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Tóm tắt. Phân loại trình tự là bước quan trọng trong quá trình phân tích dữ liệu metagenomic.
Trong khi những phương pháp không có giám sát dựa trên đặc trưng hợp thành chỉ hiệu quả cho xử
lý trình tự dài, các phương pháp dựa trên độ phong phú thường được sử dụng cho phân loại trình tự
ngắn. Những giải pháp phân loại dựa trên độ phong phú hiện nay thường sử dụng tần số l-mer có độ
dài cố định để phân loại trình tự vào các nhóm mà các trình tự trong mỗi nhóm thuộc về các hệ gien
(hay loài) có độ phong phú tương tự nhau. Tuy nhiên, hiệu năng phân loại của các giải pháp này rất
nhạy cảm với độ dài các l-mer, và chúng gặp khó khăn khi phân loại những trình tự thuộc các hệ gien
có độ phong phú thấp vì sự lặp lại của các đoạn l-mer ngắn trong các hệ gien này. Trong bài báo này,
một phương pháp đếm mới sử dụng các l-mer có độ dài thay đổi được đề xuất, cho phép giải quyết
vấn đề lặp lại của các đoạn l-mer ngắn, nhằm cải tiến độ chính xác của các giải pháp phân loại dựa
trên độ phong phú. Phần thực nghiệm cho thấy rằng một giải pháp cải tiến của AbundanceBin (một
phương pháp phân loại thường được sử dụng) trong đó phương pháp đề xuất được áp dụng cho độ
chính xác cao hơn giải pháp ban đầu. Phần mềm hiện thực cho giải pháp này có thể được tải về tại
địa chỉ: http://it.hcmute.edu.vn/bioinfo/MetaSeqBin/index.htm

Từ khóa. metagenomics, phân loại trình tự, đếm l-mer, trình tự DNA, giải mã trình tự thế hệ mới.

Abstract. The binning of reads is a crucial step in metagenomic data analysis. While unsuper-
vised methods which are based on composition features are only efficient for long reads, genome
abundance-based methods are often used in the binning of short reads. Previous abundance-based
binning approaches usually use fixed-length l-mer frequencies to separate reads into groups such
that reads in each group belong to genomes (or species) of very similar abundances. However,
their classification performances are very sensitive to the length of l-mers, and they get difficult
to separate reads from low-abundance genomes due to the repeat of short length l-mers in the
genomes. In this paper, a new variable-length l-mer counting method is proposed to enable deal-
ing with the short length l-mer repetition for improving the accuracy of abundance-based binning
approaches. Computational experiments demonstrate that an improved approach of Abundance-
Bin (a commonly used binning method) in which the proposed method is applied achieves higher
accuracy than the original one. The software implementing the approach can be downloaded at
http://it.hcmute.edu.vn/bioinfo/MetaSeqBin/index.htm.
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1. INTRODUCTION

Microbes are the most diverse forms of life on Earth and affect directly on human lives. Under-
standing microbial communities brings benefits to us in many fields [4]. Traditional microbial genomic
studies only focus on single species in pure laboratory culture due to the limitation of experiments.
However, ninety-nine percent of microbes cannot be cultured in the laboratory [1]. With the develop-
ment of next-generation sequencing techniques [11], the traditional methods are gradually replaced by
metagenomics. This discipline enables studying directly on genomes from an environmental sample
without isolating and culturing single organism in the laboratory.

In metagenomics, data contains reads from various organisms. Thus, an important problem needed
to be solved is to separate reads into groups of individual genomes or closely related organisms. It
is referred to as binning problem. Binning approaches can be classified into two main categories:
supervised methods and unsupervised methods.

Supervised methods require reference databases containing sequences with known taxonomic ori-
gin. It can be further divided into composition-based and homology-based methods. Homology-
based approaches ([5, 8]) directly align DNA fragments to a reference set using an alignment tool
(e.g., BLAST). In the composition-based approaches, compositional features that can be extracted
from nucleotide fragments and reference sequences (e.g. oligonucleotide frequencies, GC-content) are
used for classification ([2, 13]). These approaches have been shown to be accurate if there are complete
reference databases. However, the ratio of microbes which have been discovered is very small [1]. In
addition, a recent study [3] showed that only 12% real metagenomic data from a coral atoll can hit
against the 16S rDNA database by BLAST tool.

