
Journal of Computer Science and Cybernetics, V.30, N.2 (2014), 139–147

FURTHER RESULTS ON FUZZY LINGUISTIC LOGIC PROGRAMMING∗

VAN HUNG LE1, DINH KHANG TRAN2

1Faculty of Information Technology, Hanoi University of Mining and Geology, Vietnam;
levanhung@humg.edu.vn

2School of Information and Communication Technology, Hanoi University of Science and
Technology, Vietnam; khangtd@soict.hust.edu.vn

Tóm tắt. Lập trình logic mờ ngôn ngữ được đề xuất cho việc biểu diễn và suy luận với tri thức con
người phát biểu bằng ngôn ngữ, trong đó giá trị chân lý của các phát biểu mờ được cho bằng các từ
ngôn ngữ và các gia tử có thể được dùng để thể hiện các mức độ nhấn mạnh khác nhau. Lập trình
logic mờ ngôn ngữ có các khái niệm và kết quả căn bản như ngữ nghĩa mô tả, ngữ nghĩa thủ tục và
ngữ nghĩa điểm bất động. Ngữ nghĩa thủ tục của nó là đúng đắn, đầy đủ và có thể tính toán trực
tiếp trên ngôn ngữ để tìm trả lời cho các truy vấn. Trong bài báo này, chúng tôi sẽ chứng minh một
số kết quả bổ sung của lập trình logic mờ ngôn ngữ tương ứng với các kết quả quan trọng trong lập
trình logic truyền thống. Chúng tôi cũng chỉ ra rằng nó có tính đầy đủ dạng Pavelka mở rộng. Ngoài
ra, khả năng sử dụng các toán tử kết hợp ở thân luật cũng được thảo luận.

Từ khóa. Lập trình logic, logic mờ, đại số gia tử, tính toán với từ, tính đầy đủ.

Abstract. Fuzzy linguistic logic programming is introduced to represent and reason with linguistically-
expressed human knowledge, where the truth of vague sentences is given in linguistic terms, and lin-
guistic hedges can be used to indicate different levels of emphasis. Fuzzy linguistic logic programming
has been shown to have fundamental notions and results of a logic programming framework, especially
of the declarative semantics, procedural semantics, and fixpoint semantics. The procedural semantics
are sound, complete and directly manipulates linguistic terms in order to compute answers to queries.
In this paper, we prove some additional results of fuzzy linguistic logic programming, which can be
considered as a counterpart of those of traditional definite logic programming. We also show that
it has a generalised Pavelka-style completeness. Moreover, the possibility that aggregation operators
can occur in rule bodies is also discussed.

Key words. Logic programming, fuzzy logic, hedge algebra, computing with words, completeness.

1. INTRODUCTION

Fuzzy linguistic logic programming (FLLP) [1], developed from fuzzy logic programming
[2], is introduced for representing and reasoning with linguistically-expressed human knowl-
edge. FLLP is a many-valued logic programming framework without negation. In FLLP, each

∗This paper is sponsored by Vietnam National Foundation for Science and Technology Development (NAFOSTED)

under Grant Number 102.04-2013.21.

140 VAN HUNG LE, DINH KHANG TRAN

fact or rule is graded to a certain degree specified by a linguistic truth value, and hedges can be
used as unary connectives in rule bodies. Many fundamental notions and results of traditional
definite logic programming (TDLP) [3] can have a counterpart in the framework. FLLP can
be applied to deductive databases [4]. Other logic programming frameworks developed in a
similar approach include multi-adjoint logic programming [5].

