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Abstract. This paper addresses the synchronization of coupled chaotic Hindmarsh-Rose neu-

rons. A sufficient condition for self-synchronization is first attained by using Lyapunov method.

Also, to achieve the synchronization between two coupled Hindmarsh-Rose neurons when the self-

synchronization condition not satisfied, a Lyapunov-based nonlinear control law is proposed and its

asymptotic stability is proved. To verify the effectiveness of the proposed method, numerical simula-

tions are performed.
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1. INTRODUCTION

Neurons play an important role in processing the information in the brain. To understand the
behaviour of individual neurons and further comprehend the biological information processing
of neural networks, various neuronal models have been proposed [1–4]. One of the most
important models is the Hodgkin-Huxley model [1]. This model describes how action potentials
are initiated and propagated in the squid giant axon in term of time- and voltage-dependent
conductance of sodium and potassium. However, the Hodgkin-Huxley model consists of a
large number of nonlinear equations as well as parameters that makes it difficult to study
the behaviour of neuronal networks. The Hindmarsh-Rose (HR) model, a simplification of
the Hodgkin-Huxley and the Fitzhugh models, provides very realistic descriptions on various
dynamic features of biological neurons such as rapid firing, bursting, and adaptation [4].
Therefore, the HR model is getting more attention in the study of many features of the brain
activity. Individual neurons can exhibit irregular behaviour, whereas ensembles of different
neurons might synchronize in order to process biological information or to produce regular and
rhythmical activities [5–7]. Therefore, the study of synchronization processes for populations
of interacting chaotic neurons is basic to the understanding of some key issues in neuroscience.

Since the discovery of chaotic synchronization [8], various modern control methods have
been proposed for achieving the synchronization of chaotic systems in recent years [8–11]. In
neuroscience, most investigations have focused on the synchronization of two coupled neu-
rons, whose resolution aids in the understanding of the synchronization processes in neural
networks [12-31, and reference therein]. The synchronization between interacting neurons can
be classified into two types: the first pertains to natural coupling, in which the effects of the
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synapse types and internal noises on synchronization (self-synchronization) are issues [12–18];
the second pertains to artificial coupling, in which an explicit control signal is applied in order
to archive synchronization [18–31]. Following the first approach, many studies have confirmed
that when the intensity of an internal noise exceeds a critical value, the self-synchronization
can be achieved [12–14]. Other numerical results have shown that strong coupling can also
synchronize a system of two FitzHugh-Nagumo neurons [15–17]. Also, the effect of difference in
coupling strengths caused by the unidirectional gap junctions and the impact of time delay due
to separation of neurons on the coupled FitzHugh-Nagumo neurons has been investigated [18].
For the second approach, various methods using modern control theories have been proposed
to synchronize two chaotic neurons. In [15, 16, 19, 20], different Lyapunov based-nonlinear
feedback control laws were developed to synchronize two coupled chaotic FitzHugh-Nagumo
neurons under external electrical stimulation. The backstepping control technique was utilized
to achieve the synchronization in coupled FitzHugh-Nagomo neuron system [21] and in coupled
Hindmarsh-Rose neuron system [22]. Various sliding mode control laws were also proposed
to synchronize the coupled neuron system [23–26]. In order to synchronize coupled chaotic
neuron system with unknown or uncertain parameters, many adaptive and robust control laws
were also proposed [27–31]. Despite many control methods have been proposed to synchronize
coupled chaotic neurons, much detailed work remains to be done.

In this paper, the synchronization of two coupled chaotic HR neurons is studied. First, the
dynamic behaviour of a single HR neuron model is reviewed. Then, from the Lyapunov stabil-
ity theory, the author derives a sufficient condition of the coupling coefficient that guarantees
the self-synchronization. Lastly, for the case that the coupling coefficient does not satisfy
the self-synchronization condition, a Lyapunov-based nonlinear control law, which guarantees
the synchronization of two coupled HR neurons, is designed. The proposed control law can
be extended to cover the case that the external electrical signals applied to each neuron are
different. The main contributions of this paper are to:

(1) Provide a sufficient condition for self-synchronization of coupled chaotic HR neurons;
and

(2) Propose a new nonlinear control law for achieving the synchronization of coupled chaotic
HR neurons.

