the hardware features of the flash disk (or SSD), has been proposed to optimize the

update performance by reducing small random writes while preserving the search efficiency [4].

Most of the indexing methods are based on the traditional spatial indexes, especially the R-tree

[5], R*-tree [6] and its extension, which is typical TPR-tree [7]. Many efforts have been done to

propose efficient index structures for future time queries, such as TPR*-tree [8]. The Bdual-tree [9]

was presented to enhance the update performance of the previous methods. In particular, the Bdual-

tree works well in the overall performance aspects. However, the TPR*-tree is reported to provide

a best performance in terms of the query processing times [9]. The research aims at improving the

query processing times, so this method will be compared with the TPR*-tree in section 4.

c© 2015 Vietnam Academy of Science & Technology

http://dx.doi.org/10.15625/1813-9663/31/1/4630
mailto: phuongnt@ioit.ac.vn
mailto: dvduc@ioit.ac.vn

44 NGUYEN TIEN PHUONG, DANG VAN DUC

In the TPR*-tree, the MBR adjustment is a solution to better performance, but its execution is

only fired up while having update operations. That is, the TPR*-tree cannot adjust the MBR of a

node N , if no indexed object in N changes its location or velocity. The size of the empty space in

node N enlarges continuously for a long time, if N is a node without updates. Therefore, if query

processes frequently searches into a sub-tree with rare updates, their response times will get longer.

The goal of this paper is to introduce the density optimal method for TPR*-tree, named as DO-

TPR*-tree, which improves the performance of the original TPR*-tree significantly. In our proposed

method, the search algorithm will enforce firing up MBR adjustment on N , if the condition, based

on density optimal for the area of N ’s MBR, is satisfied at a query time. So, some of queries can

be prevented from being misled as to an empty space of N . The algorithm of the method is also

proven to be correct in this paper. Several experiments are carried out for performance evaluation.

The results show that in the environment with less update rates (due to disconnected) or high query

rates, this method is faster than the original method.

This paper is organized as follows. Section 2 briefly reviews the TPR*-treeas related work, and

then introduces the research motivation. Section 3 proposes the method in detail. In the section

4, the results of performance evaluation for justifying the effectiveness of our approach are shown.

Finally, section 5 summarizes and concludes this paper.

2. RELATED WORK AND RESEARCH MOTIVATION

2.1. TPR-tree

The TPR-tree [7], which has been devised based on the R*-tree [6], predicts the future-time positions

of moving objects by storing the current position and velocity of each object at a specific time point.

According to [8], a moving object Ois represents a minimum bounding rectangle (MBR)OR

that denotes its extent at reference time 0, and a velocity bounding rectangle (VBR) OV ={OV 1-

,OV 1+,OV 2−,OV 2+} where OV i−(OV i+) describes the velocity of the lower (upper) boundary of OR

along the i-th dimension (1 ≤ i ≤ 2).

2 NGUYEN TIEN PHUONG, DANG VAN DUC

query processing times [9]. The research aims at improving the query processing times, so this method will

be compared with the TPR*-tree in section 4.

In the TPR*-tree, the MBR adjustment is a solution to better performance, but its execution is only fired

up while having update operations. That is, the TPR*-tree cannot adjust the MBR of a node N, if no

indexed object in N changes its location or velocity. The size of the empty space in node N enlarges

continuously for a long time, if N is a node without updates. Therefore, if query processes frequently

searches into a sub-tree with rare updates, their response times will get longer.

The goal of this paper is to introduce the density optimal method for TPR*-tree, named as DO-TPR*-

tree, which improves the performance of the original TPR*-tree significantly. In our proposed method, the

search algorithm will enforce firing up MBR adjustment on N, if the condition, based on density optimal

for the area of N’s MBR, is satisfied at a query time. So, some of queries can be prevented from being

misled as to an empty space of N. The algorithm of the method is also proven to be correct in this paper.

Several experiments are carried out for performance evaluation. The results show that in the environment

with less update rates (due to disconnected) or high query rates, this method is faster than the original

method.

This paper is organized as follows. Section 2 briefly reviews the TPR*-treeas related work, and then

introduces the research motivation. Section 3 proposes the method in detail. In the section 4, the results of

performance evaluation for justifying the effectiveness of our approach are shown. Finally, section 5

summarizes and concludes this paper.

2 RELATED WORK AND RESEARCH MOTIVATION

2.1 TPR-tree

The TPR-tree [7], which has been devised based on the R*-tree [6], predicts the future-time positions of

moving objects by storing the current position and velocity of each object at a specific time point.