Fuzzy logic in the narrow sense (FLn) [6, 7] is a branch of many-valued logic developed
for a paradigm of inference under vagueness. Almost all systems of FLn are truth functional.
Rational Pavelka logic (RPL) [6] is a simplified version of Pavelka logic [8]. RPL is a system
of FLn where truth functions of conjunction and implication are Lukasiewicz t-norm and its
residuum. Each evaluation e of propositional variables by truth values in [0,1] uniquely extends
to an evaluation e(ϕ) of all formulae ϕ using the truth functions. Formula ϕ is called an 1-
tautology if e(ϕ) = 1 for each evaluation e. Several 1-tautology formulae are taken as axioms.
A theory is a set of formulae. Evaluation e is called a model of a theory T if e(ϕ) = 1 for all
ϕ in T . The deduction rule of RPL is modus ponens. A proof in a theory T is a sequence
ϕ1, . . . , ϕn of formulae whose each member is either an axiom of RPL or a member of T or
follows from some preceding members of the sequence; ϕn is called a provable formula, denoted
T ` ϕn. In the graded approach to syntax, a graded formula (ϕ, r), which is just another
notation for the formula r → ϕ, states that the truth value of ϕ is at least r. The deduction
rule, called many-valued modus ponens, is as follows: if T ` (ϕ, r) and T ` (ϕ → ψ, s),
then T ` (ψ, r ∗ s), where * is Lukasiewicz t-norm. The truth degree of a formula ϕ over a
theory T is defined as ||ϕ||T = inf{e(ϕ)|e is a model of T}, and the provability degree of ϕ
is |ϕ|T = sup{r|T ` (ϕ, r)}. It is proved that for each theory T and each formula ϕ, the
truth degree and the provability degree of ϕ coincide. This result is usually referred to as
Pavelka-style completeness, one of the most important completeness results in FLn [9, 10].

In addition to the results proved in [1], this paper will show that FLLP has a counterpart
of a number of important results of TDLP, e.g., the model intersection property. Also, the
completeness of the procedural semantics of FLLP can be seen as a generalised Pavelka-
style completeness if one considers FLLP as an FLn system and its computation as a proof.
Moreover, aggregation operators can occur in rule bodies, enabling us to describe increased
fulfillment of user requirements. The remainder of this paper is organised as follows. Section 2
gives an overview of FLLP. Section 3 proves a number of additional results. Section 4 discusses
the possibility of using aggregation operators in rule bodies. Section 5 concludes the paper.

2. FUZZY LINGUISTIC LOGIC PROGRAMMING

2.1. Linguistic truth domains and operations

Values of the linguistic variable Truth, e.g., True and VeryLittleFalse, can be characterised
by a hedge algebra (HA) X = (X,G,H,≤), where X is a term set and ≤ is its semantic order
relation[11, 12]. An l-limit HA is a linear HA in which every term has a length of at most
l+ 1. A linguistic truth domain is a finite and linearly ordered set X = X ∪ {0,W, 1}, where
X is the term set of an l-limit HA, and W is the middle truth value[1]. Operations are defined
on X = {v0, . . . , vn} with v0 ≤ v1 ≤ · · · ≤ vn as follows: (i) conjunction: x ∧ y = min(x, y);
(ii) disjunction: x∨ y = max(x, y); (iii) A non-decreasing inverse mapping h− for each hedge
h; (iv) Lukasiewicz t-norm and its residuum are respectively defined as:

CL(vi, vj) = vmax (i+j−n,0), ←•L (vj , vi) = vmin(n,n+j−i);

FURTHER RESULTS ON FUZZY LINGUISTIC LOGIC PROGRAMMING 141

and (v) Gödel t-norm and its residuum are respectively defined as:

CG(vi, vj) = min(vi, vj), ←•G (vj , vi) =

{
vn if i ≤ j
vj otherwise.

Each t-norm and its residuum satisfy the residuation property [6]:

C(b, r) ≤ h iff r ≤←• (h, b) (1)

2.2. Language

The language is a predicate language without function symbols. Connectives can be con-
junctions ∧ (Gödel) and ∧L (Lukasiewicz); the disjunction ∨; implications ←L (Lukasiewicz)
and ←G (Gödel); and hedges. For a binary connective c, its truth function is denoted by c•,
and for a hedge connective h, its truth function is its inverse mapping h−.

A term is either a constant or a variable. An atom is of the form p(t1, ..., tn), where p is an
n-ary predicate symbol, and t1, ..., tn are terms of corresponding attributes. A body formula
is defined inductively as follows: (i) an atom is a body formula; (ii) if B1 and B2 are body
formulae, then so are ∧(B1, B2), ∨(B1, B2), and hB1, where h is a hedge connective. A rule
is a graded implication (A← B.r), where A is an atom called rule head, B is a body formula
called rule body, and r is a truth value different from 0; (A← B) is called the logical part of
the rule. A fact is a graded atom (A.t), where A is an atom called the logical part of the fact,
and t is a truth value different from 0. All variables are assumed to be universally quantified.
A fuzzy linguistic logic program (program, for short) is a finite set of rules and facts. The
truth value t in (ϕ.t) is understood as a lower bound to the exact truth value of ϕ. A program
P can be represented as a partial mapping P : Formulae → X \ {0}, where the domain of
P , denoted dom(P), is finite and consists only of logical parts, and X is the linguistic truth
domain. For each (ϕ.t) ∈ P , P (ϕ) = t. We refer to the Herbrand base of P by BP [3].