The paper is organized as follows: In Section 2, the dynamic behaviour of a single HR neuron
model under various applied currents is reviewed. In Section 3, a sufficient condition of the
coupling coefficient for self-synchronization of two coupled HR neurons is proposed. The
details of the design procedure of the nonlinear controller based on a Lyapunov function are
also provided in this section. Finally, conclusions are drawn in Section 4.

2. DYNAMICS OF A SINGLE HR NEURON

2.1. Time responses of a single HR neuron

The HR neuron model, a modification of the Hodgkin-Huxley and the FitzHugh models, is a
genetic model of the membrane potential which enables to simulate spiking, bursting and chaos
phenomena in biological neurons. This model is described by the following three-dimensional
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amplitude of the applied current I, various firing patterns can be observed as shown in Figure 1. When 

0=I , the membrane potential is constant, the neuron is in a resting state (Figure 1a). When 2.1=I , 

the neuron exhibits tonic spiking (Figure 1b). A regular bursting appears when the amplitude of the 

applied current is increased to 2.2=I  as shown in Figure 1c. Finally, a chaotic bursting of the HR 

neuron can be observed at 1.3=I  (Figure 1d). The x-z phase portraits for the cases 2.2=I  and 

1.3=I  are plotted in Figure 1e and Figure 1f, respectively. 
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Figure 1. Time responses of the membrane potential for various value of the stimulated current: (a) resting state 

when I = 0, (b) tonic spiking when I = 1.2, (c) regular bursting when I = 2.2, (d) chaotic bursting when I = 3.1, 

(e) the x-z phase portrait when I = 2.2, (f) the x-z phase portrait when I = 3.1.
Figure 1: Time responses of the membrane potential for various value of the stimulated current:
(a) resting state when I = 0, (b) tonic spiking when I= 1.2, (c) regular bursting when I= 2.2, (d)
chaotic bursting when I= 3.1, (e) the x−z phase portrait when I= 2.2, (f) the x−z phase portrait
when I= 3.1.

system of nonlinear first order differential equations.

ẋ =a x 2− x 3+ y − z + I ,

ẏ =c −d x 2− y ,

ż =r [b (x −k )− z ],

(1)

where x represents the membrane potential, y is the recovery variable associated with the
fast current of Na+ or K+ ions, z is the adaptation current associated with the slow current
of, for instance, Ca+ ions, I is the applied current that mimics the membrane input current
for biological neurons, and a , b , c , d , r , and k are constants. The values of these constant
parameters are chosen in such a way that the response of (1) is similar to that obtained
experimentally from the identified cell in Lymnaea visceral ganglion as reported by Hindmarsh
and Rose [4]. In this paper, the same values of these parameters are used; they are a = 3.0,
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b = 4.0, c = 1.0, d = 5.0, r = 0.006, and k = −1.56. By varying the amplitude of the applied
current I , various firing patterns can be observed as shown in Figure 1. When I = 0, the
membrane potential is constant, the neuron is in a resting state (Figure 1a). When I = 1.2,
the neuron exhibits tonic spiking (Figure 1b). A regular bursting appears when the amplitude
of the applied current is increased to I = 2.2 as shown in Figure 1c. Finally, a chaotic bursting
of the HR neuron can be observed at I = 3.1 (Figure 1d). The x − z phase portraits for the
cases I = 2.2 and I = 3.1 are plotted in Figure 1e and Figure 1f, respectively.

