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Abstract. Routing holes in sensor network are regions without operating nodes. They may occur due

to several reasons, including cases caused by natural obstacles or disaster suffering areas. Determining

the location and shape of holes can help monitor these disaster events (such as volcano, tsunami, etc.)

or make smart, early routing decisions for circumventing a hole. However given the energy limit of

sensornets, the determination and dissemination of the information about the exact shape of a large

hole could be unreasonable. Therefore, there are some techniques to approximate a hole by a simpler

shape. In this paper, the authors analyze and compare two existing approximation approaches that

are considered as the most suitable for the sensor network, namely the grid-based and the convex-

hull-based approaches. And a new algorithm of the grid-based approach is also introduced. The

performances of all the mentioned algorithms are under analysis and evaluation in both theoretical

and experimental perspectives. The findings show that grid-based approach has advantages in saving

network energy and providing a finer image of the hole while the convex hull approach is better for

making shorter hole-bypassing route but not much.
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1. INTRODUCTION

Wireless sensor networks (WSN) have a wealth of applications. Especially, they are widely used in

monitoring and investigating certain landscapes or environments which may be too large or remote for

deploying wired network infrastructure or of too harsh conditions that are not suitable for traditional

surveillance by human beings. Different from early wired networks, sensor networks can contain a

large number of nodes which may be up to hundreds or even thousands. Furthermore, the sensor nodes

are only equipped with very limited power source and almost non-rechargeable. These characteristics

make it hard to maintain the frequent operations of these network nodes, the life of which can be cut

short for demanding workload. The failure of nodes due to energy exhaustion or physical destruction

may lead to the occurrence of holes, i.e. the regions where the nodes have died out and hence, no

longer participated in the network communication. Besides, the holes in sensor networks can also be

formed either due to the presence of some geographical obstacles such as buildings, lakes or because

of the failure of sensor nodes due to external destroying (e.g. fire, earthquake, etc).

Locating and marking the hole is an well-known problem [22] with two important applications

in environment monitoring and geographic routing. First, sensor networks have been introduced to

monitor and control natural disasters. The emergence of a hole usually brings certain information

about certain important events in the area such as the occurrence of a disaster or the emergence of

a new obstacle. Naturally, sensor networks can be considered useful tools to monitor the landscape

of the disaster area, especially the border of the suffering area.
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Second, the study of geographical routing is a very active area (a brief review is in section 1.2.)

where locating holes is an important issue since the forwarding packets are not possible inside a hole.

The hole location is usually determined by the location of the boundary nodes. Once this hole info is

determined it can be disseminated to the surrounding area to help improve the routing mechanism.

Knowing the presence of a hole in advance can certainly help the nodes to find efficient routes going

around the hole. Figure 1 illustrates this using a scenario with a large hole which has a rough face.

Fig. 1(a) shows an unnecessarily long route which could be formed as without the awareness about

the hole 1. While fig. 1(b) shows a much shorter route which could be formed by using the hole info

(such routes are usually called escape or detour routes). Thus, knowing about a large hole in advance

can help to find shorter route and also to avoid concentrating traffic around the hole boundary (more

in section 1.2.).

The hole approximation problem can be seen as a natural extension from the hole locating prob-

lem. As sensor networks are usually deployed in large scale, the size of a hole can also be very large.

Therefore the determining and/or disseminating the complete information of this hole’s boundary

could be unaffordable, given the power limit of sensor nodes. More specifically, the above mentioned

approach of geographical routing using hole awareness has a crucial drawback. That is, the network

lifetime could be significantly reduced because of extra resource consumed by the task of disseminat-

ing and storing the information about the hole boundary, the cost of which is directly proportional

to the size of data needed to describe this area. Several mechanisms have been proposed to deal with

this problem, where the common approach is to approximate the hole by a somehow simpler shape.

Thus, the problem of approximating the hole shape can have a significant importance.

Applied in a geographic routing scheme, a good hole approximation (HA) algorithm does not

only improve the routing process, especially in sensor networks with large holes, but also helps to

save communication and energy, and thus prolongs the sensor network life. In the opposite, a poor

HA algorithm with a large approximation error can lead to longer hole-bypassing routes, i.e. wasting

energy for communicating. Figure 1(c) illustrates an example of this. In this example, the hole is

approximated by a covering circle which can make the routing path become longer because of the big

difference between the hole area and the approximate area (the circle). Thus, the approximate shape

(of the approximate area) should be chosen as simple as possible to make compact the description

of the approximate area info. However, if the approximate shape chosen is too simple and rigid,

the difference between the hole and the approximate area could be large, significantly increases the

bypassing route length. This trade-off between these network performance factors is the philosophy

that influences our analysis framework on HA algorithms.

In our opinion, hole approximation is also important in monitoring disaster area. When a disaster

has just struck, initially, the border of the suffering area is fast developing; thus, to monitor the size

and shape of this area by using sensor network, a HA algorithm must be fast and efficient.

Thus, the hole approximation problem is well motivated and the authors believe that the work

can be an useful initial contribution in the study of constructing and analyzing HA algorithms.

1.1. Contribution

In this paper, a study is conducted on this hole approximation problem in an analysis approach where

both theoretical and simulation results are provided. To provide a rigorous evaluation framework on

1Traditionally, the approach of mixing greedy and perimeter routing is used (e.g. the GPSR protocol in [11]) and hence,
the routes can be unnecessarily long if the hole boundary is rough. This also causes heavy traffic concentrating on the hole
boundary.
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(a) A long route traditionally formed
(e.g. GPSR) – without the awareness
about the hole

(b) A short route cleverly formed by
using the hole info

(c) A not-so-short route, possibly
formed due to a poor hole approxi-
mation

Figure 1: Comparing possible routing paths, avoiding a large hole

HA algorithms, the different performance factors are used: i) the approximation time, ii) the size in

bits of the data used for describing the approximate polygon, ii) the approximation error in area, and

iv) the routing path stretch which shows how effective an HA algorithm can be for use in geographic

routing. While the first two factors show the general efficiency of a given HA algorithm in term of how

much time and energy can be consumed, the following two factors show how suitable the algorithm

can be per application, i.e. for monitoring the hole (as a disaster surface) or for making escape routes

in geographic routing.