2.3. Declarative semantics

Let P be a program, and X the linguistic truth domain; an Herbrand interpretation f
of P is a mapping from BP to X; f can be extended to all ground formulae, denoted f ,
as follows: (i) f(A) = f(A), if A is a ground atom; (ii) f(c(B1, B2)) = c•(f(B1), f(B2))
and f(hB) = h−(f(B)), where B1, B2, B are ground formulae, c is a binary connective,
and h is a hedge connective. For non-ground formulae, f is defined as f(ϕ) = f(∀ϕ) =
inf{f(ϕϑ)|ϕϑ is a ground instance of ϕ}, where ∀ϕ denotes the universal closure of ϕ. An
interpretation f is an Herbrand model of P if for all ϕ ∈ dom(P), f(ϕ) ≥ P (ϕ). A query is
an atom used as a question ?A. A pair (x; θ), where x ∈ X, and θ is a substitution, is called
a correct answer for P and a query ?A if for every model f of P , we have f(Aθ) ≥ x.

2.4. Procedural semantics

Admissible rules are defined as follows:
Rule 1. From ((XAmY);ϑ) infer ((XC(B, r)Y)θ;ϑθ) if (1) Am is an atom; (2) θ is an mgu
of Am and A; and (3) (A← B.r) is a rule in the program.
Rule 2. From (XAmY) infer (X0Y). This rule is usually used for situations where Am does
not unify with any rule head or logical part of facts.

142 VAN HUNG LE, DINH KHANG TRAN

Rule 3. From (XhBY) infer (Xh−(B)Y) if B is a body formula, h is a hedge connective.
Rule 4. From ((XAmY);ϑ) infer ((XrY)θ;ϑθ) if (1) Am is an atom; (2) θ is an mgu of Am

and A; and (3) (A.r) is a fact in the program.
Rule 5. If there are no more predicate symbols and hedge connectives in the expression,
replace all connectives ∧’s, and ∨’s with ∧•, and ∨•, respectively, and then evaluate it to
obtain a truth value. The substitution remains unchanged.

A pair (r; θ), where r is a truth value, and θ is a substitution, is said to be a computed
answer for a program P and a query ?A if there is a sequence G0, . . . , Gn such that (1) every
Gi is a pair consisting of an expression and a substitution; (2) G0 = (A; id) (id is the identity
(empty) substitution); (3) every Gi+1 is inferred from Gi by one of the admissible rules; and
(4) Gn = (r; θ′) and θ = θ′ restricted to variables of A.

Example 2.1. Assume that we use the linguistic truth domain taken from the 2-limit HA
X = (X, {F, T}, {V,M,R,L},≤), where F, T, V, M, R, and L stand for False, True, Very,
More, Rather, and Little, respectively, and there is a piece of knowledge as follows: (i) “If a
student studies very hard, and his/her university is rather high-ranking, then he/she will be a
good employee” is Very More True; (ii) “The university where Ann is studying is high-ranking”
is Very True; and (iii) “Ann is studying hard ” is More True. Let gd_em, st_hd, and hira_un
stand for “good employee", “study hard", and “high-ranking university", respectively. The
piece of knowledge can be represented by the following program:

(gd_em(X)←G ∧(V st_hd(X), R hira_un(X)).V MT)

(hira_un(ann).V T)

(st_hd(ann).MT)

Given a query ?gd_em(ann), we have the following computation (the substitution is id):

?gd_em(ann)

CG(∧(V st_hd(ann), R hira_un(ann)), V MT)

CG(∧(V −(st_hd(ann)), R hira_un(ann)), V MT)

CG(∧(V −(st_hd(ann)), R−(hira_un(ann))), V MT)

CG(∧(V −(MT), R−(hira_un(ann))), V MT)

CG(∧(V −(MT), R−(V T)), V MT)

CG(∧•(V −(MT), R−(V T)), V MT)

RT

That is, “Ann will be a good employee” is at least Rather True.

Theorem 2.1 (Soundness of the procedural semantics) [1] Every computed answer
for a program P and a query ?A is a correct answer for P and ?A.

