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Abstract. This paper presents an enhanced approach for computing shortest paths on triangulated

polyhedral surfaces by parallelizing the Funnel Tree Algorithm (introduced by An et al. in The

funnel tree algorithm for finding shortest paths on polyhedral surfaces, Optimization (2023)) and

incorporating the Method of Orienting Curves. In particular, we use the Method of Orienting Curves

for finding the shortest path from the cusp of a funnel to its direct destination. As a result, the children

of the funnel are also determined simultaneously. This combined approach leverages modern multi-

core processors to achieve significant performance improvements. Experimental results demonstrate

the effectiveness of this method on various polyhedral surfaces. The resulting implementation achieves

significantly better speedups over the corresponding sequential code given by An et al. when compared

to their previous work.
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1. INTRODUCTION

Computing the shortest paths connecting two points on a polyhedral surface is an ex-
tensively researched computational geometry problem with several applications in fields in-
cluding navigation, robotics, and GIS [1, 2].

Several researchers approached the problem of determining the shortest path connecting
two points in a sequence of triangles of some polyhedral surface (the restricted shortest path
problem, in short) as a solution to this problem, e.g. [3, 4]. Usually, the planar unfolding
technique is applied to address this problem. Pham-Trong et al. [3] proposed an algorithm
that computes the shortest path connecting two points in a sequence of triangles in detail. All
of the sequence’s triangles are unfolded into a common plane. After such planar unfolding,
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they took into consideration the planar unfolded sequence and used beam propagation to
determine the shortest path. Using the same planar unfolding technique, Xin and Wang
(2007) [4] described a planar unfolding process of a sequence of triangles and subsequently
presented an algorithm for solving the restricted shortest path problem.

The Method of Orienting Curves was first presented by Phu [5] in 1987 as a solution
for some optimal control problems with state constraints. Then it was developed further in
[6, 7, 8, 9]. In particular, Steiner’s problem of finding the polygon with minimal circumference
that is inscribed in a (arbitrary) given convex polygon was solved with the help of the Method
of Orienting Curves [10], requiring only a ruler and compass for construction. Furthermore,
the optimal control problem of hydroelectric power plants [11], Zermelo’s navigation problem
along a river [12], the optimal inventory problem [8], and time-optimal control of manipulator
along a prescribed trajectory [13] were the important practical problems that this method
was successfully applied to solve.

An discovered recently that the idea of the Method of Orienting Curves can be effectively
used to solve various computational geometry problems [14, 15, 16]. The shortest path
connecting two points in the sequence of triangles was found by cusps of funnels associated
with common edges along the sequence of triangles in [17], following the introduction of the
concept of a funnel associated with a common edge along the sequence of triangles in three-
dimensional space (which is comparable to Lee and Preparata’s one in a simple polygon
[18]). The Method of Orienting Curves was used to construct such a funnel without planar
unfolding technique.

In [19], An et al. proposed an algorithm to build the funnel tree by recursively splitting
funnels which operates in O(n2) time complexity, where n is the number of faces of the
surface. This algorithm constructs a funnel tree to determine the shortest paths from a fixed
source point to all other vertices on a triangulated polyhedral surface. While effective, the
algorithm’s sequential nature limits its scalability on large datasets and complex surfaces.
With the advent of multi-core processors, there is a significant opportunity to improve the
performance of computational geometry algorithms through parallelization. In this paper,
we present a parallel algorithm to build a funnel tree based on the sequential algorithm in
[19]. The resulting implementation achieves significantly better speedups over corresponding
sequential code given in [19] when compared to a previous work. We also present the method
of orienting curves for finding the shortest path from the cusp of a funnel to its direct
destination. As a result, the children of the funnel are also determined simultaneously.

The rest of the paper is organized as follows. In Section 2, we introduce some definitions
and properties. Then in Section 3, we propose an approach to determine children of a funnel
by the Method of Orienting Curves. Section 4 presents our parallel algorithm. In Section 5,
we present the improved parallel algorithm, and Section 6 then describes our implementation
and experimental results. Section 7 concludes this paper.