The detailed contributions are:

• Proposal of a new off-line algorithm (opposing to the existing on-line algorithm) for the grid-

based approximation approach [15].

• Initial results in comparing the two main approaches, approximating by a convex polygon [23]

and by a grid-based one [15]. Most significantly, an upper bound on the ratio of routing stretch

of the two is given.

• Simulation results comparing all the three considered algorithms: the convex hull based algo-

rithm, the online grid-based one and the off-line grid-based one (proposed in this paper).

The paper is organized as follows: Section 2 briefly reviews the existing approximation approaches.

A new off-line grid-based algorithm is proposed in section 3. Section 4 describes the framework to

evaluate and compare hole approximation approaches. Section 5 and 6 shows the results for comparing

the grid-based and convex hull based hole approximation algorithms by both theoretical analysis and

experiments. The paper is concluded in section 7.

1.2. More related work

Routing hole is a critical issue in geographic routing in wireless networks, an active research area with

more than a decade of extensive study. Here, data packets are forwarded based on the positional in-

formation of the sensor nodes, assuming that they are aware of their physical locations (e.g. equipped

with GPS devices). Early approaches are based on greedy forwarding where a packet is forwarded

to the 1-hop neighbor that is closest to the destination. However, this approach can lead into the

local minimum phenomenon on the face of a hole (i.e. no neighbor closer to the destination than

the current node). To bypass such a hole, traditional proposals appropriately switch between greedy

and perimeter forwarding modes, as in the GPSR protocol [11] and several follow-ups [3, 14, 13, 12].

However as many authors have pointed, the traffic concentration on the face of a hole can gradually
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degrades the network performance. Subramanian et al. [18] show that GPSR and the likes could

cause the network throughput capacity [9] to significantly drop from Θ̃(1/
√
n) to just O(1/n) in a

scenario where a hole occupies a large part of the network area.

A number of proposals and techniques have been created to deal with the problem of locating

network holes [5, 11, 3, 7, 19]. In these, holes are determined by different ways such as ones based on

planar graphs [11, 3, 19] or some other geographic approaches [5, 7]. This hole location info then can

be used for making escape route to go around the hole efficiently (possibly through disseminating this

hole info to the surrounding area). As mentioned above, the size of a hole can be significant large;

thus, the determination and/or dissemination of this hole boundary information could be unaffordable

given the power limit of sensor nodes. Thus the HA problem naturally emerges.

Although shape approximation of the holes in sensor networks has not been studied yet as an

independent problem, a number of approximation-based techniques have been attempted in dealing

with holes. These techniques target better mechanisms and algorithms for geographic routing in

wireless sensor networks. In an often used simple approach, the hole is approximated by an area which

has a rather simpler, common shape such as an ellipse [20], a circle [24, 6, 8, 21] or a hexagon [24, 10],

etc. (which is the minimum one in this shape that can fully cover the hole). These common shapes

are considered to use as a too simplistic approach, which could results in shortcomings such as large

approximation error as well as large routing path stretch (although it could come good in term of short

approximation time, and small spreading data size). Therefore the authors do not include this simple

shape approach in this effort to fully evaluate and compare the apparently stronger approximation

algorithms. The two selected approaches we select to focus on will be discussed closely in section 2..

Finding a convex k-gon enclosing a given n-gon that has the minimum perimeter is a challenging

problem in computational geometry which still remains open [1, 2, 4, 17, 16]. In [17], De Pano pro-

posed to compute the minimum perimeter triangle enclosing a given convex polygon, using an O(n3)
algorithm, which was also followed by several improved ones and finally, an linear-time algorithm

by Bhattacharya et al. [2] (triangle is also the only case known for linear-time computable). Quite

recently, an O(kn3/ε) algorithm has been proposed [16] to compute a convex k-gon enclosing n-gon.

2. HOLE APPROXIMATION APPROACHES

Amongst many such existing approximation-related techniques, the convex hull and the grid-based
approach are the most suitable for the sensor network as their simplicity and efficiency.

In the convex hull approach, the idea is to find a convex hull which can cover the hole. The

convex polygon approach (for used in sensor networks) is proposed in [23] where the authors try to

improve the routing mechanism based on the visibility graph, originally proposed in [19]. In these

papers, holes are considered as obstacles that hinder the visibility between network nodes and thus,

using convex polygon for hole approximation is perfectly justified.

In the grid-based approach [15], the main idea is to approximate a hole’s boundary with a
simpler polygon whose edges are aligned with a given square grid, and thus achieve a grid-based

polygon which is easy to describe, convey information and disseminate to the surroundings.

In both above approaches, the size of the approximate polygon (number of vertices) can be

requested as a prior condition, and the approximate polygon should be the minimum cover with

such a requested size. In a quick comparison, the grid-based approach tries to closely approximate a
hole, while the convex polygon approach tries to capture the factor of visibility obstacle that a hole
can create for any given pair of source-destination nodes. Thus, in theory, the grid-based approach

would give a finer image of the hole boundary while the convex hull approach would be more efficient
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(a) An example of convex
hull based A-polygon

(b) Determining the approxi-
mate vertex

(c) Vertices reduction

Figure 2: Convex hull based hole approximation algorithm (figure from [23])

for supporting geographic routing. Below, for short notation A-polygon is often used in replacement

of approximate polygon.

In the following we will briefly introduce these two approaches are briefly introduced. As men-

tioned above, the two approaches under analysis share the feature of generality in that they allow

to compute A-polygons for the number of the vertices as a prior given value. They both start with

the full hole boundary polygon (computed by using e.g. the BoundHole algorithm in [5]) and then

using a proper process to trim off some vertices to meet the prior required vertex number as well as

the required shape property (complex vs. grid-based). Both use certain optimization techniques to

minimize the precision loss due to this trimming process. By using this feature of limiting the vertex

number both approaches gain in the reduction of hole shape information, and thus energy saving in

the dissemination phase.

