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Tóm tắt. Hệ phi tuyến Euler-Lagrange có đồng thời tham số bất định và nhiễu đầu vào (ENUI) là
mô hình của rất nhiều các thiết bị công nghiệp trong thực tế như tay máy robot, hệ cơ khí Tora, hệ
cơ điện tử Lavitat v.v. Các công trình nghiên cứu trước đây chủ yếu tập trung cho các bài toán điều
khiển ổn định hệ với giả thiết chỉ xét đến tham số bất định hoặc chỉ xét đến nhiễu đầu vào. Trong
các tài liệu [1], [2] và [3] chúng tôi đã giới thiệu một phương pháp điều khiển bám quỹ đạo thích nghi
mới, phương pháp điều khiển này vừa có khả năng bù được sự ảnh hưởng của tham số bất định và có
khả năng giảm thiểu được sự ảnh hưởng của nhiễu đầu vào lên hệ. Mặt khác với phương pháp điều
khiển đó, sai lệch bám quỹ đạo sẽ được điều khiển hội tụ về một miền hấp dẫn sai lệch bám nhỏ tùy
ý quanh gốc tọa độ. Trong bài báo này chúng tôi tiếp tục cải tiến cách lựa chọn tham số để có thể
thay đổi được thời gian quá độ của sai lệch bám quỹ đạo, qua đó chúng ta có thể điều chỉnh được
một cách độc lập miền hấp dẫn của sai lệch bám và thời gian quá độ trong bài toán điều khiển ổn
định theo sai lệch bám quỹ đạo cho hệ ENUI.

Từ khóa. Hệ phi tuyến, điều khiển thích nghi, điều khiển bám quỹ đạo,ổn định ISS, kháng nhiễu.

Abstract. The Euler-Lagrange nonlinear system with both uncertain parameters and input noises(ENUI)
is a common model of many plants in practice as, robot manipulators, mechanical Tora systems, Lav-
itat mechanical systems, etc. The previous studies are most oriented to control problems for separate
cases: parameters uncertainty or input noises. In papers [1, 2, 3] we introduced a new adaptive tracking
control method based on disturbance attenuation and ISS stabilization of ENUI. This both methods
compensate the uncertain parameters and eliminate the effect of noise on the inputs of systems. The
advantage of this adaptive tracking control is the ability to converge the tracking error to be arbi-
trary sufficiently small around the neighbourhood of the origin. In this paper, we continue to present
a parameter modifying method of an adaptive tracking controller to get an optional transient time.
With this modification, we can adjust independently the dimension of tracking errors attractor and
the transient time.

Key words. Nonlinear systems, adaptive control, tracking control, ISS stabilization, disturbance
attenuation.

1. INTRODUCTION

Consider the following dynamic model of ENUI given by
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M(q, θ)q̈ + g(q, q̈, θ) = u+ η(t) (1)

where q = (q1, q2, ..., qn)T , (u = (u1, u2, ..., un)T ) are output and input vectors, respectively;

θ = (θ1, θ2, ..., θn)T represents time invariant uncertain parameter vector; η(t) ∈ Rn denotes
the input noise vector; M(q, θ) ∈ Rn×n is a positive definite symmetric function matrix
depending on q and θ; vector g(q, q̈, θ) ∈ Rn is dependent on vector q, q̈ and θ. For system (1),
the given matrices have the following properties:

Property 1 : M(q, θ) ∈ Rn×n is symmetric and positive definite

Property 2 : Model (1) with vector of uncertain constant parameters θ can be written as [4]

M(q, θ)q̈ + g(q, q̈, θ) = D0(q, q̇, q̈) +D1(q, q̇, q̈)θ. (2)

In the case if the system is unaffected by input noises η(t) = 0, M(q, θ)q̈ + g(q, q̈, θ) = u,
then the controller introduced in [4, 5, 6]

u =
_
M(d2w/dt2 +K1e+K2de/dt) +

_
g (3)

is utilized, where K1,K2 are two positive definite symmetric matrices optionally;
_
M,

_
g are

the brief notations of
_
M =

_
M(q, p),

_
g =

_
g (q, q̇, p); w is desired trajectory vector; e = w − q

is tracking error vector; p(t) is an estimation parameter vector for unknown the parameter
vector θ; received from adjustment mechanisms

dp/dt = Q(
_
M
−1
D1)

T (Θ, I)P (ede/dt)T (4)

with any positive definite symmetric matrix Q and positive definite root P of the Lyapunov
equation

ATP + PA = −Q (5)

where A =

(
Θ I
−K1 −K2

)
and Θ is the zero matrix, I is the identity matrix of the same

dimension, which are only used for the case of the assumption η(t) = 0.