2.2. Bifurcation analysis of a single HR neuron

In order to convey more information about dynamic behaviours of a single HR neuron under
varying amplitude of the applied current, the bifurcation of the inter-spike intervals as a
function of the applied current I is investigated, as shown in Figure 2. Figure 2 reveals that
for small values of the applied currentI < 1.15, the neuron is in the quiescent state. When
the applied current is increased out of I = 1.15, the period-one firing patterns appear and this
behaviour is maintained for the current up to I ≈ 1.41. The period-two, -three, and -four firing
patterns can be determined in the regions of 1.41¶ I < 1.98, 1.98¶ I < 2.49, and 2.49¶ I < 2.75
respectively. It is obvious from Figure 2 that the HR neuron exhibits chaotic bursting for the
values of the applied current in the region of 2.75 ¶ I < 3.25. After that, the HR neuron
exhibits again the period-two and -one firings with 3.25¶ I < 3.32 and I ¾ 3.32 respectively.

In order to convey more information about dynamic behaviours of a single HR neuron under varying 

amplitude of the applied current, the bifurcation of the inter-spike intervals as a function of the 

applied current I is investigated, as shown in Figure 2. Figure 2 reveals that for small values of the 

applied current 15.1<I , the neuron is in the quiescent state. When the applied current is increased out 

of 15.1=I , the period-one firing patterns appear and this behaviour is maintained for the current up 

to 41.1≈I . The period-two, -three, and -four firing patterns can be determined in the regions of 

98.141.1 <≤ I , 49.298.1 <≤ I , and 75.249.2 <≤ I  respectively. It is obvious from Figure 2 that the 

HR neuron exhibits chaotic bursting for the values of the applied current in the region of 

25.375.2 <≤ I . After that, the HR neuron exhibits again the period-two and -one firings with 

32.325.3 <≤ I  and 32.3≥I  respectively. 
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Figure 2. Bifurcation diagram of the inter-spike intervals versus the stimulated current I in a single HR neuron 

model. 
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where ix , iy , and iz )2,1( =i  are the state variables and g is the positive coupling coefficient. 

Figure 2: Bifurcation diagram of the inter-spike intervals versus the stimulated current I in a
single HR neuron model.

3. SYNCHRONIZATION OF TWO COUPLED HR NEURONS

3.1. Sufficient condition for self-synchronization

Self-synchronization of two neurons due to the external noise has been investigated in [12–14].
Here, the author proposes a theoretical condition of the coupling coefficient for asymptotic
self-synchronization of two coupled HR neurons. Based on (1), a coupled HR neuron system
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can be described as

ẋ1 =a x 2
1 − x 3

1 + y1− z1− g (x1− x2) + I ,

ẏ1 =c −d x 2
1 − y1,

ż1 =r [b (x1−k )− z1],

ẋ2 =a x 2
2 − x 3

2 + y2− z2− g (x2− x1) + I ,

ẏ2 =c −d x 2
2 − y2,

ż2 =r [b (x2−k )− z2],

(2)

where xi , yi , and zi (i = 1, 2) are the state variables and g is the positive coupling coefficient.

Definition 3.1. The two coupled HR neurons (2) are said to be globally asymptotically synchro-
nized if, for all initial conditions x1(0), y1(0), z1(0) and x2(0), y2(0), z2(0), lim

t→∞
‖x1(t )− x2(t )‖= 0,

lim
t→∞





y1(t )− y2(t )




= 0, and lim
t→∞

‖z1(t )− z2(t )‖= 0

Let the error signals be defined as

ex = x2− x1, ey = y2− y1, ez = z2− z1, (3)

based on (2), the error dynamics, results in

ėx = [−2g +a (x1+ x2)− (x 2
1 + x1 x2+ x 2

2 )]ex + ey − ez (4)

ėy =−d (x2+ x1)ex − ey (5)

ėz = r b ex − r ez (6)

Equations (4)-(6) can be rewritten in a matrix form as follows.