More specifically, these hole approximation schemes contain two processes: approximation process
and simplification process. The former is to approximate the hole by a simpler polygon and the

latter is to trim-off the A-polygon so that the number of the vertices does not exceed a predefined

threshold. These two processes can be conducted somehow simultaneously. Both approaches also

use this common mechanism: a special message, which called the measuring packet, is initiated and

forwarded along the hole boundary for collecting info on the boundary nodes. Let call it the M-
packet for short. When the M-packet arrives at any intermediate node, this current node performs

two operations belonging to mentioned processes respectively and stores the results (position of the

vertices of the A-polygon) to the M-packet.

Above the main concepts and the similarity between these two approaches are discussed. And

below, the different techniques being used in these two will be under review.

2.1. Convex hull based approximation

In [23], the authors propose an approach to approximate a given hole by a convex hull. For a given

hole, this hole’s boundary can be seen as a concave polygon. The convex hull of the hole is a convex

polygon which covers this boundary polygon while its vertices are selected from that of the boundary

polygon (see Figure 2). In this approach, the hole boundary is determined by a topological method

described in [22]. The M-packet is created by an initiator node which is selected from the boundary

nodes. The M-packet then traverses through the nodes on the hole boundary in the counter-clockwise

direction. The convex hull is constructed during this voyage: its list of vertices is to be gradually

added and stored into the M-packet.
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(a) Approximate polygon (b) Boundary approximation (c) Boundary simplification

Figure 3: Online grid based hole approximation algorithm

When the M-packet arrives at a boundary node, this node performs both approximation and

simplification operations. The approximation operation is to determine if this current node could be

included as a vertex of the convex hull. In that case it will be added to the vertex list maintained

in the M-packet. Note that, if this vertex list is too long, i.e. the number of the vertices exceeds a

predefined threshold, the simplification operation is taken to trim-off some of the vertices, making the

vertex size of the convex hull is always under this threshold. Below these two operations are briefly

explained. For a full explanation, please see [23].

When M-packet arrives at a given node pi, this current node determines if it should be included

into Pe, the vertex list of the convex hull being constructed (see Figure 2(b)). The key idea here

is to check if the convexity property will be still preserved with pi included ; this could be done by

checking if pi lies on the right side of plepi+1, for some already selected vertex ple ∈ Pe (0 ≤ l ≤ |Pe|,
the size of the current Pe so far). Successful check means that pi is the farthest visible boundary

node from ple so far, i.e. the convexity is still perserved and so, pi is added to Pe. Later, however, if

another boundary node pj , j > i, also visible from ple is found, pi is deleted from the set Pe.

Figure 2(c) helps to illustrate the algorithm for the simplification. When M-packet reaches node

pi, this node checks if |Pe| is greater than the predefined threshold, in which case the simplification

will be performed as briefly reviewed below. For every four consecutive vertices pi−1e , pie, p
i+1
e , pi+2

e in

Pe we determine the intersection point P i
icrs between the two lines pi−1e pie and pi+1

e pi+2
e . Amongst the

P i
icrs’s choose the one with the shortest distance to piep

i+1
e and then use it to replace the corresponding

pie and pi+1
e in Pe. This replacement of two existing nodes by one new a clearly reduces the size of

Pe by 1.

2.2. Grid-based approximation

In the previous work [15], an approach is introduced to approximate a hole’s boundary with a simpler

shape, hole-covering polygon, which also satisfies the following conditions:

• Grid alignment: Its vertices and edges are the nodes and edges of a given square grid (thus,

the polygon shape can be easy to manage);

• Control of approximation error: Its number of vertices does not exceeds an predefined threshold

N where N is a constant parameter which determines how large the approximation error can

be.
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Figure 3(a) represents an example of a hole and its approximate polygon, or A-polygon for short.

This approach utilizes the algorithm in [5] to determine the hole boundary. Similarly as above, an

initiator node is selected creating the M-packet to traverse around the hole. The authors propose to

extend this algorithm to determine the A-polygon. When M-packet arrives at a boundary node, this

current node performs boundary approximation operation to determine the unit grid squares which

intersect the edge connecting the current boundary node and the previous boundary node. This

edge is approximated by the broken line connecting the vertices of the intersecting unit grid squares.

Figure 3(b) illustrates the algorithm. In this figure, edge Pi−1Pi is approximated by a broken line

GjGj+1...Gj+6 (in red color).

When the number of the vertices of the A-polygon found so far exceeds the threshold, the current

boundary node performs the boundary simplification operation to trim-off the vertices of A-polygon.

Figure 3(c) illustrates this simplification at a node Pi. The key idea is to remove the concave angle

that occupies the smallest area. More specifically, the current node Pi chooses the concave angle

Gj−1GjGj+1 (an angle with the interior angle ≥ π) of the A-polygon that has the smallest values

of GjGj+1 ∗Gj+1Gj+2, and then replaces Gj by G
′
j (see Figure 3(c)), the image of Gj through a

central symmetry where the center is the midpoint of GjGj+2. By doing so, the vertex size of the

A-polygon is reduced by at least 2. This simplification can be repeated until the size of the A-polygon

becomes less than N.

3. OFF-LINE GRID-BASED BOUNDARY APPROXIMATION ALGORITHM

Although the two above mentioned approaches aim to produce different outputs (A-polygons with

different shapes) they actually share a lot in principles. First, they are similar in that they both consist

of two processes, the approximation process to create an initial polygon which approximates the hole

boundary in a specified shaping (convex polygon and grid aligned polygon), and the simplification

process to make that initial A-polygon become simpler with fewer vertices (i.e. by trimming-off

some vertices). Second, they share the same distributed method in that the two mentioned processes

seemingly run simultaneously: the approximation and simplification operations are repeatedly taken

when the M-packet visits a new boundary node. This method, that is to simultaneously produce the

A-polygon while forwarding the M-packet around the hole, is called as on-line approximation.