Unsupervised methods can be used to overcome the lack of reference data sets. The methods
rely on features extracted from data samples. Some approaches are based on compositional features
such as LikelyBin [7], Scimm [6], MetaCluster 1.0, 2.0 ([19, 20]). While LikelyBin and Scimm use
Markov chain model for classification, MetaCluster 1.0 and 2.0 are k-means based methods. The
approaches are only efficient for long reads (> 1kbp), and get low performance for short reads (50-
400bp). Moreover, their performances drop significantly when the abundance level of genomes is very
different [20].

Some other unsupervised approaches are based on the abundance level of genomes such as Meta-
Cluster 5.0 [17], AbundanceBin [18], and Olga et al [16]. MetaCluster 5.0 separates reads into three
groups with different abundance levels (high, low and extremely low level) and applies different further
classification strategies for each group. AbundanceBin and Olga et al. are two recent approaches for
binning reads only relying on genome abundances. The approaches aim to group reads which belong
to genomes of similar abundance levels. In AbundanceBin, the number of occurrences of l-mers (with
a sufficient value of l) are assumed to follow a Poisson distribution. An expectation maximization
algorithm is used to estimate genome abundances and genome sizes. Olga’s approach uses a similar
method with AbundanceBin, but the method improves a task of l-mer counting by applying an idea
from a Balls and Bins problem to deal with sequencing errors. The two approaches can be used as a
preprocessing task of other binning approaches for performance improvement.

The abundance-based binning methods are shown to be able to classify short reads. However,
due to the repeat of short length l-mers in genomes, previous approaches get difficult to accurately
estimate the genomes abundances as well as separate short reads. Dealing with the problem, this
work focuses on the task of l-mer counting of a binning method. A novel l-mer counting method pro-
posed in this paper aims to better reflect the abundance level of genomes for increasing classification
performance. Some l-mer counting methods were proposed in recent years ([10, 15]). However, they
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only focus on storage space and computation time, not strongly focusing on the quality of the binning
process.

The following sections of this paper are organized as follows: In section II, the abundance-based
binning problem is stated, then the problem of l-mer length and a proposed l-mer counting method
are presented. Section III shows experimental results. The last section provides a conclusion and
future works.

2. METHODS

2.1. Problem statement

In this section, the problem of abundance-based binning for metagenomic reads using l-mer
frequencies is established. An assumption used for the problem is that the l-mer frequency from reads
of a genome is proportional to that of genome abundance ([17, 18]). A major objective of the problem
is to classify l-mers into bins (or clusters) using their frequencies, and then reads are assigned to bins
basing on the membership degrees of their l-mers to the bins. The sub-problem of l-mers binning can
be formulated as follows:

Given a set of data containing reads from the genomes with k different abundance levels. Let L =
{l1, l2, ..., lm} be a set of distinct l-mers (m be the number of distinct l-mers), C = {c1, c2, .., cm}
be a set of distinct l-mer counts. Let a decision variable xij be the membership degree of l-mer li in
bin j, 1 ≤ i ≤ m, 1 ≤ j ≤ k and 0 ≤ xij ≤ 1.

An objective function, f(C), should be minimized or maximized under the constraint on the sum
of membership degree of l-mers in bins as follows:

k∑
j=1

xij = 1, 1 ≤ i ≤ m. (1)

2.2. The problem of l-mer length

Estimation of l-mer frequencies directly affects the performance of a binning approach. However,
choosing a value of l such that l-mer frequencies accurately reflect the abundance of genomes is
difficult. If l is not large enough, many l-mers in genomes are repeated. Because it is not known
an l-mer is repeated by others in genomes or in overlapping regions between reads, the number of
occurrences of the l-mers may reflect wrong the genome abundances. Conversely, if l is too large,
most of the l-mers in genomes are unique. However, because of the short overlapping regions between
reads, the number of occurrences of l-mers in a set of metagenomic reads can be low. It leads to the
difficulty of separating the reads, especially for short reads and low-abundance genomes. Both cases
make low classification performance of abundance-based binning approaches.