Theorem 2.2. [1] For every correct answer (x; id) of a program P and a ground query ?A,
there exists a computed answer (r; id) for P and ?A such that r ≥ x.

Theorem 2.3 (Completeness of the procedural semantics) [1] Let P be a program,
and ?A a query. For every correct answer (x; θ) for P and ?A, there exists a computed answer
(r;σ) for P and ?A, and a substitution γ such that r ≥ x and θ = σγ.

The completeness of the procedural semantics states that given a correct answer for a query,
we always have a computed answer which is more general than the correct answer.

FURTHER RESULTS ON FUZZY LINGUISTIC LOGIC PROGRAMMING 143

2.5. Fixpoint semantics

Let P be a program. The immediate consequence operator TP mapping from interpreta-
tions to interpretations is defined as follows: for an interpretation f and every ground atom
A ∈ BP , TP (f)(A) = max{sup{Ci(f(B), r)| (A←i B.r) is a ground instance of a rule in P},
sup{t|(A.t) is a ground instance of a fact in P}}. It is shown in [1] that the least Herbrand
model of the program P is exactly the least fixpoint of TP and can be obtained by finitely
iterating TP from the bottom interpretation ⊥, mapping every ground atom into 0.

3. ADDITIONAL RESULTS OF FUZZY LINGUISTIC LOGIC
PROGRAMMING

The ordering ≤ in X is extended to interpretations pointwise as follows: for any interpre-
tations f1 and f2 of a program P , f1 v f2 iff f1(A) ≤ f2(A), ∀A ∈ BP . Let ⊗ and ⊕ denote
the meet (or infimum, greatest lower bound) and join (or supremum, least upper bound) op-
erators, respectively; for all interpretations f1 and f2 of P and for all A ∈ BP , we have: (i)
(f1 ⊗ f2)(A) = f1(A)⊗ f2(A), and (ii) (f1 ⊕ f2)(A) = f1(A)⊕ f2(A).

Proposition 3.1. Let FP be the set of all interpretations of a program P . Then 〈FP ,⊗,⊕〉
is a complete lattice.

Proof. We show that for any subset F of FP , ⊗F and ⊕F exist. For all A ∈ BP , (⊗F)(A) =
⊗{f(A)|f ∈ F}. It suffices that the set of all truth values is a complete lattice for ⊗{f(A)|f ∈
F} to exist, and a finite and linearly ordered linguistic truth domain is obviously a complete
lattice. The case of ⊕ is similar.

Lemma 3.1. Let f1 and f2 be two interpretations of a program P such that f1 v f2. For
any ground body formula B, we have f1(B) ≤ f2(B).

Proof. The lemma is proved by induction on the structure of B. In the base case, where B is a
ground atom, we have f1(B) = f1(B) ≤ f2(B) = f2(B). For the inductive case, by case anal-
ysis and induction hypothesis, we have B = ∧(B1, B2), or B = ∨(B1, B2), or B = hB1 such
that f1(B1) ≤ f2(B1) and f1(B2) ≤ f2(B2). By definition, f1(B) = ∧•(f1(B1), f1(B2)) ≤
∧•(f2(B1), f2(B2)) = f2(B), or f1(B) = ∨•(f1(B1), f1(B2)) ≤ ∨•(f2(B1), f2(B2)) = f2(B),
or f1(B) = h−(f1(B1)) ≤ h−(f2(B1)) = f2(B), respectively, since truth functions of all
connectives in rule bodies are monotone in all arguments. This completes the proof of the
lemma.

The following theorem is the counterpart of the model intersection property in TDLP [3].

Theorem 3.1. Let P be a program, and F a non-empty set of Herbrand models of P . Then
⊗F is an Herbrand model of P .

Proof. Since ⊗F always exists, we put g = ⊗F . Let ϕ be any formula in dom(P). There
are two cases: (i) (ϕ.t), where t is a truth value, is a fact in P . For each ground instance
A of ϕ and each model f ∈ F of P , by hypothesis, we have f(A) ≥ t. Therefore, g(A) =
⊗{f(A)|f ∈ F} ≥ t. Then g(ϕ) = ⊗{g(A)|A is a ground instance of ϕ} ≥ t = P (ϕ); or
(ii) (ϕ.t) is a rule in P . For each ground instance A ←i B of ϕ and each model f ∈ F ,
by hypothesis, we have f(A ←i B) =←•i (f(A), f(B)) ≥ t. By the residuation property

144 VAN HUNG LE, DINH KHANG TRAN

(1), we have f(A) ≥ Ci(f(B), t) ≥(∗) Ci(g(B), t), where (*) follows from Lemma 3.1. Thus
g(A) = ⊗{f(A)|f ∈ F} ≥ Ci(g(B), t). By the residuation property again, we have g(A ←i

B) =←•i (g(A), g(B)) ≥ t. Therefore, g(ϕ) = ⊗{g(A ←i B)|A ←i B is a ground instance of
ϕ} ≥ t = P (ϕ).