In the presence of input noise η(t) 6= 0, the controller introduced in the paper [5] can drive
the tracking errors to a neighbourhood of the origin defined with the quite large radius

r = 1 + µ−11 [β1 + 2β0β2 + β2c
√
µ1 + µ2] ≥ 1. (6)

However the controller can be only used under the following assumptions

µ−12 ≤ ‖M
−1‖ ≤ µ−11 ; ‖Γ‖ ≤ 1; Γ = M−1

_
M
−1
−I; ‖δ‖ ≤ β0+β1‖e‖+β2‖e‖2; δ = g−_g (7)

where µ1, µ2, β0, β1, β2, c are positive constants w.r.t. the estimation
_
M,

_
g for M, g.
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Using ISS(input stable to state) theory, we introduced a new adaptive tracking control
method based on disturbance attenuation and ISS stabilization of ENUI in [1–3]. In this
paper, we propose a parameter modification of the earlier developed controller to get a smaller
transient time. With this modification, we can adjust independently the dimension of the
tracking errors attractor and the transient time of the closed system. The advantage of this
method is that the tracking error can converge smoothly to an arbitrary sufficiently small
neighbourhood of the origin in optional transient time. In the second section, we introduce an
algorithm for adaptive tracking control designing ENUL and present a modification to get an
optional transient time. Finally, an example is given to illustrate the proposed algorithm. The
paper ends with some conclusions.

2. ADAPTIVE TRACKING CONTROL BASED ON DISTURBANCE
ATTENUATION AND ISS STABILIZATION FOR ENUI

We replace the uncertain parameter vector θ in M, g by an optional estimative constant

vector p. Sufficient small
_
p = θ − p is not required, which means that it does not need to

be bounded by the conditions (7) as in [5]. From (3), let us supplement an external signal
v(t), which will be used later to compensate the noise. From [5] we have the structure of the
tracking controller as

u =
_
M(d2w/dt2 +K1e+K2de/dt) +

_
g + v(t). (8)

Substitute the controller (8) into (1), we have

M(q, θ)q̈ + g(q, q̈, θ) =
_
M(q, p)(d2w/dt2 +K1e+K2de/dt) +

_
g (q, q̈, p) + v(t) + η(t). (9)

Setting e = w − q, w = e+ q, the equation (9) becomes

M(q, θ)q̈ + g(q, q̈, θ) =
_
M(q, p)(

d2e

dt2
+
d2q

dt2
+K1e+K2

de

dt
) +

_
g (q, q̈, p) + v(t) + η(t)

=
_
M(q, p)q̈ +M(q, p)(

d2e

dt2
+K1e+K2

de

dt
) +

_
g (q, q̈, p) + v(t) + η(t)

⇐⇒ (M(q, θ)−
_
M(q, p))q̈+ g(q, q̈, θ)−_

g (q, q̈, p) =
_
M(q, p)(

d2e

dt2
+K1e+K2

de

dt
) + v(t) + η(t).

or briefly in short

(M −
_
M)q̈ + g −_

g =
_
M(

d2e

dt2
+K1e+K2

de

dt
) + v(t) + η(t).

With this controller, the closed system describes the following tracking error dynamic
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d2e

dt2
+K1e+K2

de

dt
) =

_
M
−1

(M −
_
M)q̈ + (g −_

g )− v − η(t)

=
_
M
−1

(Mq̈ + g − (
_
Mq̈ +

_
g )− v − η(t)) (10)

and with the characteristic Property 1 and Property 2 of system (1) we have

d2e

dt2
+K1e+K2

de

dt
) =

_
M
−1

(D0(q, q̇, q̈) +D1(q, q̇, q̈)θ)−D0(q, q̇, q̈)−D1(q, q̇, q̈)p− v − η

=
_
M
−1

(D1(q, q̇, q̈)(θ − p)− v − η) (11)

=
_
M
−1

(D1
_
p − v − η)

where
_
p = θ − p.