For instance, in Figure 1, R1 and R2 are two DNA regions in two genomes (or in the same
genome). Assuming the abundance level of the genomes is 3. Let l = 5. Because 5-mer u and v are
the repeat of each other, u’s count (or v’s count) in a set of reads from the genomes is much higher
than the genomes abundance (6 compare with 3). When the value of l has increased to 6, most of
6-mers are unique in the genomes (for examples w, y). However, their counts are lower than 3 in the
set of reads. The count of w is 2, and the count of y is 1.

A test case is conducted for observing the average ratio of repeated l-mers to total of l-mers in
genomes. Data of the test includes 30 pairs of genomes from different species in the same genus (genus



270 LE VAN VINH, TRAN VAN LANG, TRAN VAN HOAI

Figure 1: R1 and R2 are two DNA regions in two genomes (or in the same genome). u and v are two
5-mers, and they are repeated of each other in the genomes. w and y are two 6-mers

Figure 2: The average ratio of repeat l-mers with different values of l

level), and 30 pairs of genomes from different genus in the same family (family level). Figure 2 presents
the results of the test. If l < 15, the percentage of l-mer repeats is very high. When l > 20, the
number of l-mer repeats is lower than 4% for both genus level and family level. In another test, data
containing 150bp reads from one genome (Candidatus Blochmannia floridanus in this test) with
abundance of 10 was generated. Choosing l = 20, there is only 37.84% of 20-mers which their counts
are ≥ 10. Thus, there is no any suitable values of l which can adapt the two aspects of the problem.
However, this problem has not been solved. In other research, the value of l is chosen relatively large
(20bp in [18]), or 16bp in [17]). (In [16], the authors did not mention the length of l-mers).

2.3. Proposed counting method of l-mers

In this section, l-mer counting method is proposed to address two aspects of the problem. The
method aims to use large enough l value such that most of l-mers are unique in genomes, and it
computes l-mer frequencies based on a small value for more accurate reflecting abundance of the
genomes.
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Figure 3: l-mer u = 〈p(u),m(u), s(u)〉 and v = 〈p(v),m(v), s(v)〉 in two regions R1 and R2

A variable-length l-mer (with the maximum length of l) is defined as a set of three parts, including:
pre-l-mer, main-l-mer, and suf-l-mer. A main-l-mer is the middle part of l-mer, and its length is fixed
to a given number of lm. A pre-l-mer and a suf-l-mer are the two remaining parts, locating in the
beginning and at the end of l-mer respectively. Their lengths are varied and limited by given numbers
lp and ls respectively (l = lp + lm + ls).

From the definition, this method uses a value of lm to compute frequencies of l-mers, and a value
of l to check whether the l-mers are repeated in genomes or not. Therefore, lm should be chosen
relatively small and l be large enough such that most of the l-mers are unique in genomes. For more
details, the method computes the number of occurrences of main-l-mers in a set of metagenomic
reads. Because of the small length, repeats of the main-l-mers may exist in genomes. To distinguish
whether two main-l-mer repeats are from the overlapping regions between reads or not, our method
compares their pre-l-mers and their suf-l-mers. If the pre-l-mers or the suf-l-mers are different from
the others, two l-mers containing the two main-l-mers should be counted as two distinct ones. The
comparison method of two l-mers is presented as follows.

Let u = 〈p(u),m(u), s(u)〉 be an l-mer. p(u),m(u) and s(u) be pre-l-mer, main-l-mer, and
suf-l-mer of l-mer u respectively. They are strings of characters in the set{A, C, G, T}. Let |p(u)|,
|s(u)| be the lengths of p(u), s(u) respectively (|p(u)| ≤ lp, |s(u)| ≤ ls). Let v = 〈p(v),m(v), s(v)〉
be another l-mer. Denote g(s, pos, len) be a function to get a copy of a substring of string s which
starts at position pos and spans len characters. u = v if and only if:


m(u) = m(v) and
s(u) = g(s(v), 1, |s(u)|), if |s(u)| ≤ |s(v)| and
s(v) = g(s(u), 1, |s(v)|), if |s(v)| < |s(u)| and
p(u) = g(p(v), |p(v)| − |p(u)|+ 1, |p(u)|), if |p(u)| ≤ |p(v)| and
p(v) = g(p(u), |p(u)| − |p(v)|+ 1, |p(v)|), if |p(v)| < |p(u)|.