By definition, g is a model of P .

Consider the top interpretation > of a program P which maps every A ∈ BP to 1. For any
ϕ ∈ dom(P), it is easily verified that >(ϕ) = 1 ≥ P (ϕ). Thus, > is an Herbrand model of P ,
and the set of all Herbrand models of P is non-empty.

The following theorem follows immediately from Theorem 3.1 and the definition of the
least model.

Theorem 3.2. Let P be a program. Then MP = ⊗{f |f is an Herbrand model of P} is the
least Herbrand model of P .

Hence, the least Herbrand model of a logic program can be characterised by the greatest lower
bound of the set of all its Herbrand models. As in TDLP, MP can be regarded as the natural
interpretation of P , which gives intuitive description of the meaning of P .

The following proposition shows that if we consider FLLP as a system of FLn and the
program P as a fuzzy theory, then for each body formula ϕ, MP (ϕ) is the truth degree of ϕ
over P in the sense of Pavelka [8, 6].

Proposition 3.2. Let P be a program. For every body formula ϕ, MP (ϕ) = ⊗{f(ϕ)|f is an
Herbrand model of P}.

Proof. Let f be any Herbrand model of P . For each ground instance ϕϑ of ϕ, by Lemma
3.1, we have MP (ϕϑ) ≤ f(ϕϑ). Thus, MP (ϕ) = ⊗{MP (ϕϑ)|ϕϑ is a ground instance of
ϕ} ≤ ⊗{f(ϕϑ)|ϕϑ is a ground instance of ϕ} = f(ϕ). Since f is arbitrary, we have MP (ϕ) ≤
⊗{f(ϕ)|f is an Herbrand model of P}, and thus MP (ϕ) = ⊗{f(ϕ)|f is an Herbrand model
of P}. �

On one hand, Theorem 2.3 can be considered as a Pavelka-style completeness in a general
sense. On the other hand, we can also have a strict Pavelka-style completeness [8, 6] for
ground atoms as follows.

Proposition 3.3. Let P be a program. For every ground atom A, MP (A) = ⊕{r|(r; id) is
a computed answer for P and ?A}.

Proof. Since A is ground, every computed answer for ?A is of the form (r; id), and the set
{(r; id) is a computed answer for ?A} consists of all computed answers for ?A. For each
computed answer (r; id) for ?A, by Theorem 2.1, (r; id) is also a correct answer for ?A, thus
MP (A) ≥ r. Therefore, MP (A) ≥ ⊕{r|(r; id) is a computed answer for ?A}. On the other
hand, since (MP (A); id) is a correct answer for ?A, by Theorem 2.2, there exists a computed
answer (r′; id) for ?A such that r′ ≥ MP (A). Hence MP (A) = ⊕{r|(r; id) is a computed
answer for ?A}. �

Therefore, if one considers FLLP as an FLn system and a computation as a proof, Proposition
3.3 states that MP (A) is the provability degree of atom A in the sense of Pavelka, which,
together with Proposition 3.2, establishes a strict Pavelka-style completeness for ground atoms.
However, we do not have a similar result for non-ground atoms as shown in the following
example.

FURTHER RESULTS ON FUZZY LINGUISTIC LOGIC PROGRAMMING 145

Example 3.1. Consider a simple program P consisting of two ground facts: (p(a).V T) and
(p(b).T). It is easily verified that MP (p(X)) = ⊗{MP (p(a)),MP (p(b))} = T , where X is a
variable. However, since ?p(X) has a computed answer (V T ; {X/a}),⊕{r|(r;σ) is a computed
answer for P and ?p(X)} = V T 6= MP (p(X)).

The reason is that in logic programming, besides the truth values, one also considers the
substitutions, which are an important part of computations.

It can be seen that an arbitrary body formula may occur as a query in our framework, and
if so, the same result can be obtained for ground ones.