ė= (A+M+P)e (7)

where e= [ ex ey ez ]T and

A=





−2g 1 −1
0 −1 0
r b 0 −r



 , M=





a (x1+ x2)− (x 2
1 + x1 x2+ x 2

2 ) 0 0
0 0 0
0 0 0





P=





0 0 0
−d (x1+ x2) 0 0
0 0 0





(8)

Next, let us define the following matrices

B=
1

2
(A+AT ) =





−2g 1
2

r b−1
2

1
2 −1 0
r b−1

2 0 −r



 (9)

N=
1

2
(M+MT ) =





a (x1+ x2)− (x 2
1 + x1 x 2+ x 2

2 ) 0 0
0 0 0
0 0 0



 (10)
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Q=
1

2
(P+PT ) =





0 −d (x1+x2)
2 0

−d (x1+x2)
2 0 0

0 0 0



 (11)

Fact 1 For a symmetric matrix S and any vector x, the following inequality holds:

xT Sx¶λmax(S)x
T x (12)

where λmax(S) is the maximum eigenvalue of the matrix S.

Theorem 3.1. The two coupled HR neurons will achieve self-synchronization with any initial
condition (x1(0), y1(0), z1(0), x2(0), y2(0), z2(0)) as t →∞, if there exists a positive scalar g such
that the following linear matrix inequality holds:





−2g +ξ 1
2

r b−1
2

1
2 −1+ξ 0
r b−1

2 0 −r +ξ



< 0 (13)

where ξ= [(2a +d ) +3κ]κ and κ=max
{
|x1| , |x2|}

Proof. Choose a Lyapunov function

V1 =
1

2
eT e¾ 0 (14)

The derivative of V1 along the trajectory of the system represented by (7) is

V̇1 =
1

2
(eT ė+ ėT e) =

1

2
eT (A+AT )e+

1

2
eT (M+MT )e+

1

2
eT (P+PT )e

=eT Be+eT Ne+eT Qe.
(15)

Using Fact 1 yields
V̇1 ¶ eT Be+λmax(N)e

T e+λmax(Q)e
T e. (16)

Here, note that
λmax(N) = a (x1+ x2)− (x 2

1 + x1 x2+ x 2
2 ) (17)

λmax(Q) =

�

�

�

�

−d (x1+ x2)
2

�

�

�

�

(18)

Since the system described by (2) has bounded trajectories, there exists a positive constant
κ, such that are |x1|¶ κ and |x2|¶ κ. Therefore, we have

λmax(N)¶ 2aκ+3κ2 (19)

λmax(Q)¶ dκ (20)

Using the inequalities (19) and (20) results in a new bound of V̇1 as follows.

V̇1 ¶ eT [B+ (2aκ+3κ2)I+dκI]e (21)

where I denotes the identity matrix. Therefore, if B+(2aκ+3κ2)I+dκI< 0, which is equivalent
to (13), the error dynamics described in (7) is asymptotically stable according to the Lyapunov
stability theory [32]. The proof is completed.
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In order to demonstrate the above theorem, the coupled HR neuron system (2) is simulated
for different values of the coupling coefficient g . The applied current for each neuron is I = 3.1.
As shown in Section 2 (forI = 3.1), individual neurons exhibit chaotic bursting behaviours. The
initial conditions for the first and second neurons are (x1(0), y1(0), z1(0)) = (0.3, 0.3, 3.0)
and (x2(0), y2(0), z2(0)) = (-0.3, 0.4, 3.2) respectively. When the coupling coefficient g =
0.2, self-synchronization between two coupled chaotic HR neurons cannot occur (see Figure
3). However, when we chose g sufficiently large to satisfy the above theorem (for example, g
= 3.0), self-synchronization can be achieved as shown in Figure 4.

Remark 3.1. The theorem gives only a sufficient condition for self-synchronization of two cou-
pled HR neurons. In other words, if the coupling coefficient g does not satisfy the above con-
dition, it does not mean that two coupled HR neurons cannot achieve self-synchronization. In
fact, numerical simulations revealed that there exists coupling coefficients that, whereas not
satisfying the above sufficient condition, are adequate for self-synchronization of two coupled
HR neurons.
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achieved as shown in Figure 4. 