This online method has the advantage of maintaining the load balance between the boundary

nodes. However, the repeating of the simplification operation at many nodes is energy in-efficient.

Furthermore, the size of the M-packet may be large and forwarding this packet around causes some

extra energy consumption on the boundary nodes.

In the following, the authors propose another grid-based approximation algorithm, which follow

an off-line method. In this algorithm, the traversing of the M-packet does nothing but collecting the

boundary node info. Once this data collection phase finishes, the whole thing of approximating and

simplifying is conducted centrally at only one node - the initiator. In other words, the new algorithm

consists of two phases: the data collection, the M-packet being forwarded around to collect boundary

data, and the boundary approximation, the initiator computing the A-polygon off-line.

More specifically, in the first phase, the M-packet is forwarded along the hole boundary to deter-

mine all unit squares of the grid that intersect the hole boundary. In the second phase, the information

collected in the first phase is used to determine the approximate hole which satisfies both two charac-

teristics: its shape is grid aligned and the number of its vertices below a predefined threshold. Below

these two phases are described in details.
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Figure 4: Off-line grid based hole approximation algorithm

In the data collection phase, all nodes are found if they are on the boundary of a hole using the

algorithm described in [5]. The first node that discovers the hole forms a special packet and forwards

it around the hole boundary nodes to determine the nodes with the minimum and maximum x-
coordinate and y-coordinate. After that, the node with the minimum y-coordinate (and minimum

x-coordinate if there are multiple nodes with the same minimum y-coordinate), which called the

initiator, initiates a packet and forwards it along the hole’s boundary to determine the unit square

grids which intersecting the hole boundary. This initiator node is denoted as H0 and the packet as M-

packet. This M-packet contains an array bmp[m][n], where m =
⌊
xmax−xmin

r

⌋
, n =

⌊ymax−ymin

r

⌋
(xmin, ymin are the minimum values of x-coordinate and y-coordinate, xmax, ymax are the maximum

values of x-coordinate and y-coordinate of the nodes on the hole boundary). Each item bmp[i][j]
of array bmp represents the unit grid square which has the center with the coordinates of ((i+ 1

2)r,
(j+ 1

2)r). All items of bmp are initiated with the value of 0. When the M-packet arrives at a boundary

node, the current node sets bmp[i][j] to 1 if the corresponding unit grid square of bmp[i][j] intersects

the edge connecting the current node and the previous boundary node.

After the M-packet travels around the hole boundary and goes back to the initial node, the initial

node conducts the boundary approximation phase to determine if the vertices of an unit grid square

stay on the boundary of the approximate polygon or not. Fact 1 below shows the way to do that.

This fact is quite simple so the proof is omitted.

Fact 1 Assume Gi and Gi+1 are two consecutive vertices of the grid that stay on the boundary of
the A-polygon in the clockwise order. Denote (1), (2), (3), (4) as the unit squares which has Gi+1 as
an vertex and let M,N,P be the adjacent vertices of Gi+1 as shown in Figure 4. Let (xi, yi) be the
coordinates of the center of (i) and a(i) be the value of bmp

[⌊
xi
r

⌋] [⌊yi
r

⌋]
, then:

• M is an vertex of the A-polygon if and only if a(2)=1 (figure 4(a)).

• N is an vertex of the A-polygon if and only if a(2)=0 and a(3)=1 (figure 4(b)).

• P is an vertex of the A-polygon if and only if a(2)=0 and a(3)=0 (figure 4(c)).

Note that, if the number of the vertices of the A-polygon exceeds the predefined threshold N, the

initial node performs the boundary simplification process described in [15] to trim-off the vertices.

It can be seen that, by using this very short array, info encoded by 0-and-1 bits, instead of a list

of coordinates of the vertices of the A-polygon, the M-packet size has been reduced much compared

to that in the online grid based or the convex hull based algorithms.
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4. A FRAMEWORK FOR ANALYSIS AND COMPARISON

So far we have discussed three hole approximation (HA) algorithms: the convex hull based, the on-line

grid based, and the off-line grid based algorithms (the last one is newly proposed in this paper). It

can be seen that each algorithm has its own strengths and weaknesses. The first two algorithms are

deployed “on-line” and in a distributed manner. This distributed approach helps to maintain a good

load balance between the boundary nodes. However, the repeating of the simplification operation

and the possibly large size of the M-packet can impose a heavy task on the boundary nodes. On

the other hand, the third algorithm causes a load imbalance due to the heavy load on the initiator

node which has a central role. However, this centralized mechanism helps to reduce the M-packet

size as well as the simplification workload, which obviously saves energy and resource of the network.

Beside, it is not to forget that the two grid-based algorithms can produce A-polygons fitter to the hole

than the convex hull based algorithm does. They can even produce this fitness as much as desired

by controlling the size of the unit square while this is impossible in the convex hull approach.

The above are only some general evaluation remarks, in the rest of this section the framework

for analyzing and comparing HA algorithms is described in details. Then in the next sections, this

framework will be used to analyze and compare the three above mentioned HA algorithms: by

theoretical tools (in section 5) and experiments using simulation (in section 6). The four evaluation

criteria which can be defined by the following factors are suggested to use. The generality is concerned

so that this framework of criteria can be used not only to compare the existing algorithms but also

to evaluate other new HA algorithms and approaches to come by latter.

1. Approximation time: the total time spent by the approximation process when a given HA

algorithm is used; i.e. this factor shows how fast a given HA algorithm can be.

The next two factors are used to show how economical in communication a given HA algorithm

can be, i.e. indicating how much traffic can be introduced due to a HA process.