2. PRELIMINARIES

Let us review certain definitions and properties. Let p and q be any two points in space, we
denote [p, q] := {(1−λ)p+λq : 0 ≤ λ ≤ 1}, ]p, q] := [p, q]\{p} and [p, q] is called a line segment
[17]. Several terminologies for three-dimensional space that were introduced in [2, 17, 20]
will be used in this paper. A sequence of triangles S is defined by a list (f1, f2, . . . , fm+1) of
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Figure 1: The sequence S, the funnel Fp,q,S(u) (gray), its direct destination v and its child
Fv,q,S′ , where S′ = S ∪△pqv

adjacent triangles f1, f2, . . . , fm+1 on some triangulated polytope surface, where fi and fi+1

share a common edge ei. A list of common edges E = (e1, e2, . . . , em) is called a sequence
of common edges of S. For points p, q ∈ S, denote by SPS(p, q) the shortest path joining p
and q in S.

A path γ connecting two points p and q in S is a polyline
⋃n

i=0[vi, vi+1], where v0 =
p, vn+1 = q, each line segment [vi, vi+1] is on some triangle of S, each vertex vi(i ∈ 1, . . . , n)
of the path belongs to some common edge of S [21]. Denote the length of a polyline γ by
l(γ).

A path
⋃m

i=0[vi, vi+1] in a sequence of triangles S, where v0 = u, vm+1 = v, each line
segment [vi, vi+1] is on some triangle of S, each vertex vi of the path belongs to some
common edge of S, is a straightest geodesic from u to v in S if the measures of the angles of
this path at all vertices vi(i ∈ 1, 2, . . . ,m) are 180◦ [17].

Such straightest geodesic is denoted by CS(u, v). We also call a line segment on a triangle
fi a straightest geodesic [21].

Definition 1. ([19]) The region Fp,q,S(u) is called a funnel (of the polytope) associated with
the vertex u and the path SPS(p, q). The vertex u is called the cusp of the funnel, SPS(u, p)
is called the left border and SPS(u, q) is called the right border of the funnel. If [v, q] is an
edge of the polytope, v is called the direct destination of the funnel Fp,q,S(u).

Definition 2. ([19]) Consider a funnel Fp,q,S , its direct destination v and S′ = S ∪△pqv. If
Fp,v,S′ or Fv,q,S′ exists (i.e. Fp,q,S and Fp,v,S′ or Fv,q,S′ have the same cusp s), it is called a
child of Fp,q,S .

Definition 3. ([19]) Assume that s is a vertex of the surface. A funnel tree is a tree with
root s, where each node other than the root s is a triple (Fp,q,S , SPS(p, q), s), denoted by
Fp,q,S . In the funnel tree, node Fp,v,S′ is a child of the node Fp,q,S if the funnel Fp,v,S′ is a
child of the funnel Fp,q,S .

The definitions of funnel and its direct destination are given in Figure 1.
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3. DETERMINING CHILDREN OF A FUNNEL BY THE METHOD OF
ORIENTING CURVES

3.1. Proposed method

The problem under consideration is as follows: given a sequence f1, f2, . . . , fm of m ≥ 2
adjacent triangles on the surface of a polytope. Let S :=

⋃m
i=1 fi. For i ∈ {1, 2, . . . ,m−1}, fi

is a face, ei = fi ∩ fi+1 is an edge of the polytope. Consider a funnel Fp,q,S , its direct
destination v and F ′ = F ∪△pqv, s is the cusp of the funnel, F ′ is called the processed region
of F . The question is how to find the shortest path SPF ′(s, v) connecting two points s and
v in the region F ′.

In [19] An et al. constructed a funnel tree that contains the shortest paths from a source
point s to all vertices of the surface, where the left borders of these funnels are straightest
geodesics. We use the denotation CF ′(s, v) for a straightest geodesic from s to v in F ′.

Based on the geometrical idea of [5], An [22] presents the Method of Orienting Curves in
computational geometry (or in shorter notation denoted as MOC) for solving some geodesic
problems in two-dimensional and three-dimensional spaces. The method has the following
factors:

(e1) determine the boundary for the solution,

(e2) determine an initial element of the solution,

(e3) construct the final curve and orienting curves through a given point,

(e4) construct the restricted area from the boundary,

(e5) the exact solution is constructed from a final curve and orienting curves.