According to [8], a moving object Ois represents a minimum bounding rectangle (MBR)OR that denotes

its extent at reference time 0, and a velocity bounding rectangle (VBR) OV={OV1-,OV1+,OV2-,OV2+} where

OVi-(OVi+) describes the velocity of the lower (upper) boundary of ORalong the i-th dimension (1 ≤ i ≤ 2).

(a) MBRs & VBRs at time 0 (b) MBRs at time 1

(a) MBRs & VBRs at time 0

2 NGUYEN TIEN PHUONG, DANG VAN DUC

query processing times [9]. The research aims at improving the query processing times, so this method will

be compared with the TPR*-tree in section 4.

In the TPR*-tree, the MBR adjustment is a solution to better performance, but its execution is only fired

up while having update operations. That is, the TPR*-tree cannot adjust the MBR of a node N, if no

indexed object in N changes its location or velocity. The size of the empty space in node N enlarges

continuously for a long time, if N is a node without updates. Therefore, if query processes frequently

searches into a sub-tree with rare updates, their response times will get longer.

The goal of this paper is to introduce the density optimal method for TPR*-tree, named as DO-TPR*-

tree, which improves the performance of the original TPR*-tree significantly. In our proposed method, the

search algorithm will enforce firing up MBR adjustment on N, if the condition, based on density optimal

for the area of N’s MBR, is satisfied at a query time. So, some of queries can be prevented from being

misled as to an empty space of N. The algorithm of the method is also proven to be correct in this paper.

Several experiments are carried out for performance evaluation. The results show that in the environment

with less update rates (due to disconnected) or high query rates, this method is faster than the original

method.

This paper is organized as follows. Section 2 briefly reviews the TPR*-treeas related work, and then

introduces the research motivation. Section 3 proposes the method in detail. In the section 4, the results of

performance evaluation for justifying the effectiveness of our approach are shown. Finally, section 5

summarizes and concludes this paper.

2 RELATED WORK AND RESEARCH MOTIVATION

2.1 TPR-tree

The TPR-tree [7], which has been devised based on the R*-tree [6], predicts the future-time positions of

moving objects by storing the current position and velocity of each object at a specific time point.

According to [8], a moving object Ois represents a minimum bounding rectangle (MBR)OR that denotes

its extent at reference time 0, and a velocity bounding rectangle (VBR) OV={OV1-,OV1+,OV2-,OV2+} where

OVi-(OVi+) describes the velocity of the lower (upper) boundary of ORalong the i-th dimension (1 ≤ i ≤ 2).

(a) MBRs & VBRs at time 0 (b) MBRs at time 1

(b) MBRs at time 1

Figure 1: Entry representations in a TPR-tree

Figure 1a shows the MBRs and VBRs of 4 objects a, b, c, d. The arrows (numbers) denote

the directions (values) of their velocities, where a negative value implies that the velocity is towards

the negative direction of an axis. The VBR of a is aV = {1, 1, 1, 1} (the first two numbers are for

DO-TPR*-TREE: A DENSITY OPTIMAL METHOD FOR TPR*-TREE 45

the x-dimension), while those of b, c, d are bV = { − 2,−2,−2,−2}, cV = { − 2, 0, 0, 2}, and

dV = { − 1,−1, 1, 1} respectively. A non-leaf entry is also represented with a MBR and a VBR.

Specifically, the MBR (VBR) tightly bounds the MBRs (VBRs) of the entries in its child node. In

Figure 1, the objects are clustered into two leaf nodesN1, N2, whose VBRs areN1V = {−2, 1,−2, 1}
and N2V = { − 2, 0,−1, 2} (their directions are indicated using white arrows).

Figure 1b shows the MBRs at timestamp 1 (notice that each edge moves according to its velocity).

The MBR of a non-leaf entry always encloses those of the objects in its sub-tree, but it is not

necessarily tight. For example, N1(N2) at timestamp 1 is much larger than the tightest bounding

rectangle for a, b (c, d). A predictive window query is answered in the same way as in the R*-tree,

except that it is compared with the (dynamically computed) MBRs at the query time. For example,

the query qR at timestamp 1 in Fig. 1b visits both N1 and N2 (although it does not intersect them

at time 0). When an object is inserted or removed, the TPR-tree tightens the MBR of its parent

node.

2.2. TPR*-tree

The data structure and the query processing algorithm of the TPR*-tree [8] are similar to those of

the TPR-tree. A difference between them is the insertion algorithm. That is, the TPR-tree uses

the original insertion algorithm of the R*-tree without modification, while the TPR*-tree makes a

modification in order to reflect the mobility of objects.