Define v = D1z and x = (e ė)T , then using the form (5) of matrix A, the tracking error
system becomes

dx

dt
= Ax+B(D1(

_
p − z)− η), B = (Θ

_
M
−1

)T . (12)

We use the implicit reference model

dxm/dt = Axm (13)

where A is stable matrix, because K1,K2 are two positive definite symmetric matrices. Then,
the specific task for designing the tracking error compensation mechanism is now to determine
the disturbance compensation signal v(t) so that the error between x(t) trajectory (12) and
desired trajectory xm(t) of (13) converges asymptotically to 0. We take a positive definite
function of error between x(t) and xm(t) as

V = (x− xm)TP (x− xm) + (
_
p − z)TE(

_
p − z) (14)

where E is a positive definite symmetric matrix optionally, P is a positive definite symmetric
root of Lyapunov equation (5) and Q is an arbitrary positive definite symmetric matrix. Using

(12) and (13) we obtain that
_
p = θ− p is a constant vector. The derivative of (14) along (12)

is given by

dV

dt
= (x− xm)T (ATP + PA)(x− xm)+

2(
_
p − z)T [DT

1 B
TP (x− xm)− Edz

dt
]− 2(x− xm)TPBη

= −(x− xm)TQ(x− xm) + 2(
_
p − z)T [DT

1 B
TP (x− xm)− Edz

dt
]− 2(x− xm)TPBη

(15)
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By choosing of xm(t) = 0,∀t, the equation (15) becomes

dV

dt
= −xTQx+ 2(

_
p − z)T [DT

1 B
TPx− Edz

dt
]− 2xTPBη. (16)

When η = 0, to keep dV/dt < 0, and letting x→ 0, ẋ→ 0, we get adaptive tracking error
compensation mechanism (AECM)

dz

dt
= E−1DT

1 B
TPx

v = D1z
(17)

Next, when η 6= 0 we need to improve the quality of the controller (8) and AECM (17)
to minimize the affect of external disturbance η 6= 0 for the tracking error of x(t). Obviously,
with more freedom of choice for the matrices K1,K2, Q,E, p we can do that. We just need to
create dV/dt < 0 when x 6∈ Ω, where Ω is a small enough neighbourhood around the origin.
First, we define

µ = ‖η‖∞ = sup
t
|η(t)|, γ(q, p) = ‖

_
M
−1
‖1 (18)

and choose parameter vector p so that γ(q, p) reaches the minimum of

γmin = min
p

max
q
γ(q, p). (19)

Then as in [5, 7], we used diagonal matrices K1 = diag(k1i), K2 = diag(k2i), k
2
2i >

k1i > 0, i = 1, 2, ..., n and the positive definite matrix Q = 2

(
2K1K2 Θ

Θ K2
2 −K1

)
. Using

the selected Q, the positive definite symmetric root P of equation (5) is given by

P = [2K1K2K1;K1K1]
T (20)

and (16) becomes

dV/dt = −2|x|(λ|x| − δγminµ) (21)

where

δ = max(k11, ..., k1n, k21, ..., k2n)

λ = min(k211, ..., k
2
1n, k

2
21 − k11, ..., k22n − k1n) (22)

The equation (21) shows that if we have |x| > δγminµ/λ then dV/dt will be negative defi-
nite. In other words, tracking errors always tend to origin, since it is outside the neighbourhood
of origin (called the attractor)

Ω = {x ∈ R2n | |x| ≤ δγminµ/λ}. (23)
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The dimension of the above attractor Ω can be sufficiently adjusted, optionally via the
positive diagonal matrices K1,K2. Unlike the result we proposed in [1–3], in this paper we
choose

k11 = ... = k1n = εa, a > 0, 1 ≤ ε ≤ a;

k21 = ... = k2n =
√
a(a+ 1) (24)

where ε, a are any bounded real numbers to be chosen. So δ =
√
a(a+ 1) is also a bounded

value. Therefore λ = a2, which means

lim
a→∞

γminµ
√
a(a+ 1)/a2 = 0 (25)

or the attractor dimension converges to zero when a → ∞. If the more you choose ε closes
to the parameter a, the more eigenvalues of matrix A of implicit reference model (13) go far
image axis. Therefore, transient time of the closed system is shorter. 1 ≤ ε ≤ a is a transient
time adjusting constant.

The adaptive control system in Fig. 1 with controller (8) and tracking error compensation
mechanism (17) will not only compensate the tracking error caused by uncertainty component
_
p = θ− p but also attenuate the effect caused by disturbance η(t) in the sense of leading the
derivation component caused by itself to the sufficient small neighbourhood Ω of the origin.
Transient time of the closed system can be adjusted by choosing constant value of ε.