In this paper we propose the Method of Orienting Curves for finding the shortest path
from the cusp of a funnel to its direct destination in given F ′. The method consists of the
concepts of orienting curves and a final curve in a processed region (see Section 5 in [17]
for more details). These concepts are straightest geodesics in a sequence of triangles. In
the following definitions, the concepts of orienting and final curves of F ′ are presented for
finding the shortest path SPF ′(s, v) connecting two points s and v in F ′.

Definition 4. ([17]) Let F ′ be the processed region, v be the direct destination of F . Set
Bex

1 := SP (s, p) ∪ [p, v] and Bex
2 := SP (s, q) ∪ [q, v]. Let z be a point in F .

1. If there exists a straightest geodesic in F ′ from z to v, then it is called a final curve of F ′

from the initial point z, and is denoted by FC(z).

2. If there exists a longest straightest geodesic in F ′ from z, which ends at some point q∗ ∈ Bex
j ,

for some j ∈ {1, 2}, and meets Bex
i at some point p∗, where i ∈ {1, 2} \ {j}, then it is called

an orienting curve of F ′ from the initial point z and denoted by OC(z). In addition, if p∗

is the last point of OC(z) on Bex
i , then p∗ is called a transfer point of the orienting curve

OC(z).

In Figure 2a, the straightest geodesic OC(z) (the bold path connecting z and q∗) is an
orienting curve of F ′ from the initial point z. In Figure 2b, CF ′(z, w1) and CF ′(z, w2) are not
orienting curves of F ′ then CF ′(z, v) is a final curve of F ′ from z.
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(a) (b)

Figure 2: (a) OC(z) is an orienting curve of F ′ from the initial point z. (b) CF ′(z, v) is a
final curve of F ′ from z

According to Theorem 5.1 in [19], we have exactly one final curve or one orienting curve
of F ′ from z. If z ∈ SPF ′(s, v) and FC(z) is the final curve of F ′ from the point z then
FC(z) = CF ′(z, v) is a part of the shortest path SPF ′(s, v). If z ∈ SPF ′(s, v) and OC(z) is an
orienting curve of F ′ from the initial point z with the transfer point z′, then z′ ∈ SPF ′(s, v)
and CF ′(z, z′) ⊂ OC(z) is a part of the shortest path SPF ′(s, v).

Next to determine children of a funnel, we have a remark as follows:

Remark 1. The children of a funnel can be determined by finding the shortest path from
the cusp of the funnel to its direct destination in given F ′.

This remark gives us an approach to determine children of a funnel, it differs from the
one in [19] (where children of a funnel are determined by the law of cosines). Given a funnel,
it was known that one of its borders is a straightest geodesic. Hence, when we use the
method of orienting curves for finding the shortest path in [19], we just need to consider
whether that straightest geodesic is an orienting curve or not. If not, we just need to go in
the remaining direction to find the shortest path. The advantage here compared to [17] is
that instead of having to go in two directions, we only need to go in one direction to reach
the direct destination.

3.2. Numerical example

Let us consider a polytope with nine vertices, numbered 0 through 8. As shown in Fig-
ure 3, the polytope is triangulated. Let S1 = △(4, 7, 5)∪△(7, 5, 6)∪△(6, 5, 2)∪△(2, 5, 1), S′

1 =
S1 ∪△(2, 1, 8).

The source point is selected to be the vertex 4 (s = 4). The vertex 4 has 4 faces adjacent
to it (see Figure 3). Coordinates of vertices of this polytope: 0(0,0,1); 1(0,1,1); 2(-1,1,1);
3(-1,0,1); 4(0,0,0); 5(0,1,0); 6(-1,1,0); 7(-1,0,0); 8(-2.24,1,3.24).

Consider the funnel F1,2,S1(s) and the region F ′ = F1,2,S1(s) ∩ △128, 8 is a direct des-
tination of F1,2,S1(s). We now use the orienting and final curves of F ′ for constructing the
shortest path SPF ′(s, 8) connecting two vertices s = 4 and 8 in F ′ and also determining
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(a) (b)

Figure 3: For s = 4, S1 = △(4, 7, 5)∪△(7, 5, 6)∪△(6, 5, 2)∪△(2, 5, 1). The funnel F1,2,S1(s).
The polyline corlored in green is the shortest path SPF ′(4, 8) connecting two vertives 4 and 8.

children of F . In Figure 3, vertex 4 is the cusp of F1,2,S1(s) associated with the common
edge [1,2]. Consider △128, we have ∠812 ≈ 45.17◦,∠128 ≈ 118.92◦.