In the insertion algorithm, the TPR-tree assesses the overall changes of the area and perimeter

of MBRs, and the overlapping regions among MBRs that are caused by this object insertion. By

choosing the tree-path where such changes remain smallest, the TPR-tree brings the least space

possible. This approach can be very efficient for indexing static objects as in the R*-tree, but it

cannot be a good solution to moving objects. Because the TPR-tree does not consider the time

parameter, it estimates the MBR changes only found at the insertion time without considering the

time-dependent sizes of the BRs. To resolve these omissions, the TPR*-tree revised the insertion

algorithm to reflect the characteristic of time-varying BRs, which result from the mobility of objects.

In the insertion algorithm, the TPR*-tree considers how much the BR will sweep the index space

from the insertion time to a specific future-time and chooses the insertion paths that the sweeping

region remains smallest. The sweeping region of a BR from time t1 to t2 (t1 < t2) is defined to be

an index space area that is swept by the BR expanding during the time interval (t2 − t1). Fig. 2

shows an example of a sweeping region of an object o in the TPR*-tree. At the initial time 0, we

have the BR of O is OR(0). Until time 1, the BR of O is OR(1). Sweeping region of o from time 0

to 1 is the gray-filled polygon below.

With this strategy, the TPR*-tree may consume more CPU time for inserts than the TPR-tree.

However, it greatly improves the overall query performance (up to five times [8]) for the future-time

queries because it compacts the MBRs.

2.3. Research Motivation

In the TPR*-tree, the VBR stores the maximum and minimum velocity of moving objects in the

MBR. So the MBR enlarges at a fast and continuous rate. It leads to a large empty space and causes

overlaps among nodes’ MBRs as time goes on (see Fig. 1b above). It may reduce the performance of

query processing because of increasing number of node accesses that require for query processing (qR
in Fig. 1b above has unnecessary node access to N1 and N2). To resolve this problem, the TPR*-tree

46 NGUYEN TIEN PHUONG, DANG VAN DUC

4 NGUYEN TIEN PHUONG, DANG VAN DUC

Figure 2: Sweeping region of moving object o (from time 0 to time 1)

With this strategy, the TPR*-tree may consume more CPU time for inserts than the TPR-tree. However,

it greatly improves the overall query performance (up to five times [8]) for the future-time queries because

it compacts the MBRs.

2.3 Research Motivation

In the TPR*-tree, the VBR stores the maximum and minimum velocity of moving objects in the MBR. So

the MBR enlarges at a fast and continuous rate. It leads to a large empty space and causes overlaps among

nodes’ MBRs as time goes on (see fig. 1b above). It may reduce the performance of query processing

because of increasing number of node accesses that require for query processing (qR in fig. 1b above has

unnecessary node access to N1 and N2). To resolve this problem, the TPR*-tree executes MBR adjustment

on a node whenever object’s velocity or position have explicitly changed.

(a) Time 0 (b) Time 1

Figure 3: MBR R at the initial time 0 and its expansion R1 at time 1

Fig. 3 illustrates the benefit of the MBR adjustment. In Fig. 3a, a MBR is created or updated to capture

the objects of O1 and O2 at time 0 and its MBR is denoted by rectangle R. Fig. 3b depicts the positions of

Figure 2: Sweeping region of moving object o (from time 0 to time 1)

executes MBR adjustment on a node whenever object’s velocity or position have explicitly changed.

4 NGUYEN TIEN PHUONG, DANG VAN DUC

Figure 2: Sweeping region of moving object o (from time 0 to time 1)

With this strategy, the TPR*-tree may consume more CPU time for inserts than the TPR-tree. However,

it greatly improves the overall query performance (up to five times [8]) for the future-time queries because

it compacts the MBRs.

2.3 Research Motivation

In the TPR*-tree, the VBR stores the maximum and minimum velocity of moving objects in the MBR. So

the MBR enlarges at a fast and continuous rate. It leads to a large empty space and causes overlaps among

nodes’ MBRs as time goes on (see fig. 1b above). It may reduce the performance of query processing

because of increasing number of node accesses that require for query processing (qR in fig. 1b above has

unnecessary node access to N1 and N2). To resolve this problem, the TPR*-tree executes MBR adjustment

on a node whenever object’s velocity or position have explicitly changed.