4. USING AGGREGATION OPERATORS IN RULE BODIES

Recall that in fuzzy logic programming [2], body formulae can be built using aggrega-
tion operators, which subsume all kinds of fuzzy conjunctions and disjunctions. Aggregation
operators are very useful since they enable us to describe increased fulfillment of user require-
ments. A conjunction is one extreme case where one desires that all the criteria be satisfied,
and a disjunction is the other extreme where the satisfaction of any of the criteria is all one
needs. In this section, we discuss the possibility of extending our rule bodies with aggregation
connectives whose truth functions can directly act on linguistic truth values.

In the literature, there are several kinds of aggregation operators which can directly com-
pute with linguistic labels. The most well-known example is the LOWA (Linguistic Ordered
Weighted Averaging) operator [13]. The LOWA operator is developed based on the ordered
weighted averaging (OWA) operator defined in [14] and the convex combination of linguistic
labels defined in [15].

Definition 4.1 (LOWA operator) [13] Let S = {s1, . . . , sm} be a set of linguistic terms
to be aggregated, the LOWA operator φ(s1, . . . , sm) = Cm{wk, tk, k = 1 . . .m} is defined
inductively as follows.

For m = 2,

C2{{w1, 1− w1}, {t1, t2}} = (w1 � vj)⊕ ((1− w1)� vi) = vk

where t1 = vj , t2 = vi ∈ X, j ≥ i, and k = min{n, i + round(w1.(j − i))}, in which n + 1 is
the cardinality of X, round(.) is the usual round operation.

For m > 2,

Cm{wk, tk, k = 1 . . .m} = C2{{w1, 1− w1}, {t1, Cm−1{ηh, th, h = 2 . . .m}}}

where W = [w1, . . . , wm] is a weighting vector associated with S such that: (i) wi ∈ [0, 1],
and (ii)

∑m
i=1wi = 1; T = [t1, . . . , tm] is a vector such that ti is the ith largest element in

the collection s1, . . . , sm; ηh = wh/
∑m

2 wk, h = 2, . . . ,m.

A natural question arising is how to obtain the associated weighting vector. Yager [14] proposed
an interesting way to compute the weights of the OWA operator using linguistic quantifiers.
More precisely, if Q is a relative or proportional quantifier such as “Most", Q can be expressed
by a fuzzy subset of [0, 1] such that for each r ∈ [0, 1], Q(r) indicates the degree to which r
portion of objects satisfies the concept denoted by Q. Then, the weights can be obtained by:

wi = Q(i/n)−Q((i− 1)/n), i = 1, . . . , n

146 VAN HUNG LE, DINH KHANG TRAN

The membership function of such a quantifier Q can be:

Q(r) =

0 if 0 ≤ r < a
r−a
b−a if a ≤ r ≤ b
1 if 1 ≥ r > b

where 0 ≤ a ≤ b ≤ 1.

Because of the non-decreasing nature of Q, it follows that wi ≥ 0. Furthermore, since
Q(1) = 1 and Q(0) = 0, we have

∑n
i=1wi = 1. The use of such quantifiers to generate the

weighting vector for the LOWA operator essentially implies that the more criteria are satisfied,
the better the solution is.

Example 4.1. Assume that the truth domain in Example 2.1 is taken, and the quantifier
“Most" with a=0.3 and b=0.8 is used to generate the weighting vector for the LOWA opera-
tor. The weighting vectors of dimension 3 and of dimension 2 are [w1 = 1/15, w2 = 2/3, w3 =
4/15] and [w1 = 2/5, w2 = 3/5], respectively; we have φ(AT,LT,AMT) = φ(v35, v30, v25) =
v29 = AAT .

The LOWA operator has the following properties: (i) it is commutative, i.e., φ(s1, . . . , sm) =
φ(π(s1), . . . , π(sm)), where π is a permutation over the set of arguments; (ii) it is non-
decreasing in all arguments, i.e., given S = [s1, . . . , sm] and T = [t1, . . . , tm] being two vectors
such that for all i, si ≥ ti, we have φ(S) ≥ φ(T); and (iii) it is an or-and operator, i.e.,
min(si) ≤ φ(s1, . . . , sm) ≤ max(si).

Since in all the proofs, we only require that the truth function of a connective in body
formulae be non-decreasing in all arguments, allowing body formulae to be built using a LOWA
operator (i.e., we can have a rule A← @(B1, . . . , Bn), where the truth function @• is a LOWA
operator) does not affect any results of our framework at all.