Let B1(s) be the left border of F1,2,S1(s), B1(s) passes through the vertices 4, 5, 1. We
see that B1(s) is the shortest path connecting 4 and 1 in F1,2,S1(s). In addition, B1(s) is also
a straightest geodesic from 4 to 1 in F . However, there does not exist a longest straightest
geodesic from s having the same direction with B1(s) in F ′. As a result, there does not exist
an orienting curve of F ′ having the same direction with B1(s). Therefore, we need to go in
the direction of the remaining border of F1,2,S1(s). In Figure 3, to find the shortest path
SPF ′(s, 8) in F ′, we call procedure NEWFUNNEL(F ,8,2,4) (see [17] for more details). By
the method of orienting curves, the shortest path connecting 4 to 8 in F ′ consists of parts of
orienting curves and a final curve. The longest straightest geodesic starting at 4 and whose
direction is the straightest geodesic from 4 to 2 in F ′ intersects Bex

1 = B1 ∪ [1, 8] at a point
on [1, 8]. Therefore, this longest straightest geodesic is an orienting curve of F ′ and 2 is its
transfer point.

To find this orienting curve, we have to compute the angles ∠4k6 and ∠6k2. We have
∠46k = 45◦, ∠64k is computed by the formula (1) in [17]. Then, we have ∠64k ≈ 35.264◦,
∠4k6 ≈ 99.736◦. In Figure 3b, in order to the path γ joining the vertices 4, k, 2, l is a longest
straightest geodesic in F ′, then ∠4k6 + ∠2k6 = 180◦ and ∠12k + ∠12l = 180◦. We get
∠2k6 ≈ 80.264◦ and ∠12l ≈ 99.736◦. The path γ is an orienting curve of F ′ and 2 is its
transfer point.

The final curve FC(2) is a straighest geodesic from 2 to 8. It follows that the shortest
path connecting 4 to 8 in F ′ is CF ′(4, 2) ∪ CF ′(2, 8).

After finding the shortest path SPF ′(4, 8), we can determine children of F1,2,S1(s). In
Figure 3b, the funnel F1,2,S1(s) has one child F1,8,S′

1
(s) which has two borders SPF ′(4, 1) and

SPF ′(4, 8). F8,2,S′
1
(s) is not a child of F1,2,S1(s) because SPF ′(4, 8) intersects SPF ′(4, 2) at 2.

Consequently, F8,2,S′
1
(s) degenerates into a line segment [2,8] and its cusp is 2. According to

Definition 3.2 in [19] this funnel is not a child of F1,2,S1(s).

In [19], in order to find children of a given funnel, we use the law of cosines. Performing
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the calculations we obtain similar results as above. The funnel F1,2,S1(s) has one child
F1,8,S′

1
(s).

4. PARALLELIZING THE FUNNEL TREE ALGORITHM

4.1. Parallel algorithm

The divide-and-conquer strategy (see [23]) is used to give a parallelism of the sequential
algorithm in [19]. To parallelize the Funnel Tree Algorithm, we divide the work among
multiple processors, each processing a subset of funnels independently.

Algorithm 1 Parallel Algorithm

Input: s is a vertex of the polyhedral surface.
Output: A funnel tree that contains the shortest paths from s to all vertices of the surface.

1: root := s
2: for each edge [p, q] opposite to s do
3: Insert Fp,q,S as root’s children
4: end for
5: for k = 1, 2, . . . , n do ▷ n is the number of faces
6: Parallel for each funnel (node) Fp,q,S at the kth level do
7: Find direct destination v of Fp,q,S such that βv < 180◦ ▷ βv is computed by the

formula (4) in [19]
8: if such vertex does not exist then
9: Fp,q,S has no children, Continue

10: else
11: Let S′ := S ∪△pqv
12: if ∠psv < ∠psw then
13: Fp,q,S has 2 children Fp,v,S′ , Fv,q,S′ . Insert them into the funnel tree and mark

∠pvq
14: else
15: Fp,q,S has one child Fp,v,S′ . Insert it into the funnel tree
16: end if
17: end if
18: end for
19: for each funnel Fp,q,S at the kth level do
20: if ∠pvq is previously marked by another funnel called Fp,q,S1 then
21: Call Clip off Funnels(△pqv, S, S1) ▷ See procedure Clip off Funnels

in [19]
22: end if
23: end for
24: if (k + 1)th level has no nodes then
25: Break
26: end if
27: end for

Synchronization mechanisms are used to ensure data consistency. At each level of the
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funnel tree, we identify independent sections that can be processed concurrently. This in-
volves partitioning funnels at each level into groups, ensuring that their processing does not
interfere with each other. Each funnel will be processed by a separate processor.