(a) Time 0 (b) Time 1

Figure 3: MBR R at the initial time 0 and its expansion R1 at time 1

Fig. 3 illustrates the benefit of the MBR adjustment. In Fig. 3a, a MBR is created or updated to capture

the objects of O1 and O2 at time 0 and its MBR is denoted by rectangle R. Fig. 3b depicts the positions of

(a) Time 0

4 NGUYEN TIEN PHUONG, DANG VAN DUC

Figure 2: Sweeping region of moving object o (from time 0 to time 1)

With this strategy, the TPR*-tree may consume more CPU time for inserts than the TPR-tree. However,

it greatly improves the overall query performance (up to five times [8]) for the future-time queries because

it compacts the MBRs.

2.3 Research Motivation

In the TPR*-tree, the VBR stores the maximum and minimum velocity of moving objects in the MBR. So

the MBR enlarges at a fast and continuous rate. It leads to a large empty space and causes overlaps among

nodes’ MBRs as time goes on (see fig. 1b above). It may reduce the performance of query processing

because of increasing number of node accesses that require for query processing (qR in fig. 1b above has

unnecessary node access to N1 and N2). To resolve this problem, the TPR*-tree executes MBR adjustment

on a node whenever object’s velocity or position have explicitly changed.

(a) Time 0 (b) Time 1

Figure 3: MBR R at the initial time 0 and its expansion R1 at time 1

Fig. 3 illustrates the benefit of the MBR adjustment. In Fig. 3a, a MBR is created or updated to capture

the objects of O1 and O2 at time 0 and its MBR is denoted by rectangle R. Fig. 3b depicts the positions of

(b) Time 1

Figure 3: MBR R at the initial time 0 and its expansion R1 at time 1

Fig. 3 illustrates the benefit of the MBR adjustment. In Fig. 3a, a MBR is created or updated to

capture the objects of O1 and O2 at time 0 and its MBR is denoted by rectangle R. Fig. 3b depicts

the positions of those objects after the time interval of 1. Objects O1 and O2 moved closely to each

other. If a MBR adjustment arises at time 1 because of updating a node, a smaller MBR will be

available (R′ in Fig. 3b). In contrast, the predicted MBR will become a larger rectangle (R1 of Fig.

3b). Therefore, the empty space of R1 − R′ can be eliminated. In other words, some unnecessary

node access to the area of R1 −R′ can be eliminated in the near future.

The MBR adjustment is a solution to better performance, but its execution is only fired up while

having update operations. That is, the TPR*-tree cannot adjust the MBR of a node N, if no indexed

object in N changes its location or velocity (due to disconnected). Otherwise, the size of empty space

in node N enlarges continuously for a long time, if N is a node without updates. Therefore, if query

processes frequently searches into a sub-tree with rare updates, their response times will get longer.

To overcome such a problem, a new method with a new tree based on TPR*-tree is proposed, named

as DO-TPR*-tree, enabling the query process to do the MBR adjustment in an efficient manner.

DO-TPR*-TREE: A DENSITY OPTIMAL METHOD FOR TPR*-TREE 47

3. THE PROPOSED METHOD

In this section, a new method for improving the query performance in the TPR*-tree is proposed.

At first, the technique is presented in section 3.1. Then section 3.2 shows the detailed algorithm.

3.1. Method Description

In this section, the technique for the proposed method is described. Denote P is a query process, N
is a leaf node that P reached and Tuj and Tuj+1 are the jth and the (j+1)th update times when the

MBR adjustments occur on N , respectively. Assuming that there are kuser queries accessing N in

[Tuj , Tuj+1] and P , is the ith query process, happens to arrives at N during the period from Tuj to

Tuj+1 . Denote the user query having released P by Qj,i, that is, Qj,i is the ith user query accessing

N . Let Tqj,i be the access time of Qj,i to N resulting in an arrival sequence as below.

Tuj < Tqj,i < Tqj,2 < . . . < Tqj,k < Tuj+1

Because the MBR of Nenlarges continuously during [Tuj , Tuj+1], the user queries at Tqj,i (1 ≤
i ≤ k) will view the growing MBR of Nand thus the possibility of their misleading to N increases

during that interval. Note that if there is any query having an overlap between its target query region

and the empty space of N , then the query will uselessly access Nbecause of misleading.

With the observation above, it is now back to the situation when the query process of Qj,i arrives

at N . If this process is able to do its MBR adjustment on Nat time Tqj,i , then some of the queries

Qj,x(i¡x ≤ k) can be prevented from being misled as to an empty space of N during [Tqj,i , Tuj+1].

In proposed method, the search algorithm will enforce firing up MBR adjustment on N , if the

condition, based on density optimal for the area of N ′s MBR, is satisfied at time Tqj,i . Two defini-

tions are introduced to be used in the following search algorithm.