(2)

For example, we use this method to solve the problem in Figure 1. Choose l be 7, lm be 3 and
maximum lengths of the remaining sub-parts be: lp = 2 and ls = 2. Assume that there are two
7-mers u = 〈p(u),m(u), s(u)〉 and v = 〈p(v),m(v), s(v)〉 (Figure 3). They are in the repeated
regions. Thus, the count of u’s main-l-mer (or v’s main-l-mer) in the set of reads is 6. After their
pre-l-mers and suf-l-mers are compared, they are regarded as two distinct l-mers with the count of 3.
The repeats of variable-length 7-mers u in the set of reads are ATGCTG, ATGCTGT and TGCTGT,
while the repeats of variable-length 7-mers v are CTGCTGA, TGCTGA and CTGCTGA.



272 LE VAN VINH, TRAN VAN LANG, TRAN VAN HOAI

2.4. Binning approach

The l-mer counting method is applied in a proposed binning approach for enhancement of classifi-
cation performance. This approach can be known as an improvement of AbundanceBin - a commonly
used abundance-based binning approach. The proposed algorithm includes three steps. In the first
step, counts of l-mers are computed by the proposed counting method. The second step separates
the l-mers into bins using their frequencies. Reads are assigned to the bins in the final step. Methods
used in the last two steps are same as those of AbundanceBin.

2.4.1. Step 1: Counting l-mers

In this step, the number of occurrences of l-mers is computed by the proposed method. The values
of lm, lp, and ls have to be given. A hash table is used to store l-mers for reduction searching time.
The hash size can be changed for efficient memory usage.

2.4.2. Step 2: Binning of l-mers

In the proposed approach, using the same ideas with AbundanceBin [18] and Olga et al. [16], reads
sampled from the genomes are assumed following the Poisson distribution [9]. Let gj be a genome,
with a length of |gj |. Let li (with a length of l) be an l-mer coming from the genome. Let |r| be the
length of a read. If the number of reads generated from genome gj is nj , the number of occurrences of
an l-mer li should follow a Poisson distribution with parameter λj = nj(|r|− l+1)/(|gj |− |r|+1).
From the assumption, the objective function f(C) in section of the problem statement is presented
in the probabilistic manner as follows:

θ̂ML = argmax
θ
{log p(X|θ)} (3)

in which X = {ci}, θ = {(gj , λj), 1 ≤ j ≤ k}.
An Expectation Maximization (EM) algorithm is used to approximate the abundance level and

the size of each genome. It is an iterative method for finding the maximum likelihood estimate of
the parameter θ (noted by θ̂ML) in the model. After the parameter θ is assigned initial values, the
following two tasks are repeated until the parameter converges or the number of iterations exceeds
a given threshold: First, calculate the membership degree of l-mers in bins given ci and θ. Second,
update the parameter θ for the next iteration given the membership degree and ci.

2.4.3. Step 3: Assigning reads to bins

In this step, the reads are assigned to the bins based on the results of their l-mer binning. A read
is assigned to a bin if the product of the membership degrees of its l-mers in the bin is the highest
value among all bins. A read is not assigned to any bins if the highest membership degree is smaller
than 50%.

The proposed algorithm uses the same technique as those of AbundanceBin to deal with sequenc-
ing errors and extremely high l-mer counts. Two thresholds countmin and countmax are used to limit
unexpected l-mers counts. A l-mer count is used for abundance level estimation task must satisfy
the following condition: countmin ≤ l-mer count ≤ countmax. When more than 90% of l-mers of a
read are excluded by this technique, the read is not assigned to any bins.
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3. EXPERIMENTAL RESULTS

The performance of the proposed approach is evaluated on simulated data, downloaded from the
National Center for Biotechnology Information (NCBI) database. A commonly used tool, MetaSim
[14], is used to generate data. We create reads from bacterial genomes for both cases of with and
without sequencing errors. Error-free sequencing reads are created by the exact simulator setting of
MetaSim, while error sequencing reads follow the Roche 454 sequencing model. The read length is
from 75bp to 400bp.