We utilize a master-slave model, where one processor is designated as the master proces-
sor, while the remaining processors serve as slaves. The master processor is responsible for
partitioning funnels at each level, distributing data to the slave processors and synchronizing.
The slave processors process funnels in order to determine new funnels. However, in cases
where the number of parallel tasks exceeds the number of slave processors, it is possible for
a single slave processor to be assigned multiple tasks. The overall process is described as
follows:

• The master processor partitions funnels at each level according to a number of funnels
at each level. Let’s assume that the number of funnels is denoted by n.

• If there are m slave processors and n ≤ m, each node is assigned to one slave processor.
Otherwise, each slave processor receives one funnel and the master processor monitors
all the working processors. Next, repeatedly assign a funnel to the slave processor that
finishes its task first.

• The master processor sends jobs which are funnels to slave processors at the i − th
level. After the slave processors have completed their tasks, they send results which
are new funnels at the (i+1)− th level to the master processor. The master processor
synchronizes the results, then it it keeps sending funnels to slave processors at the
(i+ 1)− th level.

4.2. Correctness of the parallel algorithm

To prove the correctness of the parallel algorithm, we must show that the division into
independent sections at each level does not affect the correctness of the computed shortest
paths.

Proposition 4.1 Given a triangulated polyhedral surface P with n vertices and a vertex s
of P, Algorithm 1 computes shortest paths from s to the other vertices of P by constructing
a funnel tree in parallel using k processors, where k ≥ 2.

Proof. There is no denying that the left border of the funnel Fp,q,S forms a locally shortest
path from s to p. A non-deleted child determines a locally shortest path from s to v. The
initial set of funnels is created based on the source vertex s and the adjacent triangles. This
step is performed sequentially, ensuring the correctness of the initial setup. At k = 1, the
tree consists only of triangles incident to s, which represent the shortest paths from s to all
vertices within those triangles. Assuming that the algorithm correctly identifies the shortest
paths up to level k, at level k + 1, the parallel algorithm ensures that the shortest path to
any vertex is correctly computed by extending from the previously computed shortest paths.
This follows from the sequential algorithm’s properties, where each funnel’s children are
determined using geometric properties (angles and distances). The parallel execution simply
distributes this work but does not alter the logic. The algorithm includes a procedure to ”clip
off” redundant funnels, ensuring that only the necessary funnels remain in the tree. This is
crucial for both efficiency and correctness, as it prevents the exploration of unnecessary paths.
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In the parallel version, each processor clips its funnels independently, but the synchronization
mechanism ensures that the global funnel tree remains correct. The sequential algorithm in
[19] uses geometric checks (e.g., angle comparisons) to determine whether a funnel has one
or two children and to ensure that the shortest paths are updated correctly. This logic is
preserved in the parallel algorithm, as each processor performs these checks independently
but in parallel with others.

The parallel algorithm is correct because it preserves the core logic of the sequential
version, ensuring that the shortest paths are computed correctly at each level of the tree.
The parallelization simply distributes the workload but does not alter the algorithm’s core
guarantees.

In our parallel algorithm, after each funnel division, the master processor sends funnels to
slave processors and waits for the slaves’ calculations to complete before the master processor
synthesizes and keeps sending new funnels for the next level. Therefore, if a slave processor
returns slowly, the master processor also has to wait for it. This causes certain delays and
increases the computational time. In the next section, we introduce an improvement of our
parallel algorithm to further enhance the parallelization and reduce the computational time.

5. IMPROVED PARALLEL ALGORITHM

5.1. Improved parallel algorithm

Similar to Algorithm 1 in Section 4, the divide-and-conquer strategy is employed to
introduce parallelism. At the first level of the funnel tree, independent sections are identified
for concurrent processing. Funnels at the first level are partitioned into groups, ensuring
their processing does not interfere with one another. Each group of funnels is then assigned
to a separate processor for parallel execution.