Definition 1 (Node Density). Given N is a node of TPR*-tree. Node Density of N is the
number of entries per unit of the area of N ’s MBR. Node Density of Nat time T , denoted
DN (T), is the number of entries per unit of the area of N ’s MBR at time T .

DN (T) =
Num EN (T)

ABRN (T)
(1)

where, Num EN (T) is the number of the entries inside N at time T . If N is a leaf node,
Num EN (T)is the number of all moving objects inside N . ABRN (T) is the area of N ’s MBR
at time T .

Definition 2 (Node Density Optimal). Node Density of N at query time Tq is called optimal
if its ratio and Node Density of Nat the last update time Tu is smaller than a given number λ.

DN (Tq)

DN (Tu)
< λ (2)

where, DN (Tq) is Node Density of N at query time Tq, DN (Tu) is Node Density of N at
the last update time Tu, λ is a given number, depending on the specific application. In
the Vehicle Management System, λ should be h − 1, h is the tree height, according to our
evaluation.

48 NGUYEN TIEN PHUONG, DANG VAN DUC

In the search algorithm of our proposed method, Node Density Optimal condition (2) of N is

checked while user queries are being at time Tqj,i . If not, MBR adjustments arise on N . So, all

queries Qj,x(i < x ≤ k), that occur after time will be prevented from being misled as to an empty

space of N during [Tqj,i , Tuj+1]. From that, the number of useless node access to N can be reduced.

Thus, it improves the query performance of the TPR*-tree. When checking formula (2) the MBR

adjustment is called Density Optimal Adjustment (DOA). The tree in density method is based on

TPR*-tree, so it is called DO-TPR*-tree. Details about this DOA and the search algorithm for the

query process are presented in the next section.

3.2. Algorithm

Algorithms for node insertion and deletion are identical with the previous ones in [8]. According to

[8], the insertion algorithm first identifies the leaf N that will accommodate ewith the choose path
algorithm in line 3. If N is full, a set of entries, selected by pick worst, is removed from N and

re-inserted in line 7.

6 NGUYEN TIEN PHUONG, DANG VAN DUC

DN (T) =

 (1)

Where,

 Num_EN(T) is the number of the entries inside N at time T. If N is a leaf node, Num_EN(T)

is the number of all moving objects inside N

 ABRN(T) is the area of N’s MBR at time T

DEFINITION 3.2 (Node Density Optimal): Node Density of N at query time Tq is called optimal if its

ratio and Node Density of N at the last update time Tu is smaller than a given number λ.

< λ (2)

Where,

 is Node Density of N at query time Tq

 is Node Density of N at the last update time Tu

 λ is a given number, depending on the specific application. In the Vehicle Management

System, λ should be h-1, h is the tree height, according to our evaluation.

In the search algorithm of our proposed method, Node Density Optimal condition (2) of N is checked

while user queries are being at time
. If not, MBR adjustments arise on N. So, all queries Qj,x(i<x≤k),

that occur after time
 will be prevented from being misled as to an empty space of N during [

,

]. From that, the number of useless node access to N can be reduced. Thus, it improves the query

performance of the TPR*-tree. When checking formula (2) the MBR adjustment is called Density Optimal

Adjustment (DOA). The tree in density method is based on TPR*-tree, so it is called DO-TPR*-tree.

Details about this DOA and the search algorithm for the query process are presented in the next section.

3.2 Algorithm

Algorithms for node insertion and deletion are identical with the previous ones in [8]. According to [8], the

insertion algorithm first identifies the leaf N that will accommodate e with the choose path algorithm in

line 3. If N is full, a set of entries, selected by pick worst, is removed from N and re-inserted in line 7.

Figure 4: Insert algorithm

Algorithm Insert (e)
Input: e is the entry to be inserted
Output: Inserted e into Node N
1. re-insertedi= false for all levels 1≤ i ≤ h−1 (h is the tree height)
2. Initialize an empty re-insertion list Lreinsert
3. Invoke Choose Path to find the leaf node N to insert e
4. Invoke Node Insert (N, e)
5. For each entry e' in the Lreinsert
6. Invoke Choose Path to find the leaf node N to insert e'
7. Invoke Node Insert (N, e)
8. End for

Algorithm End.

Figure 4: Insert algorithm

A future-time query from a user is expressed in the form of (QBR, QT). Here, QBR denotes

the query target region (includes MBR and VBR) in the 2-dimensional query space, and QT is the

target query time interval of that query (includes start time and end time). The future-time query

is answered by predicting the moving objects that will pass QBR during the interval of QT . The

proposed search algorithm is given in Fig. 4, where it returns a set of object ids satisfying a query of

(QBR, QT).