The proposed approach is compared with AbundanceBin in two experimental scenarios. The first
scenario is to evaluate the two approaches in separating reads into bins, such that each bin contains
reads having very similar abundance levels. In the second scenario, each approach is combined with
MetaCluster 2.0 to classify reads into different groups of species. Note that we do not combine the
abundance-based methods with the higher versions of MetaCluster (3.0, 4.0, and 5.0) because the
feature of genome abundance is used in the approaches. Thus, it is not suitable for this situation. Two
statistical measures, including sensitivity and accuracy defined as in [12] are used for evaluation.

3.1. First scenario - separating reads into groups of different genome abun-
dances

The observation of data (Fig. 2) shows that the number of occurrences of l-mers are very high
if l ≤ 15 (> 15%). This explains why the performance of AbundanceBin is very low with the value
of l, and it achieves the best performances with l ≥ 20 in most of cases [18]. In this test case,
the proposed approach is compared with AbundanceBin with l = 20, 25, and 35. In the proposed
approach, lm ≤ 15 and lp = ls = (l − lm)/2 for all cases are chosen. Therefore, groups of three
values (lp, lm, ls) corresponding to the lengths of l = 20, 25, and 35 used in the proposed approach
are (4, 12, 4), (5, 15, 5), and (10, 15, 10) respectively. Besides, in cases of sequencing error, the same
value of countmin and countmax for both approaches was set.

Table 1 shows results of 7 data sets(denoted by from T1 to T7). The proposed algorithm has
better performance (about 0.07%−5%) comparing with AbundanceBin in most of the test cases. As
we can see in the table, if read lengths decrease, the improvement slightly increases. For instance, the
improvement for data setswith read lengths of 400bp is about 0.2% to 1%, while the improvement
is about 0.07% to 5% for data setswith read lengths of 150 bp and 75 bp. In case of the test on
data set T6, AbundanceBin fails to separate reads if l = 35, whereas our approach can classify reads
into 3 clusters. Results on samples from T1 to T6 show the strength of our approach comparing with
AbundanceBin when they work with reads from the genomes of small different abundances. Results on
sample T7 present a fact that both approaches work quite efficiently on reads from genomes of large
different abundances. Note that when lp = ls = 0, the proposed approach returns the same results
with AbundanceBin for all cases. Besides, because the latest version of AbundanceBin only runs with
l ≤ 28 (by our experiments), we use the results of the proposed approach with lp = ls = 0, lm = 35
as the results of AbundanceBin with l = 35.

For more comparison, we deploy another test case to evaluate both of approaches with various
length of l-mers. A set of error-free reads is generated from two genomes: Acetohalobium arabaticum
DSM 5501 and Acidianus hospitalis W1 with the abundance level of 5 and 10 respectively. The
read length is 150bp. Fig. 4 presents the performances of the two approaches with the values of l from
10 to 60. For the proposed approach, when l > 15, lm is always set by 15. The proposed approach has
better results (sensitivity value) than AbundanceBin in all cases of l. With l < 20, the performance
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ID Abundance Read l AbundanceBin Proposed App
level length (bp) Sen. (Acc.) Sen. (Acc.)

T1 5 400 20 82.69%(82.69%) 83.21%(83.21%)
10 25 83.39%(83.39%) 83.92% (83.92%)

35 83.79%(83.79%) 84.8% (84.8%)
T2 4 400 20 85.56%(90.37%) 85.71% (90.47%)

8 25 85.77%(90.51%) 86% (90.68%)
20 35 85.88%(90.58%) 86.26% (90.84%)

T3* 6 150 20 92.56%(92.56%) 94.96% (94.96%)
18 25 89.69%(89.69%) 90.58% (90.58%)

35 64.3%(64.3%) 67.12% (67.12%)
T4 5 150 20 81.7%(81.7%) 83.3% (83.3%)

10 25 81.78%(81.78%) 83.61% (83.61%)
35 81%(81%) 84.45% (84.45%)

T5 3 75 20 73.89% (73.89%) 73.67%(73.67%)
9 25 74.08% (74.08%) 73.76%(73.76%)

35 74.37% (74.37%) 73.81%(73.81%)

T6* 2 75 20 50.49%(75.74%) 56.55% (78.29%)
4 25 46.57%(73.28%) 55.73% (77.86%)
8 35 - 50.5% (67.2%)