If we have a lot of idle processors, we can repeat for subsequent levels by identifying child
funnels at the 2nd level, the 3rd level, etc.: partition the child funnels of nodes at the 2nd

level or the 3rd level into groups for parallel processing.

We employ a master-slave model, where one processor acts as the master, and the remain-
ing processors function as slaves. The master processor handles partitioning the funnels at
the 1st level, distributing data to the slave processors, and managing synchronization. Slave
processors are tasked with executing the procedure FT(F ∗

j ) to determine new funnels. If
the number of parallel tasks exceeds the number of slave processors, a single slave processor
may be assigned multiple tasks. The overall process is outlined as follows:

• The master processor partitions nodes at the 1st level according to a number of nodes
at the 1st level. Let’s assume that the number of nodes is denoted by n.

• If there are m slave processors and n ≤ m, each node is assigned to one slave processor.
Otherwise, each slave processor receives one node and the master processor monitors
all the working processors. Next, repeatedly assign a node to the slave processor that
finishes its task first.

• The master processor supervises the execution of each slave processor until all of slave
processors have completed their tasks.
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Algorithm 2 Improved parallel algorithm

Input: s is a vertex of the polyhedral surface.
Output: A funnel tree that contains the shortest paths from s to all vertices of the surface.
We use k processors 0, 1, . . . , k − 1 for the work (k ≥ 2).

1: root := s
2: for each edge [p, q ] opposite to s do
3: Set S = △spq
4: Insert Fp,q,S as root’s children.
5: end for
6: Let F ∗ = {f∗

1 , f
∗
2 , . . . , f

∗
m} be the set of root’s children.

7: The set F ∗ is partitioned into F ∗
0 , F

∗
1 , . . . , F

∗
k−1. Each process j(j = 0, 1, . . . , k− 1) calls

procedure FT(F ∗
j ). ▷ Procedure FT(F ∗

j ) starts implementing from Step 5 of the
sequential algorithm in [19]

8: procedure FT(F ∗
j )

9: while k ≤ n and the kth level has nodes do
10: Let v = vj = direct destination of the funnel Fp,q,S and βv be determined by (4)

in [19].
11: while βv < π do
12: Take the sequence S′ of adjacent triangles of the polytope between [p, q] and

[q, v] having two edges incident at q.
13: Set S′ := S ∪△pqv.
14: if the funnels Fp,v,S′(t1) and Fv,q,S′(t2) have the same cusp s (i.e., s = t1 = t2)

and (6) in [19] holds then
15: Fp,q,S has two children Fp,v,S′ , Fv,q,S′

16: Insert the children that Fp,q,S can have as follows
17: if ∠pvq is previously marked by another funnel called Fp,q,S1 then
18: Call procedure Clip off Funnels(△pqv, S, S1)
19: Insert both children of Fp,q,S into the funnel tree and mark ∠pvq
20: else
21: Fp,q,S has one child, then insert the child into the funnel tree.
22: end if
23: end if
24: k+ = 1
25: end while
26: end while
27: end procedure

5.2. Correctness of the improved parallel algorithm

To prove the correctness of the improved parallel algorithm, we must show that the
division into independent sections at the first level does not affect the correctness of the
computed shortest paths.

Proposition 5.1 Given a triangulated polyhedral surface P with n vertices and a vertex s
of P, Algorithm 2 computes shortest paths from s to the other vertices of P by constructing
a funnel tree in parallel using k processors, where k ≥ 2.
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Proof. Similarly to Proposition 4.1, the improved parallel algorithm is correct because it
preserves the core logic of the sequential algorithm, ensuring that the shortest paths are
computed correctly at each level of the tree. The parallelization simply distributes the
workload but does not alter the algorithm’s core guarantees. The initial set of funnels is
created based on the source vertex s and the adjacent triangles. This step is performed
sequentially, ensuring the correctness of the initial setup.

At the 1st level, the master processor partitions the funnels into independent groups.
Each group is processed in parallel by a slave processor by calling procedure FT(F ∗

j ). After
slave processors have completed their tasks, they will send the branchs of the funnel tree to
the master processor, this ensures that the shortest paths within each group are correctly
computed.

The results from each group are merged to form the complete funnel tree at each level.
Since the groups are independent, their merging does not affect the correctness of the shortest
paths.