The algorithm searches down for the leaf level from the root node. During the downward search,

the search process finds its search paths by computing the BRs from each entry e in the internal nodes.

In the meantime, the process will cache the encountered BR data as in line 11. When arriving at a

leaf node in line 5, this algorithm selects a group of object id’s satisfying the given query condition,

and return them in line 21.

Theorem 1 (Algorithm DOA Search is correct). Algorithm DOA Search returns the com-
plete set of intersecting valid objects.

Proof. Every node of the tree is traversed. This can be seen in line 3 (every leaf node) and
in line 9 (every non-leaf node) (i).

DO-TPR*-TREE: A DENSITY OPTIMAL METHOD FOR TPR*-TREE 49

DO-TPR*-TREE: A DENSITY OPTIMAL METHOD FOR TPR*-TREE 7

A future-time query from a user is expressed in the form of (QBR, QT). Here, QBR denotes the query

target region (includes MBR and VBR) in the 2-dimensional query space, and QT is the target query time

interval of that query (includes start time and end time). The future-time query is answered by predicting

the moving objects that will pass QBR during the interval of QT. The proposed search algorithm is given in

Fig. 4, where it returns a set of object ids satisfying a query of (QBR, QT).

Figure 5: Proposed Search algorithm for the query process

The algorithm searches down for the leaf level from the root node. During the downward search, the

search process finds its search paths by computing the BRs from each entry e in the internal nodes. In the

meantime, the process will cache the encountered BR data as in line 11. When arriving at a leaf node in

line 5, this algorithm selects a group of object id’s satisfying the given query condition, and return them in

line 21.

Algorithm DOA_Search(QBR, QT, rootNode)

Input: (QBR, QT) = future-time query answered.

rootNode= address to the root of a sub-tree being searched.

Output:SBR= objects’ ids satisfying (QBR, QT).

1. IF rootNode is a leaf node THEN

2. SBR←; // initialization

3. FOR EACH moving object O in rootNode

4. IF OIN (QBR, QT) THEN //O is expected computed to be positioned d in QBR within interval
QT

5. SBR= SBR O.id;

6. END IF

7. END FOR

8. ELSE // rootNode is a non-leaf node

9. FOR EACH index entry e in rootNode

10. IF OVERLAP(e.MBR,QBR,QT) THEN // if there is an overlap between the MBR of e and QBR
within QT

11. Cache(e); // cache the content of e into the memory buffer

12. nodeDensity = Cal_NodeDensity(e.childNode); // calculate the Node Density of the
child node pointed to by e

13. λ = h-1; // h is the tree height

14. IF (nodeDensity>= λ) THEN // an DOA execution is needed on childNode

15. Adjust (e.MBR, e.VBR); // adjust the MBR and VBR data of e

16. END IF

17. childSBR←DOA_Search(QBR, QT, childNode);

18. SBR← SBRchildSBR;

19. END IF

20. END FOR

21. RETURN SBR

22. END IF

Algorithm End.

Figure 5: Proposed Search algorithm for the query process

For every leaf node traversed, all of its objects which locate in query region at query time
interval are inserted into the result set of the corresponding query. This can be seen from
line 4 to 5 (ii).

For every non-leaf node traversed, all of its entries which intersect at least one of the
range queries arerecursive searched to find the satisfy leaf nodeand inserted into the result
set of the corresponding query (iii).

The algorithm terminates when all the nodes in the tree are traversed (iv).

From (i), (ii), (iii) and (iv) we have proved that DOA Search algorithm is correct.

We next estimate the performance in our method according to the range query size and
compare it with the original TPR*-tree.

4. EXPERIMENT

In this section, the query processing performance between this proposed method and the original

TPR*-tree is compared. From the experiment comparisons, the performance advantages of the pro-

posed method over the TPR*-tree are shown.

4.1. Experiment data

The experimental datasets is generated by using an algorithm same as GSTD (Generating Spatio-

Temporal Datasets) [10], a well-known data generator used in many previous researches on perfor-

50 NGUYEN TIEN PHUONG, DANG VAN DUC

mance evaluations of the index schemes for moving objects [11, 12]. With this algorithm, four datasets

include [1000, 10000, 50000, 100,000] moving objects are generated with a random velocity each in

the range of [-50, 50] and maximum velocity changes in each update to 5. Those objects are simulated

to move around within the normalized 2-dimensional query space of the size 0 by 10,000. In that

query space, an object is represented as a point and its initial position is uniform distribution.