T7 18 150 20 99.85%(99.85%) 99.89% (99.89%)
3 25 99.81%(99.81%) 99.88% (99.88%)

35 99.47%(99.47%) 99.88% (99.88%)

Table 1: The performances of AbundanceBin and the proposed approach. Test T3* and T6*
are for sequencing error reads. Symbol "-" means binning approaches fail to separate reads.
Two statistical measures used are sensitivity (Sen.) and accuracy (Acc.).

of the two approaches drops significantly. The sensitivity of AbundanceBin reaches the highest values
with 20 ≤ l ≤ 30, and its performance declines considerably when l > 30. The proposed method also
gets high sensitivity value with l ≥ 20. However, in contrast with AbundanceBin, since the value of
lm is always 15, the proposed approach returns slightly better results when the length of l increases.

3.2. Second scenario - combining with MetaCluster 2.0

Some composition-based methods (e.g., MetaCluster 2.0) use species-specific features to classify
reads into different groups of species. However, their performances are low when the abundance
levels of genomes are very different [20]. An abundance-based binning approach can be used as a
preprocessing task of composition-based approaches for performance improvement.

In this test scenario, the performances of the two approaches are compared when combining
with MetaCluster 2.0 to separate reads. Six test data are generated, including different number of
genomes and abundance ratios. Reads follow 454 sequencing model with the length of 150bp. The
value of l used in AbundanceBin is 25, while the values of (lp, lm, ls) used in the proposed approach
are (5, 15, 5).

The results in table 2 show that when the abundance levels of genomes are different, the combi-
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Figure 4: The performance of AbundanceBin and the proposed approach with different values of l.

ID No. of Abundance MC 2.0 MC 2.0 + MC 2.0 +
genomes level AbundanceBin Proposed App

Sen. (Acc.) Sen. (Acc.) Sen. (Acc.)
S1 3 5:5:15 61.67% 95.14% 96.31%

(74.44%) (96.76%) (98.15%)
S2 3 5:15:15 61.14% 91.5% 92.42%

(74.09%) (94.33%) (94.94%)
S3 3 5:7:7 74.91% - -

(83.27%) - -
S4 4 5:5:15:15 44.23% 88.54% 89.67%

(72.11%) (94.27%) (94.83%)
S5 4 5:5:10:15 47.0% 46.65% 47.92%

(73.5%) (73.32%) (73.96%)
S6 5 5:5:20:20:30 24.3% 55.8% 60.88%

(69.72%) (83.51%) (89.79%)

Table 2: Combining AbundanceBin and the proposed method with MetaCluster 2.0. Symbol
"-" means the binning approaches fail to separate reads. Two statistical measures used are
sensitivity (Sen.) and accuracy (Acc.).

nation of the proposed approach with MetaCluster 2.0 can achieve better performances than Meta-
Cluster 2.0 and the combination of AbundanceBin with MetaCluster 2.0 as well. However, in the test
case S3, because the abundance levels of genomes are relatively similar (5:7:7), AbudanceBin and the
proposed approach fail to separate reads. Besides, in the test case S5 (abundance levels are 5:5:10:15),
the combination of AbundanceBin and MetaCluster 2.0 returns worse result than MetaCluster 2.0
and the combination of the proposed approach with MetaCluster 2.0.

In this research, the aspects of computational time and memory cost are still not considered.



276 LE VAN VINH, TRAN VAN LANG, TRAN VAN HOAI

Some methods in [10, 15] can be applied to decrease searching time and storage space for the two
approaches.

4. CONCLUSIONS

The complexity of microbial communities requires efficient tools to analyze their data samples.
Thus, different aspects of data features must be well considered. Using the feature of genome abun-
dance can help us get better classification of metagenomic reads, especially for short reads. This paper
proposes a novel l-mer counting method which is helpful to improve an abundance-based binning ap-
proach. The improved approach of AbundanceBin proposed in this paper can achieve higher accuracy
comparing to the original one. This method can be used to improve other abundance-based binning
approach using l-mer counts. In future works, our concerned research topic could be an automatic
detection of number of bins, and an application of the proposed method to other composition-based
binning approach.
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