2. Approximate polygon info size (in short, A-info size): the size in bits of the data used for

capturing the A-polygon description, which is basically the data the M-packet carries when it finishes

cycling round the hole and comes back to the initiator. 2 Clearly, this factor indirectly indicates how

much information will be communicated during a HA process. Figure 5(a) and 5(b) illustrate a hole

and its corresponding convex hull-based A polygon and grid-based A-polygon. In this example, the

number of the vertices of the convex hull-based A-polygons and grid-based A-polygon is 8 and 12,

respectively. Assumed that we need 8B (bytes) in memory to record the coordinates of an vertex,

then we need 64B to record the convex hull-based A-polygon and 48B to record the grid-based

A-polygon. 3

Alternatively, another factor can be used, the total size of approximation messages. This is the

total size in bits of all the packets which are sent between the boundary nodes in order to collect

information of the hole in general (and to determine the A-polygon in two considered approaches).

In the two considered approaches, this basically is the sum of the size of all the M-packets being sent

between two adjacent boundary nodes.

The reason why the two above alternative factors are introduced is while the former (approximate

polygon info size) is more specific to the considered approaches and then more suitable for their

theoretical analysis, the latter is more general, i.e. can be used for all approaches including ones that

2The A-polygon is determined by the location of the vertices, thus this approximate data is simply the list of coordinates
of these vertices, or a compressed form of that.

3As proved in section 5.1. we do not need to obtain the location of all vertices of the grid-based A-polygon but only a
half of it.
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HOLE

Approximation error in area

(a) Convex hull-based approach (b) Grid-based approach

Figure 5: Illustration of the approximate error
in area

Figure 6: Illustration of the routing
path stretch

do not use polygons for hole approximation. However, the latter can only be used in experimental

analysis (by simulations).

3. Approximation error in area (in short, approximate error): The difference between the area

of the A-polygon and the hole. Clearly, this reflects how well an approximation algorithm captures

the hole shape and size. Applications that seek reports about disaster surface will require this

approximation error to be as small as possible. This approximate error in area is illustrated in figure

5: the red area represents the approximate error of the convex hull-based A-polygon and the green

area represents the approximate error of the grid-based A-polygon.

4. Routing path stretch: This factor is particularly defined for the application of HA in geographic

routing. As the A-polygon fully covers the hole, the shortest route length should be increased if one

try to route around the former rather than the latter. Thus, the routing path stretch is the ratio

between the hop-count of the shortest route that bypasses (must avoid to hit) the A-polygon and

the counterpart that bypasses the original hole. Figure 6 illustrates the definition of the routing

path stretch. In this figure, the red dotted line represents the routing path which bypasses the A-

polygon and the black dotted line represents the shortest routing path which bypasses the hole. In

this example the routing path stretch is 11/9.

Clearly, for a given approximation algorithm, while the first two criteria consider the general

efficiency of this algorithm in term of how much time and energy can be consumed, the latter two

ones show how suitable the algorithm can be per application, i.e. for monitoring the hole (as a

disaster surface) or for making escape routes in geographic routing.

5. THEORETICAL ANALYSIS

In this section, the performance of two HA approaches (i.e. convex hull based and grid-based)

are under evaluation and comparison using two of five metrics mentioned in the above evaluation

framework: approximate polygon info size and routing path stretch. First it is shown that, conditioned

on the same number of A-polygon vertices, the A-info size in the grid-based approach is only half

of that in the convex hull approach. Second, a small constant upper bound on the ratio between

the routing stretches is given by using the convex hull and the grid-based approaches, respectively.

Informally, the findings show that using the convex hull approximation approach is not much better

than using the grid-based one in finding short route that bypasses the considered hole.
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Figure 7: Grid-based A-polygon
�: the grid-based A-polygon of the hole

•: A-vertices

Q

S D

1l
P 2l

P

1r
P

2r
P

P

Figure 8: Convex hull, visible vertices and E-shortest
path

�: the convex hull P of polygon Q

•: visible vertices of S and D

The shortest path of (S,D) must be the shorter path between
SPl1 ...Pl2D and SPr1 ...Pr2D

5.1. Approximate Polygon Info Size

Consider the A-polygons with n vertices, in the following we will analyze and compare the data

size needed to store the information of A-polygon received by grid-based algorithms and convex hull

algorithm. As defined in [15], given a considered hole and a natural number n, a grid-based A-
polygon with n vertices is a n-gon that covers the hole and that has been shaped using the grid

alignment: its n vertices and edges are the nodes and edges of a given square grid (thus, the polygon

shape can be easy to manage). Such a grid-based A-polygon can be obtained using a grid-based hole

approximation algorithm such as the one in [15], which works in an on-line distributed regime and

tries to minimize approximation error in area. Picture 7 illustrates a grid-based A-polygon. Note

that to describe or communicate about the shape of such an A-polygon, it is not needed to obtain the

location of all vertices of A-polygon. To save memory, only information about this kind of vertices

as defined below is needed to obtain.

Definition 1 Given a hole H and a square grid, assumed that G is a grid-based A-polygon with the
set of vertices be G0, G1, ...Gn sorted in the clockwise order. Then, a vertex of G is defined as an
A-polygon determining vertex (or A-vertex for short) of G if and only if it satisfies at least one of the
following properties:

• It is the first vertex of an horizontal edge (i.e. parallel to the x-axis)

• Its x-coordinate and y-coordinate differ from that of the preceding A-vertex

Fact 2 Assumed G is a grid-based A-polygon with the vertex number of n. Then, the coordinates of
all vertices of G can be deduced from the coordinates of only A-vertices.

Fact 2 means that by the nature of a grid, a grid-based A-polygon can be determined by using its

A-vertices only, while the number of these vertices is clearly, only a half of the total number of all

vertices. Such a thing can not be applied for convex polygons; this implies that, conditioned on a

given number (n) of the A-polygon vertices, the grid-based approach can save by 50% in A-info size,

compared to the convex hull approach.