Data file was created as a text file containing the records of the object. The objects were randomly

generated at time points t0 (including identification, minimum bounding rectangle, velocity, reference

time of object). At time t1, t2, t3,... random number of objects are generated with velocity changes.

Detail of the record is described as a structure below:

struct MovingObject

{

int oi; // unique identification of object

float mbr[4]; // MRB of object

float vbr[4]; // VRB of object

float re; // reference time at which the object

is inserted or updated

}

In the structure, oid is the unique identification of object, mbr an array with 4 elements describe

the location and size of the object, vbr an array with 4 elements describe the edges’ velocities of the

mbr and ref a value for the time at which the object was inserted or updated. Sample data are shown

in Table 1 below.

oid X1 X2 Y1 Y2 Vx1 Vx2 Vy1 Vy2 ref time

0 3383.691 3383.713 6253.745 6253.767 -13.148 -13.148 -46.418 -46.418 0

1 1463.102 1463.125 1174.597 1174.619 29.806 29.806 18.544 18.544 0

2 699.142 699.164 1529.711 1529.734 -24.100 -24.100 4.767 4.767 0

3 8125.313 8125.335 747.351 747.373 -24.063 -24.063 38.967 38.967 0

4 1899.701 1899.724 7856.583 7856.605 11.642 11.642 5.390 5.390 0

. . .

520 1721.404 1721.427 7964.688 7964.710 9.970 9.970 -5.254 -5.254 1

521 9796.890 9796.912 1979.648 1979.671 27.163 27.163 -26.776 -26.776 1

522 6352.922 6352.944 9722.270 9722.292 49.548 49.548 -25.330 -25.330 1

. . .

850 1960.613 1960.635 4836.069 4836.092 -22.374 -22.374 -36.063 -36.063 3

851 6955.288 6955.311 4882.243 4882.265 -1.135 -1.135 -10.259 -10.259 3

. . .

Table 1: Sample data of moving objects

The experiments are performed on a Windows 7 equipped with a Pentium 4 processor of 2

DO-TPR*-TREE: A DENSITY OPTIMAL METHOD FOR TPR*-TREE 51

GHz and 1 GB of main memory. By comparing this method with the original TPR*-tree, its good

performance features will be analyzed.

4.2. Experiment Results

4.2.1. Effect of range query size

In the experiment, the average number of retrieved data, the average number of accessed node and

the query execution time are measured. In experiment, the size of QBR is [100, 100]. The last update

timestamp of the DO-TPR*-trees is 10. The tables below describe results of the future time queries

with the query time interval QT from 10 to [20,30,40,50] in each dataset.

QT Avg. data retrieves Avg.node access Total Time (seconds)

10-20 3,62 10,04 0,31

10-30 5,66 10,98 0,37

10-40 6,42 13,02 0,42

10-50 5,48 14,18 0,42

Table 2: The future time queries on DO-TPR*-tree of 1K Dataset

QT Avg. data retrieves Avg.node access Total Time (seconds)

10-20 47,12 34,74 1,3419

10-30 41,74 42,1 1,5522

10-40 52,4 47,62 1,9027

10-50 41,6 53,98 1,9928

Table 3: The future time queries on DO-TPR*-tree of 10 K Dataset

QT Avg. data retrieves Avg.node access Total Time (seconds)

10-20 225,12 82,82 5,06

10-30 233,70 102,08 6,40

10-40 254,14 119,48 8,92

10-50 288,00 133,26 11,33

Table 4: The future time queries on DO-TPR*-tree of 50 K Dataset

Its experimental results are depicted in Figures 6. The average number of retrieved data (Fig. 6a),

the average number of accessed node (Fig. 6b) and the query execution time (Fig. 6c) are given on

the vertical axes, while the future query time interval QT is shown on the horizontal axis. The

graphs show how the average number of retrieved data (Fig. 6a), the average number of accessed

node (Fig. 6b) and the query execution time (Fig. 6c) change with the expansion of the future query

time interval QT .

52 NGUYEN TIEN PHUONG, DANG VAN DUC

QT Avg. data retrieves Avg.node access Total Time (seconds)

10-20 473,32 128,04 12,83

10-30 493,52 153,60 19,64

10-40 485,58 174,10 24,18

10-50 475,28 197,40 28,23

Table 5: The future time queries on DO-TPR*-tree of 100 K Dataset

These experiment results show that the average number of accessed node and the query execution

time increase fast as the future prediction time goes farther (the size of QT increases).