By induction, if the algorithm correctly computes the shortest paths up to a certain
level using independent sections, then the correctness is maintained at the next level when
sections are processed in parallel.

Therefore, Algorithm 2 maintains the correctness of the shortest path computations.

6. IMPLEMENTATION AND EXPERIMENTAL RESULTS

6.1. Setup

To evaluate the performance of our parallel algorithm, we conducted a series of ex-
periments comparing the execution times of the original and parallelized versions. The
experimental setup includes:

• Hardware: A multi-core processor Intel core i7 with 8 cores, providing sufficient
computational power to test the parallelization.

• Software: C++ with OpenMP, enabling easy implementation and testing of parallel
algorithms.

• Datasets: Various polyhedral surfaces with different numbers of vertices and faces,
including both simple shapes like cubes and more complex shapes like spheres.

We used two primary metrics to evaluate the performance of the algorithms:

• Execution time: The total mean time taken to compute the shortest paths for a
given dataset. This metric provides a direct measure of the algorithm’s efficiency. For
each dataset, we run algorithms 100 times, then we compute mean times and variances.

• Speedup: The ratio of the execution time of the sequential algorithm in [19] to our par-
allel algorithms. Speedup indicates how much faster the parallel algorithm is compared
to the sequential algorithm in [19], with higher values indicating better performance.
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6.2. Results and analysis

The experimental results in Tables 1 and 2 show that both our parallel and improved par-
allel algorithms significantly reduce execution time compared to the sequential algorithm in
[19], achieving speedups of up to 1.4535 and 3.1902 times, respectively. These improvements
come from better workload distribution across processors, enabling simultaneous processing
of different parts of the funnel tree. The speedup is close to ideal linear performance, showing
efficient resource use. Additionally, Algorithm 2 runs faster than Algorithm 1 due to less
waiting time for processors, reducing delays and overall computational time.

Next, we analyze the experimental results in more detail, focusing on the differences
in average execution time, variance, and relative variance (Coefficient of Variation, CV)
between the sequential algorithm in [19] and our improved parallel algorithm. This analysis
will highlight any imbalances and provide insight into the efficiency of the improved parallel
algorithm. A summary of the average execution time and variance for each dataset in both
algorithms is presented in Table 3 and Table 4.

Table 1: The actual execution times of the sequential algorithm in [19] and our parallel
algorithm (time in milliseconds) with k = 12 processes.

Dataset Vertices Nodes Sequential algorithm Parallel algorithm Speedup

Cube1 98 2016 12.8708 12.5859 1.0226
Cube2 200 4333 42.2883 33.4357 1.2648
Cube3 248 5419 56.7012 50.3575 1.1260
Cube4 296 6506 74.1305 65.5461 1.1310
Sphere1 200 3123 18.3007 17.1518 1.0670
Sphere2 400 6370 50.3543 42.0272 1.1981
Sphere3 600 10028 97.7762 68.7293 1.4226
Sphere4 1050 17608 262.6000 180.6670 1.4535
Spiral1 150 2477 14.9250 11.6283 1.2835
Spiral2 350 5788 76.5948 56.3611 1.3590

Table 2: The actual execution times of the sequential algorithm in [19] and our improved
parallel algorithm (time in milliseconds) with k = 12 processes.

Dataset Vertices Nodes Sequential algorithm Improved parallel Speedup
algorithm

Cube1 98 2016 12.8708 6.1941 2.0779
Cube2 200 4333 42.2883 14.9967 2.8198
Cube3 248 5419 56.7012 19.2585 2.9442
Cube4 296 6506 74.1305 24.3539 3.0439
Sphere1 200 3123 18.3007 8.0578 2.2711
Sphere2 400 6370 50.3543 18.1875 2.7686
Sphere3 600 10028 97.7762 31.8382 3.0710
Sphere4 1050 17608 262.6000 82.3141 3.1902
Spiral1 150 2477 14.9250 6.8679 2.1731
Spiral2 350 5788 76.5948 28.9496 2.6458
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The speedup indicates how much faster the parallel algorithm is compared to the se-
quential one. As shown in Tables 1 and 2, the highest speedup is for the Sphere4 dataset,
achieving 3.1902 times, demonstrating the improved parallel algorithm’s efficiency with larger
datasets. Medium-sized datasets like Cube2 and Sphere2 show speedups between 1.1 and
2.9 times, benefiting from parallelism but less so than larger datasets. The smallest speedup,
1.0226 times, is seen with Cube1, suggesting that parallel overhead reduces effectiveness for
smaller datasets.