Remark 1: The theorem gives only a sufficient condition for self-synchronization of two coupled HR 

neurons. In other words, if the coupling coefficient g does not satisfy the above condition, it does not 

mean that two coupled HR neurons cannot achieve self-synchronization. In fact, numerical 

simulations revealed that there exists coupling coefficients that, whereas not satisfying the above 

sufficient condition, are adequate for self-synchronization of two coupled HR neurons. 
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Figure 3. The responses of two coupled HR neurons with the coupling coefficient g = 0.2: (a) the x2-x1 phase 

portrait, (b) the synchronization errors ex = x2-x1 and ey = y2-y1. 
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Figure 4. The responses of two coupled HR neurons with the coupling coefficient g = 3.0: (a) the x2-x1 phase 

portrait, (b) the synchronization errors ex = x2-x1 and ey = y2-y1. 

3.2 Synchronization via nonlinear control

The coupled HR neuron system under control can be determined as 
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Figure 3: The responses of two coupled HR neurons with the coupling coefficient g = 0.2: (a)
the x2 x1 phase portrait, (b) the synchronization errors ex = x2 x1 and ey = y2 y1

3.2. Synchronization via nonlinear control

The coupled HR neuron system under control can be determined as







ẋ1 = a x 2
1 − x 3

1 + y1− z1− g (x1− x2) + I ,
ẏ1 = c −d x 2

1 − y1,
ż1 = r [b (x1−k )− z1],

(22)







ẋ2 = a x 2
2 − x 3

2 + y2− z2− g (x2− x1) + I +u ,
ẏ2 = c −d x 2

2 − y2,
ż2 = r [b (x2−k )− z2],

(23)

Equations (22) and (23) are considered as the master and the slave neuron descriptions
respectively. Aiming at designing a control law u where the master neuron (22) and the slave
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conditions for the first and second neurons are (x1(0), y1(0), z1(0)) = (0.3, 0.3, 3.0) and (x2(0), y2(0), 
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3.2 Synchronization via nonlinear control

The coupled HR neuron system under control can be determined as 
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Figure 4: The responses of two coupled HR neurons with the coupling coefficient g = 3.0: (a)
the x2 x1 phase portrait, (b) the synchronization errors ex = x2 x1 and ey = y2 y1

neuron (23) can be synchronized. With the error signals defined in (3), the error dynamics
become

ėx = [−2g +a (x1+ x2)− (x 2
1 + x1 x2+ x 2

2 )]ex + ey − ez +u , (24)

ėy =−d (x2+ x1)ex − ey , (25)

ėz = r b ex − r ez . (26)

Define state-dependent terms in (24) and (25) as follows.

h1(x1, x2, ex ) = [a (x2+ x1)− (x 2
2 + x1 x2+ x 2

1 )]ex , (27)

h2(x1, x2) =−d (x1+ x2) (28)

Then, (24)-(26) are reduced to

ėx =−2g ex + ey − ez +h1(x1, x2, ex ) +u , (29)

ėy =h2(x1, x2)ex − ey , (30)

ėz =r b ex − r ez . (31)

The synchronization problem is replaced by determining a suitable control law u such
that the asymptotic stability of the error dynamics described in (29)-(31) at the origin can be
guaranteed.