4.2.2. Performance comparisons

In experiment, the performance of this method, DO-TPR*-tree is compared with the original TPR*-

tree. Its experimental results are depicted in figure 7, where the graphs show how the average number

of retrieved data (Fig. 7a), the average number of accessed node (Fig. 7b) and the query execution

time (Fig. 7c) change with the expansion of the future query time interval QT .

These experiment results show that the average numbers of retrieved data are the same but the

average numbers of accessed node and the query execution time of our method reduce by up to 30%.

Thus, this method is faster than the original method.

From the experiments, it has verified that this method is more effective than the original method

of TPR*-tree. In general, in the environment with much chance of DOA executions, with less update

rates or high query rates, the method can enhance query performance. Conversely, if there is no

chance to execute the DOA, this method will run the same as the TPR*-tree.

5. CONCLUSION

In this paper, the density optimal method for TPR*-tree, named as DO-TPR*-tree is introduced,

which improves the performance of the original TPR*-tree significantly by capability of executing the

MBR adjustment during query processing. The algorithm of the method is also proven to be correct

in this paper. Several experiments and performed comparative evaluation are carried out. In the

environment with less update rates (due to disconnected, typically in Vietnam by telecommunication

network infrastructure) or high query rates, this method can highly enhance query performance and

runs the same as the TPR*-tree in other cases. Consequently, compared to the TPR*-tree, the

proposed method is more suitable to process the future-time queries in all situations.

ACKNOWLEDGMENT

This research has been funded by the Research Project, VAST01.04/14-15, Vietnam Academy of

Science and Technology.

REFERENCES

[1] D. L. Lee, W. C. Lee, J. Xu, and B. Zheng, “Data management in location-dependent information
services: Challenges and issues,” IEEE Pervasive computing, vol. 3, no. 3, pp. 65–72, 2002.

DO-TPR*-TREE: A DENSITY OPTIMAL METHOD FOR TPR*-TREE 53

[2] O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang, “Moving objects databases: Issues and solu-
tions,” in Proceedings of the 10th International Conference on Scientific and Statistical Database
Management. IEEE, 1998, pp. 111–122.

[3] Y. N. Silva, X. Xiong, and W. G. Aref, “The RUM-tree: supporting frequent updates in R-trees
using memos,” The VLDB Journal, vol. 18, no. 3, pp. 719–738, 2009.

[4] Y. Li, B. He, Q. Luo, and K. Yi, “Tree indexing on flash disks,” in Proceedings of ICDE’09,
IEEE Computer Society. IEEE, 2009, pp. 1303–1306.

[5] A. Guttman, “R-trees: a dynamic index structure for spatial searching,” in Proceedings of ACM
SIGMOD84, vol. 14, no. 2. ACM, 1984, pp. 47–57.

[6] N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger, “The R*-tree: an efficient and robust
access method for points and rectangles,” in Proceedings of ACM SIGMOD Record, vol. 19, no. 2.
ACM, 1990, pp. 322–331.

[7] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez, “Indexing the positions of contin-
uously moving objects,” in Proceedings of ACM SIGMOD Record, vol. 29, no. 2. ACM, 2000,
pp. 331–342.

[8] Y. Tao, D. Papadias, and J. Sun, “The TPR*-tree: an optimized spatio-temporal access method
for predictive queries,” in Proceedings of the 29th International Conference on Very Large Data
Bases. VLDB Endowment, 2003, pp. 790–801.

[9] M. L. Yiu, Y. Tao, and N. Mamoulis, “The Bdual-Tree: indexing moving objects by space filling
curves in the dual space,” The VLDB Journal, vol. 17, no. 3, pp. 379–400, 2008.

[10] Y. Theodoridis, J. R. Silva, and M. A. Nascimento, “On the generation of spatiotemporal
datasets,” in Proceedings of the 6th International Symposium on Advances in Spatial Databases.
Springer, 1999, pp. 147–164.

[11] B. Lin and J. Su, “On bulk loading TPR-tree,” in Proceedings IEEE International Conference
on Mobile Data Management. IEEE, 2004, pp. 114–124.

[12] D. Pfoser, C. S. Jensen, Y. Theodoridis et al., “Novel approaches to the indexing of moving
object trajectories,” in Proceedings of the 26th International Conference on Very Large Data
Bases, 2000, pp. 395–406.

Received on August 27 - 2014
Revised on March 14 - 2015

	INTRODUCTION
	RELATED WORK AND RESEARCH MOTIVATION
	TPR-tree
	TPR*-tree
	Research Motivation

	THE PROPOSED METHOD
	Method Description
	Algorithm

	EXPERIMENT
	Experiment data
	Experiment Results
	Effect of range query size
	Performance comparisons

	CONCLUSION