Proof. Figure 7 illustrates an example of A-vertices. Here, choose G1 as the first A-vertex which is

the first vertex of a horizontal edge; hence, G3 becomes the next A-vertex since its both coordinates

differ from that of G1. Similarly, G5, G7, ..., G2k+1 are also A-vertices while G0, G2, ..., G2k are
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not. It is clear that, the coordinates of G0, G2, ..., G2k can be deduced from the coordinates of the

mentioned A-vertices as follows:{
Gx

0 = Gx
1 ;Gy

0 = Gy
2k+1

Gx
2i = Gx

2i+1;G
y
2i = Gy

2i−1 (∀i = 1, k)
(1)

(Gx
i , Gy

i denotes the x- and y-coordinate of Gi, respectively).

5.2. Routing Path Stretch

Assumed that the considered network is dense of sensors everywhere apart from the considered hole

and by such an idealism, we can model the shortest s− t routing path as the shortest Euclidean line

between s and t. In this section, given a large hole, the Euclidean length of the shortest routing path

that bypasses a given grid-based A-polygon and the shortest routing path that bypasses a convex hull

A-polygon will be compared. Of course, assumed that both these A-polygons are having the same

number of vertices (n). Assumed that the considered network is dense of sensors everywhere apart

from the considered hole and by such an idealism, we can model the shortest s − t routing path as

the shortest Euclidean line between s and t. In this section, given a large hole, the Euclidean length

of the shortest routing path that bypasses a given grid-based A-polygon and the shortest routing

path that bypasses a convex hull A-polygon will be compared. Of course, assumed that both these

A-polygons are having the same number of vertices (n).

We start by defining the notations and terms used throughout this section. Denote H, C, G
as the hole, the convex hull and the grid-based A-polygon of the hole. Let C = {C1, C2, ..., Cn}
and G = {G1, G2, ..., Gm} denote the set of the vertices of C and G, respectively. Assumed,

P1, P2, ..., Pi are arbitrary points in the plane, then the broken line through P1, P2, ..., Pi and its

length are denoted by P1P2...Pi and
∣∣P1P2...Pi

∣∣, respectively.

Definition 2 Assumed that P is a polygon while (S,D) is a pair of source and destination nodes that
stay outside of P . Then, the P -bypassing shortest routing path (or P-BSRP for short) of (S,D) is
defined as the shortest broken line from S to D which stays outside of P and its length by lP (S,D).

Definition 3 Assumed that P is a polygon while N is an arbitrary node outside P . Pi, a vertex of P,
is said a visible vertex from N if and only if the line through N and Pi does not intersect P.

Lemma 1 Assumed that P is a polygon while (S,D) is a pair of source and destination that stay
outside of P . Also, (Pl1 , Pl2) and (Pr1 , Pr2) are the visible vertices of S and D which lie on the left
hand side and right hand side of

−→
SD, respectively. Then, the P-BSRP of (S,D) must be the shorter

path between S
−−−−−→
Pl1 ...Pl2D and S

−−−−−→
Pr1 ...Pr2D, where

−−−−→
Pi...Pj represents the broken line connecting

consecutive convex vertices from Pi to Pj of P, where the convex vertices of a polygon are the vertices
of the convex hull of that polygon (Figure 8).

Clearly that, Pl1 , Pl2 , Pr1 , Pr2 must be the convex vertices of P . Lemma 1 shows that the shortest

routing path that bypasses a given hole is the same as the shortest routing path that bypasses the

convex hull of that hole, i.e H-BSRP and C-BSRP are the same. For grid based A-polygon G, it is

clear that G-BSRP is greater than or equals to H-BSRP. Moreover, G-BSRP tends to increase when

the difference between G and H increases. Notice that, this difference tends to be increased when

increasing the size of the unit square of the grid.
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Figure 9: Proof of Theorem 1

In the following, the relation between G-BSRP, C-BSRP and the size of the unit square are under

analysis. Denote MNPQ and M ′N ′P ′Q′ as the smallest rectangles covering C and G respectively,

figure 9 results in the following theorem.

Theorem 1 For any source-destination pair (S,D) staying outside G and C, we have:

lG(S,D) ≤
√

2lC(S,D) + δ (2)

Where δ is the difference between the perimeter of MNPQ and M ′N ′P ′Q′.

While lemma 1 shows that a convex hull is the most efficient shape (to approximate a hole) for

optimizing the routing stretch, theorem 1 shows that, conditioned on the same number of vertices,

a grid-based A-polygon may be a bit worse but still comparable to a convex hull A-polygon in term
of the shortest routing path length. More specifically, the shortest routing path in the first is within

multiplication factor
√

2 from that in the second.

Proof. Let δ1, δ2, δ3, δ4 be the distance between the edges of MNPQ and M ′N ′P ′Q′, then δ =
2(δ1 + δ2 + δ3 + δ4). Let Ct

1, C
t
2, C

t
3, C

t
4 be the tangential points of C to MNPQ. Divide the vertices

of C into four subsets (I), (II), (III), (IV) as shown in Figure 9(a), we call these subsets C-vertices
subsets. Assumed S

−−−−−−−−−→
CiCi+1...Ci+kD is C-BSRP of (S,D), there are three cases which can occur:

• Case 1: Ci and Ci+k belong to two consecutive C-vertices subsets. For example, Ci belongs

to (I) and Ci+k to (II) (Figure 9(a)).

• Case 2: Ci and Ci+k belongs to two non-consecutive C-vertices subsets. For example, Ci

belongs to (I) and Ci+k to (III) (Figure 9(b)).

• Case 3: Ci and Ci+k belongs to the same C-vertices subset. For example, Ci and Ci+k are

both belong to (I) (Figure 9(c)).

In the following, the theorem in case 1 will be proved, when Ci and Ci+k belong to two consecutive

C-vertices subsets. Similar results for the other cases can be deduced from this case.