Theorem 3.2. Two coupled HR neurons described in (22) and (23) will achieve the synchroniza-
tion for any initial condition (x1(0), y1(0), z1(0), x2(0), y2(0), z2(0)) as t →∞, if the following
control law is used:

u =−h1(x1, x2, ex )− [h2(x1, x2) +1]ey − (r b −1)ez (32)

Proof. Chose a Lyapunov function

V2 =
1

2

�

e 2
x + e 2

y + e 2
z

�

¾ 0 (33)
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The derivative of V2 is given by

V̇2 =−2g e 2
x − e 2

y − r e 2
z + ex ey + (r b −1)ex ez +h2(x1, x2)ex ey +h1(x1, x2, ex )ex +uex . (34)

Substituting (32) into (34) yields

V̇2 =−2g e 2
x − e 2

y − r e 2
z ¶ 0 (35)

According to Lyapunov theory [32], the asymptotic stability at the origin of (29)-(31) holds,
which is equivalent to the fact that two coupled HR neurons described in (22) and (23) are syn-
chronized. The proof is completed.

To demonstrate the effectiveness of the proposed control law, numerical simulations are
performed. Here, we choose the applied current I = 3.1 and the coupling coefficient g = 0.2
such that individual neurons are chaotic bursting and the self-synchronization of two coupled
HR neurons cannot occur (as shown in Figure 3). The initial conditions of the master and the
slave neurons were chosen as (x1(0), y1(0), z1(0)) = (0.3, 0.3, 3.0) and (x2(0), y2(0), z2(0)) =
(-0.3, 0.4, 3.2) respectively. The total simulation time is set to t = 1000. The control law in
(32) is applied at time t = 500. As shown in Figure 5b, the synchronization errors between
the master and the slave neurons, ex = x2−x1 and ey = y2− y1, converge asymptotically to zero
within a finite period of time after applying the control law. The phase portraits x2−x1 before
(dashed line) and after (solid line) the application of the control law are plotted in Figure 5a.
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Figure 5. The responses of two coupled HR neurons before and after the application of the control law in (32): 

(a) the x2-x1 phase portrait, (b) the synchronization errors ex = x2-x1 and ey = y2-y1. 

Remark 2: When the applied currents on two neurons are different, say 1I  for the master neuron (22) 

and 2I  for the slave neuron (23), the control law is extended as follows. 
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Figure 5: The responses of two coupled HR neurons before and after the application of the con-
trol law in (32): (a) the x2 x1 phase portrait, (b) the synchronization errors ex = x2 x1 and ey =
y2 y1

Remark 3.2. When the applied currents on two neurons are different, say I1 for the master neu-
ron (22) and I2 for the slave neuron (23), the control law is extended as follows.

u =−h1(x1, x2, ex )− [h2(x1, x2) +1]ey − (r b −1)ez − (I2− I1). (36)

Figure 6a shows the time responses of two neurons’ membrane potentials when I1 = 2.2
and I2 = 3.1. Before applying the control law, the master neuron exhibits a regular bursting
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behaviour (solid line) while the slave neuron is chaotic bursting (dashed line). At time t =
500, we apply the control law in (36), the response of the slave neuron switches immediately
from the chaotic bursting behaviour to the regular busting behaviour. The synchronization
errors ex = x2− x1 and ey = y2− y1 are shown in Figure 6b.
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Remark 2: When the applied currents on two neurons are different, say 1I  for the master neuron (22) 

and 2I  for the slave neuron (23), the control law is extended as follows. 
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Figure 6: The responses of two coupled HR neurons before and after the application of the con-
trol law in (36) when I1 = 2.2 and I2 = 3.1: (a) the membrane potentials x1 and x2, (b) the syn-
chronization errors ex = x2 x1 and ey = y2 y1

4. CONCLUSIONS

In this paper, the synchronization problem of two coupled chaotic HR neurons is investigated.
From the achievement of the self-synchronization of two chaotic neurons, a sufficient condition
of the coupling coefficient is derived. The results show that the self-synchronization occurs
with the coupling coefficient larger than a critical value satisfying (13). Also, in case where the
condition for self-synchronization not satisfied, a Lyapunov-based nonlinear control law that
guarantees the synchronization of two coupled chaotic neurons is proposed. Finally, numerical
simulations are performed, confirming the effectiveness of the proposed method.
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