5. CONCLUSION

In this paper, we have presented a number of additional results of FLLP including the
counterpart of the model intersection property of TDLP and the characterisation of the least
Herbrand model of a logic program by the greatest lower bound of the set of all its Herbrand
models. We have also shown that the completeness of the procedural semantics of FLLP can be
seen as a generalised Pavelka-style completeness if one considers FLLP as an FLn system and
its computation as a proof; in fact, FLLP has a strict Pavelka-style completeness for ground
queries, but not for non-ground ones. Moreover, aggregation operators can occur in rule bodies,
which enables us to describe increased fulfillment of user requirements. Such results, together
with the notions and results presented in [1], show that FLLP can be seen as an elegant
and natural generalisation of TDLP for inference under vagueness since (1) it allows one to
explicitly represent and reason with partial truth expressed in linguistic terms; (2) it has a
counterpart of most fundamental notions and results of TDLP; and (3) it enjoys a generalised
Pavelka-style completeness.

REFERENCES

[1] Le, V.H., Liu, F., Tran, D.K., Fuzzy linguistic logic programming and its applications, Theory
and Practice of Logic Programming 9 (3) (2009) 309–341.

FURTHER RESULTS ON FUZZY LINGUISTIC LOGIC PROGRAMMING 147

[2] Vojtáš, P., Fuzzy logic programming, Fuzzy Sets and Systems 124 (2001) 361–370.
[3] Lloyd, J.W.: Foundations of Logic Programming, Springer Verlag, Berlin, Germany, 1987.
[4] Le, V.H., Liu, F., Lu, H., A data model for fuzzy linguistic databases with flexible querying,

In Nicholson, A.E., Li, X., eds., Australasian Conference on Artificial Intelligence, Volume
5866 of Lecture Notes in Computer Science, Springer (2009) 495–505.

[5] Medina, J., Ojeda-Aciego, M., Vojtáš, P., Similarity-based unification: a multi-adjoint approach,
Fuzzy Sets and Systems, 146 (2004) 43–62.

[6] Hájek, P., Metamathematics of Fuzzy Logic, Kluwer, Dordrecht, The Netherlands, 1998.
[7] Novák, V., Perfilieva, I., Mockor, J., Mathematical Principles of Fuzzy Logic, Kluwer,

Dordrecht, 2000.
[8] Pavelka, J., On fuzzy logic i, ii, iii, Zeitschrift fur Mathematische Logik Grundlagen Math

25 (1979) 45–52, 119–134, 447–464.
[9] Novák, V., Which logic is the real fuzzy logic?, Fuzzy Sets and Systems 157 (5) (2006)

635–641.
[10] Esteva, F., Godo, L., Noguera, C., First-order t-norm based fuzzy logics with truth-constants:

Distinguished semantics and completeness properties, Annals of Pure and Applied Logic 161
(2) (2009) 185–202.

[11] Nguyen, C.H., Wechler, W., Hedge algebras: An algebraic approach to structure of sets of
linguistic truth values, Fuzzy Sets and Systems 35 (1990) 281–293.

[12] Nguyen, C.H., Wechler, W., Extended hedge algebras and their application to fuzzy logic, Fuzzy
Sets and Systems 52 (1992) 259–281.

[13] Herrera, F., Verdegay, J.L., Linguistic assessments in group decision, Proceedings of the 1st
European Congress on Fuzzy and Intelligent Technologies, Aachen, Germany (1993) 941–
948.

[14] Yager, R., On ordered weighted averaging aggregation operators in multicriteria decision making,
IEEE Transactions on Systems, Man and Cybernetics 18 (1988) 183–190.

[15] Delgado, M., Verdegay, J., Vila, M., On aggregation operations of linguistic labels, Interna-
tional Journal of Intelligent Systems 8 (1993) 351–370.

Received on March 21, 2013
Revised on March 15, 2014

	INTRODUCTION
	FUZZY LINGUISTIC LOGIC PROGRAMMING
	Linguistic truth domains and operations
	Language
	Declarative semantics
	Procedural semantics
	Fixpoint semantics

	ADDITIONAL RESULTS OF FUZZY LINGUISTIC LOGIC PROGRAMMING
	USING AGGREGATION OPERATORS IN RULE BODIES
	CONCLUSION