Variance reflects the stability and consistency of the algorithm’s execution times across
runs. Lower variance indicates more predictable performance, while higher variance sug-
gests fluctuations. For most datasets, parallel execution reduces variance, indicating greater
stability. For instance, Sphere2’s variance drops from 4.4483 in the sequential version to
0.7739 in parallel. However, some datasets, like Spiral2, show increased variance in parallel
execution, possibly due to resource contention or non-deterministic task scheduling.

Table 3: Relative variances of the sequential algorithm in [19]

Dataset Sequential algorithm Variance Standard deviation Relative Variance
(σ) CV

Cube1 12.8708 1.7732 1.3316 0.1035
Cube2 42.2883 7.5349 2.7450 0.0649
Cube3 56.7012 6.9831 2.6426 0.0466
Cube4 74.1305 11.4808 3.3883 0.0457
Sphere1 18.3007 1.2416 1.1143 0.0609
Sphere2 50.3543 4.4483 2.1091 0.0419
Sphere3 97.7762 11.3833 3.3739 0.0345
Sphere4 262.6000 29.7394 5.4534 0.0208
Spiral1 14.9250 0.1265 0.3557 0.0238
Spiral2 76.5948 3.1848 1.7846 0.0233

Table 4: Relative variances of our improved parallel algorithm

Dataset Improved parallel Variance Standard deviation Relative Variance
algorithm (σ) CV

Cube1 6.1941 1.0957 1.0468 0.1690
Cube2 14.9967 2.4524 1.5660 0.1044
Cube3 19.2585 5.3482 2.3126 0.1201
Cube4 24.3539 4.1120 2.0278 0.0833
Sphere1 8.0578 0.2471 0.4971 0.0617
Sphere2 18.1875 0.7739 0.8797 0.0484
Sphere3 31.8382 5.0683 2.2513 0.0707
Sphere4 82.3141 12.7663 3.5730 0.0434
Spiral1 6.8679 0.1503 0.3877 0.0565
Spiral2 28.9496 5.7470 2.3972 0.0828

To evaluate relative variance across datasets, we use the coefficient of variation (CV),
which normalizes variance by the mean, providing a clearer picture of fluctuations relative
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to average execution time. As seen in Tables 3 and 4, CV values are low for most datasets,
reflecting stable performance in sequential execution. However, Cube1 has the highest CV
(0.1690) in parallel execution, indicating notable instability, likely due to load balancing
issues or overhead with smaller datasets. Cube3 also shows a higher CV (0.1201) in parallel
execution, reflecting more inconsistency compared to sequential runs. In contrast, larger
datasets like Sphere2 and Sphere4 exhibit low CV values, showing that parallel execution is
both fast and consistent.

As the datasets grow in size and complexity, the improved parallel algorithm tends to
show a higher CV, although still generally more stable in the larger datasets. For exam-
ple, Spiral2 has a CV of 0.0828 (parallel) compared to 0.0233 (sequential), indicating that
the improved parallel algorithm is still performing relatively better in handling the larger
datasets.

From this analysis, we can conclude that:

• Parallel execution is highly effective for large datasets such as Sphere4, Sphere3 and
Cube4, where the workload can be efficiently distributed across processors.

• Smaller datasets such as Spiral1 suffer from increased variance and instability during
parallel execution, with a significant increase in CV due to parallel overhead.

• Mid-sized datasets like Spiral2 experience moderate speedup but show increased vari-
ance, suggesting the need for optimization in parallel execution.

7. CONCLUSION

The experimental results demonstrate the effectiveness of the parallelization strategy. By
distributing work across multiple processes and processing independent sections, our parallel
algorithms achieve significant speedups and improved performance. In summary, parallel
execution is highly beneficial for large datasets, offering both speed and stability, whereas
smaller datasets may face imbalances due to parallel overhead, leading to less consistent
performance. Additionally, we propose the method of orienting curves for finding the shortest
path from the cusp of a funnel to its direct destination in given F ′ (F ′ is called the processed
region of the funnel F ). This gives us a new approach to determine children of a funnel.
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