Fig. 1. Adaptive tracking control based on disturbance attenuation and ISS stabilization
for systems (1)

Fig. 2. Attractor of tracking errors

Theorem 1. Assume Properties 1 and 2. The control system in Figure 1 with controller (8)
and tracking error compensation mechanism (17), where a > 0 and 1 ≤ ε ≤ a are sufficiently
adjusted, ensures tracking errors (e de/dt)T always tend to the neighbour of the origin. The
dimension of the attractor (23) converges to zero when a = ∞. Transient time of closed
system can be adjusted by choosing constant value of ε.
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3. APPLYING EXAMPLE

In order to show the results of the proposed controller, we design the adaptive controller
for three degree of freedom cylinder robot manipulator, which is depicted in Fig.3, where
m1,m2(kg) are mass of first link and second link, l1, l2(m) are lengths of links and ϕ(rad) is
angle between first link and second link. The end effectors load m2 is assumed to be unknown
but constant, m2 stand for parameter θ. The τ, f1, f2 are inputs as torque and force of link 1,
force of link 2 which are infected by noises ητ , ηf1 and ηf2 respectively. Physical parameters
are given in Table 1.

Table 1. Physical parameters of cylinder robot manipulator

Name Notation Dimension
Mass of link 1 m1 =1 (kg)
Mass of link 1 m1 =1.5 (kg)
Inertial moment J = 0.5 (m2Kg)

Acceleration of gravity g = 9.8 (m/s2)

The cylinder robot manipulator has output vector input vector y(ϕ l1 l2)
T , and input

u(t) = (τ f1 f2)
T noise vector η(t) = (ητ ηf1 ηf2)T . The model (1) of cylinder robot manipu-

lator is given as [7]

M =

J + θl22 0 0
0 m1 + θ 0
0 0 θ

 ; g =


2θl2

dl2
dt

dϕ

dt
(m1 + θ)g

−θl2
d2ϕ

dt2

 . (26)

Fig. 3. Three degree cylinder robot manipulator

The simulation results with parameters p = 1(kg), E=1, q(0) = (0.5 0.1 0.2)T , q̇(0 0 0)T

are plotted in Figures 4 -10.

In these simulations, the torques applied to joints, force applied to link 1 are affected by
noises, which are described in Figures 4 and 5. The selected parameter p is 1 and unnecessarily
closes to the uncertain parameter of mass m2 = 1.5Kg. The Figures 6 and 7 show the output
signals: angle without AECM ϕ and angle with AECM a = 5 and a = 80; length l1 without



ADAPTIVE TRACKING CONTROL OF EULER-LAGRANGE NONLINEAR SYSTEMS 139

Fig. 4. Torque input of the cylinder robot manipulator

Fig. 5. Force of link 1 of the cylinder robot manipulator

Fig. 6. Angle ϕ without AECM and angle ϕ with AECM

Fig. 7. Length l1 without AECM and length l1 with AECM a = 5 and a = 80

AECM and length l1 with AECM a = 5, a = 80. The Figures 8, 9 show the tracking errors
and their derivatives in case a = 80. Theoretical and simulation results indicate that the
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Fig. 8. Tracking errors of ϕ, l1, l2 in case a = 80;

Fig. 9. Tracking errors of dϕ/dt, dl1/dt, dl2/dt in case a = 80

adaptive tracking control method based on disturbance attenuation and ISS stabilization both
compensates the uncertain parameter, the mass of end-effectors carried by robot manipulator,
and eliminates the effect of input noises (disturbance) on robot manipulator.

Fig. 10. Angle in case a = 30 with ε = 1, 2 and 3

In Figure 10, we show tracking control simulation results with some transient time adjusting
constant ε = 1, 2 and 3. When we choose ε = 3, transient time is shorter than in the cases
ε = 1 and ε = 2.

4. CONCLUSIONS

This paper has proposed a new adaptive tracking control method based on disturbance
attenuation and ISS stabilization of ENUI which guaranteed tracking errors. By using AECM
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and by choosing arbitrary positive parameter p instead of the uncertainty parameter, positive
constant a, ε and matrix E, the tracking errors can be brought to arbitrarily small neighbour-
hood around the origin. This method compensates the uncertain parameters and eliminates
the effect of noise on inputs of system. The advantages of this method is to converge smoothly
the tracking errors to the arbitrary sufficiently small neighbourhood of the origin in optional
transient time without chattering phenomenon. The simulation results have shown that the
designed controller has a good behavior and that it dealt with the guaranteed tracking errors
very well.
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