Without loss of generality, assumed that Ci belongs to (I) and Ci+k to (II) (Figure 9(a)). As

S
−−−−−−−−−→
CiCi+1...Ci+kD is C-BSRP of (S,D), C1, C2, ..., Cn must stay on the left side of

−−→
SCi and right

side of
−−−−→
DCi+k. Assumed Gj , Gj+1 are visible vertices of S,D which stay on the right side of

−→
SD
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then Gj must stay on the right side of
−−→
SCi and Gj+l must stay on the left side of

−−−−→
DCi+k. According

to lemma 1, lG(S,D) ≤
∣∣∣S−−−−−−→Gj ...Gj+lD

∣∣∣. Let Ci
′, Ci+k

′ denote the intersections of SCi and SCi+k

with M ′N ′ and P ′Q′, respectively yields:

lG(S,D) ≤
∣∣∣S−−−−−−→Gj ...Gj+lD

∣∣∣ ≤ ∣∣∣−−−−−→SN ′P ′D
∣∣∣ (3)

Using triangular inequation results in:

SN ′ ≤ SCi
′ + Ci

′N ′;DP ′ ≤ DCi+k
′ + C ′i+kP

′ (4)

From (3) and (4), we have:

lG(S,D) ≤
(∣∣SCi

′∣∣+
∣∣DCi+k

′∣∣)+
∣∣∣−−−−−−−−−→Ci
′N ′P ′Ci+k

′
∣∣∣ (5)

Denote (xi, yi), ..., (xi+k, yi+k) as the coordinates of Ci, ..., Ci+k and (xi
′, yi
′), (xi+k

′, yi+k
′) as the

coordinates of Ci
′, C ′i+k. Notice that,∣∣∣−−−−−−−−−→Ci

′N ′P ′Ci+k
′
∣∣∣= ∣∣xi−xi′∣∣+ ∣∣yi − yi′∣∣+ ∣∣xi+k−xi+k

′∣∣+ ∣∣yi+k−yi+k
′∣∣ (6)

+
i+k−1∑
u=i

(|xu+1−xu|+ |yu+1−yu|) +2δ1

⇒
∣∣∣−−−−−−−−−→Ci
′N ′P ′Ci+k

′
∣∣∣ ≤√2

(
|xi−xi′|2+|yi−yi′|2

)
+

√
2
(
|xi+k−xi+k

′|2+|yi+k−yi+k
′|2
)

+

i+k−1∑
u=i

√
2
(
|xu+1−xu|2+|yu+1−yu|2

)
+2δ1

⇒
∣∣∣−−−−−−−−−→Ci
′N ′P ′Ci+k

′
∣∣∣ ≤ √2

∣∣∣C ′
i

−−−−−−→
Ci...Ci+kC

′
i+k

∣∣∣+2δ1 (7)

From (5) and (7), we can deduce that:

lG(S,D) ≤
√

2
∣∣∣−−−−−−−−→SCiCi + kD

∣∣∣+ 2δ1

≤
√

2lC(S,D) + δ·
(8)

The theorem is proved in the first case. The proof for other cases can be deduced as below:

• Case 2: If Ci and Ci+k belong to two non-consecutive C-vertices subsets. For example, Ci

belongs to (I) and Ci+k to (III) (Figure 9(b)):

lG(S,D) ≤
√

2lC(S,D) + 2 (δ1 + δ2)

≤
√

2lC(S,D) + δ
(9)

• Case 3: Ci and Ci+k belong to the same C-vertices subset. For example, Ci and Ci+k are

both belong to (I) (Figure 9(c)):

lG(S,D) ≤
√

2lC(S,D) (10)

From (8), (9) and (10), the theorem is proved.

Furthermore, denote r as the edge length of the unit square of the grid, then δ < 8r and thus

lG(S,D) ≤
√

2lC(S,D) + 8r.
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6. EXPERIMENTAL EVALUATION

6.1. Simulation setup

Concave area

(a) C-shape

Concave 
area

(b) I-shape

Concave 
area

(c) Star-shape

Figure 10: Simulation topologies

Table 1: Simulation parameters

Variables Values
Communication range 40m

Number of nodes 1000

Initial energy of each node 1000J

Reception Power 1.0 J/s

Transmission Power 2.0 J/s

Idle Power 0.2 J/s

Sleep Power 0.001 J/s

In this section, the approximation algo-

rithms using experimental work are under eval-

uation and comparison. The experiments on

the NS-2 simulator are conducted and 802.11 se-

lected as our MAC protocol. Table 1 summarizes

the parameters used. In the simulation, 1000
sensor nodes are deployed randomly in an area

of 500m x 500m. The holes with many kinds

of shape are created randomly. The number of

the vertices of the holes is from 50 to 55. Fig-

ure 10 represents the network topologies used in

the simulation. As shown in this figure, there

are three network topologies are used. The first one has a hole with the shape similar to letter C.

The second one has a hole with the shape like letter I and the last one has a hole with the star shape.

It is seen that, the hole in the first and the second topologies has a large concave area while the

hole in the last one is nearly a convex polygon. With each topology, the authors conduct three hole

approximation algorithms and evaluate the performance based on the following metrics:

• Approximation time: the time to approximate the hole by the A-polygon.

• Approximation error in area: the difference in area between the A-polygon and the hole.

• E-stretch of the routing path: The ratio between the Euclidean length of the shortest routing

path bypassing the grid-based A-polygons and the shortest routing path bypassing the convex

hull.

• Size of approximation messages: The total size of the messages which are forwarded to collect

information of the hole and determine the A-polygon. This factor reflects the communication

overhead introduced by the approximate process.



392 NGUYEN PHI LE, NGUYEN KHANH-VAN

5 10 15 20 25

33
.4

6
33

.4
8

33
.5

0
33

.5
2

The number of the vertices of A−polygon

A
pp

ro
xi

m
at

io
n 

tim
e 

(s
)

convex hull
online grid
offline grid

(a) C-shape

5 10 15 20 25

30
.6

4
30

.6
8

30
.7

2

The number of the vertices of A−polygon

A
pp

ro
xi

m
at

io
n 

tim
e 

(s
)

convex hull
online grid
offline grid

(b) I-shape

5 10 15 20 25

34
.8

8
34

.9
0

34
.9

2
34

.9
4

The number of the vertices of A−polygon

A
pp

ro
xi

m
at

io
n 

tim
e 

(s
)

convex hull
online grid
offline grid

(c) Star-shape

Figure 11: Approximate time

6.2. Simulation results

In the following, G-offline, G-online are used to denote the online grid based algorithm and offline

grid based algorithm, respectively.

6.2.1. Approximation time

Figure 11 shows the approximation time. The x-axis represents the number of the vertices of the

A-polygon and the y-axis represents the approximation time of the three algorithms. It can be seen

that, the approximation time of the G-offline is the smallest. The reason is that in the G-offline, the

simplification process is performed only one time at the initial node while in the others, this process

is performed at every nodes where the number of the vertices of the A-polygon exceeds the threshold.

Furthermore, as the M-packets (i.e. the packets which are forwarded to collect information of the

hole and determine the A-polygon) in G-offline contains only a binary string which has the size much

smaller than the size of the M-packets containing the coordinates of all the approximate vertices in

the other algorithms, the transmission time of the M-packets in G-offline is thus much smaller than

that in the others.

Moreover, it can be seen that, while the approximation time of the G-online and the convex hull

algorithm tends to increase when the number of the vertices of A-polygon increases, the approximation

time of the G-offline does not. This is because when the number of the vertices of A-polygon increases,

the size of the M-packets in G-online and convex hull based algorithm increases. The increase of the

size of approximation messages enlarges the time to transmit the M-packets and thus increases the

approximation time. While in the G-offline, the size of M-packets is very small and does not depend

on the number of the vertices of A-polygon.

6.2.2. Approximation error in area

The approximate error between the area of the hole and the area of the A-polygons is illustrated

in Figure 12. The error is calculated as
Sappr−Shole

Shole
, where Sappr and Shole are the area of the

A-polygon and the hole, respectively. It can be seen that, the approximate error decreases with the

increasing of the number of vertices of the A-polygons. However, the approximate error of the grid

based A-polygons tends to decrease very fast with the increasing of the number of vertices while the

approximate error of convex hull based A-polygon does not. The approximate error of the grid based
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Figure 12: Approximate error in area
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Figure 13: Routing path stretch

A-polygons can be made as small as desired by increasing the number of vertices of the A-polygon

while the approximate error of the convex hull asymptotes to a stable value.

As shown in figure 10, the hole with the shape like letter C and letter I have a large concave

area while the star shape hole is nearly convex (i.e. it has a very small concave area). For a network

topology which has the hole with a large concave area, the approximation error of the grid based A-

polygon tends to be much smaller than that of the convex based A-polygon. However, for networks

with the nearly convex hole, the approximation error of the convex hull based A-polygon is the

smallest.

6.2.3. E-stretch of the routing path

Figure 13 compares the Euclidean stretch (or E-stretch for short) of the routing path when bypassing

the A-polygons: using the G-online versus using the G-offline. For an arbitrary pair of source-

destination (S,D), denote lG(S,D), lC(S,D) as the Euclidean length of the shortest routing path

which bypasses the grid-based A-polygon and the shortest routing path which bypasses the convex

hull of the hole, respectively. Then, the E-stretch is computed as
lG(S,D)
lC(S,D . In figure 13, the green line

represents the E-stretch of the shortest routing path which bypasses the online grid-based A-polygon

(or E-stretch of G-online for short) and the red line represents the E-stretch of the shortest routing

path which bypasses the offline grid-based A-polygon (or E-stretch of G-offline for short). The x-
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Figure 14: Total size of approximation messages

axis represents the distance between the source and the destination while the y-axis represents the

E-stretch. It is clear that the E-stretches are always greater than 1 but it does not exceed 1.3. This

means that the convex hull based A-polygon can achieve a shorter routing path than the grid-based

A-polygons but the difference between them is not large. It can be seen that the E-stretch of the

G-offline is smaller than that of G-online. This is because the approximation error in area between

the A-polygon in G-online and the hole is smaller than that between the A-polygon in G-offline and

the hole. However, the difference between these stretches decreases with the increasing of the distance

between the source and the destination and when the distance is greater than 500m, the difference

becomes negligible.

6.2.4. Total size of approximation messages

Figure 14 shows the total size of the approximation messages. It is clear that, the size in G-offline is

very small compared to that in G-online and convex hull based algorithm. In the best case, G-offline

can save more than 60% size of the approximation messages and even in the worse case, G-offline can

save more than 40%. Moreover, we can see that the size of the approximation messages in G-offline

does not depend on the number of the vertices of A-polygon while the size of the other two algorithms

increases rapidly with increasing of the number of the vertices of A-polygon.

7. CONCLUSION AND FUTURE WORK

In this paper, the off-line grid based hole approximation algorithm is proposed. The authors also

analyze and compare the performance of three hole approximation algorithms: the online grid based,

offline grid based and convex hull based. The theoretical analysis results prove that, with the same

number of the vertices, the data of grid-based approximate polygons is only a half of that of convex

hull based approximate polygon. The theoretical analysis also shows that, the length of the routing

path that bypasses the grid-based A-polygons is not worse than
√

2 times of that by bypasses the

convex hull. The simulation results show that the approximation time of the offline grid based

algorithm is the smallest while that of the online grid based algorithm is the largest; for the hole

which has a large concave area, the approximate error in area between the grid based approximate

polygons and the hole is smaller than that of the convex hull; the routing path when bypassing the

grid based approximate polygons is longer than but it does not exceed 1.3 times of the routing path

when bypassing the convex hull based approximate polygon.
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In the future, the authors will consider the relation between the size of the unit square grid and
the approximate error of the grid-based A-polygon and the hole. We also evaluate the affect of the
three approximate algorithms on different routing algorithms.
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