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Abstract. Monitoring and classifying cow behaviors provides valuable support for livestock man-

agement. This can be done through sensors attached to the pet. Due to their small size, light weight,

and high accuracy, accelerometers are well-suited for this purpose. However, the complexity of be-

haviors, which often involve similar movements, poses challenges in interpreting the sensor data. This

paper presents a novel classifier design for cow behaviors based on acceleration data and a specific set

of features. By analyzing cow acceleration data, we extracted features for classification with the help

of machine learning algorithms. With five features—Mean, Standard Deviation, Root Mean Square,

Median, and Range—and a 15-second data window (1 sample/second), the classifier achieved opti-

mal performance when identifying six behaviors: Feeding, Lying, Standing, Lying-standing-transition,

Normal-walking, and Active-walking. The results were validated with public acceleration data. The

performance of the proposed classifier has been compared with existing models to highlight the re-

search advantages.

Keywords. Cow’s behavior, classification, acceleration, wearable sensor.

1. INTRODUCTION

Large-scale dairy farms encounter substantial challenges in ensuring cow welfare and
comfort, both of which are critical factors that directly affect milk production. On medium-
to-large farms, relying solely on observation to monitor herds proves challenging and can
result in financial losses. Given their susceptibility to health issues, dairy cows, as high-
value livestock, demand meticulous management.
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Cows exhibit behavioral changes when facing with health issues or physiological condi-
tions [1], adjusting their actions in response to stressors like infections, hunger, or alterations
in social and environmental factors [2]. As such, behavior is a key indicator of dairy cow
health and well-being. Monitoring shifts in daily behaviors can aid in initiating specific
management interventions to improve farm operations [3–5].

In recent years, there has been a notable rise in the use of remote monitoring technologies,
including GPS trackers, location sensors, and accelerometers, for automated behavior track-
ing in livestock [6]. A system designed for classifying bull behaviors using video data from
camera setups was implemented in [7], focusing on Lying, Standing, Walking, and Mount-
ing. In reference [8], the authors investigate the advantages and difficulties of remotely
monitoring cattle behavior using a range of methods, including clinical illness scoring, vi-
sual observations, accelerometers, pedometers, feed intake monitoring, GPS, and real-time
location systems.

Advancements in sensor technology have led to the development of highly sensitive elec-
tronic devices, expanding the capabilities for recording cow activities [9]. Numerous systems
employing sensor technology have been created to automatically analyze dairy cow behav-
iors [10, 11]. Accelerometers, known for their compact size, light weight, and low energy
consumption, provide a non-invasive and objective method for monitoring cow behavior in
farm environments [6, 12–17].

Compared to traditional herd-based methods, accelerometer-based systems prioritize in-
dividual animal well-being and performance. However, identifying specific behaviors from
the sensor data remains a significant challenge. Developers face obstacles such as the com-
plexity of certain behaviors, which may involve similar movements, the extraction of relevant
features, potential data loss during wireless transmission, and the intensive data processing
required to filter out noise [18]. Consequently, the demand for more efficient and precise
methods to manage the vast amounts of movement and behavioral data being collected is
increasing [19].

Recognizing animal behavior has become a challenging task, prompting various research
groups to use wearable sensing technologies to benchmark real-world conditions [10, 20, 21].
Machine learning offers a powerful solution for improving model accuracy, particularly when
dealing with dynamic and complex datasets that are influenced by environmental factors [22].
For instance, Martiskainen et al. [23] developed a method utilizing acceleration data and
multi-class support vector machines (SVM) to automatically classify various dairy cow be-
haviors. Likewise, Diosdado et al. [6] employed a decision-tree algorithm to categorize differ-
ent cattle activities. Additionally, Arcidiacono et al. [14] determined acceleration thresholds
to differentiate between Feeding and Standing behaviors in dairy cows housed in a free-stall
barn, while also estimating step counts using statistically defined thresholds. In a later
study [24], they demonstrated that their updated approach could operate in real-time due
to its low sampling frequency (4 Hz) and reduced complexity. The authors also suggested
improvements for better classification performance and real-time application.

Recently, Wang et al. [15] presented a Multi-BPAda Boost classification algorithm that
classified seven cow behaviors—Feeding, Lying, Standing, Lying-down, Standing-up, Normal-
walking, and Active-walking—utilizing data obtained from three-axis accelerometers. While
the studies by [6, 14, 15, 23] underscore the potential of machine learning for behavior clas-
sification, they either focus on only a few behaviors [6, 14], report low positive predictive
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value [23], or lack a thorough analysis of the data features [15, 23]. The success of these
methods is highly dependent on both the features and window size used, which are tied to
the number of samples in the data.

This paper investigates a cow behavior classification model based on data collected from
accelerometer sensors attached to the leg. The study also evaluates the model’s effectiveness
by optimizing feature sets and data windows to improve classification performance. The
main challenges encountered during the research are as follows:

• Challenge 1: Selecting features appropriate for accelerometer data. The variations in
data for each behavior require suitable features.

• Challenge 2: Processing data to balance classification performance with the optimal
computational time of the algorithms.

We evaluated our approach and conducted a comparison with Wang et al.’s work using
the same dataset [15]. Furthermore, we compared our method with the research of Mar-
tiskainen and Jarvinen [23], which utilized accelerometer data collected from a collar. Our
proposed method focuses on improving the classification performance of cow behaviors using
accelerometer data. The main contributions of this paper are outlined as follows:

• Contribution 1: This study examines the feasibility of implementing an algorithm
to address the behavior classification problem. The Gradient Boosted Decision Tree
(GBDT) algorithm proves to be suitable for balancing accuracy and computational
efficiency. By leveraging the simplicity of accelerometer data and the effectiveness of
GBDT, the system achieves efficient behavior recognition.

• Contribution 2: Optimized activity selection and feature extraction. Six common
behaviors Feeding, Lying, Standing, Lying-standing-transition, Normal-walking, and
Active-walking were selected. The behaviors Lying-down and Standing-up in the
dataset were combined into a single category. This strategic selection enhances the
system’s classification accuracy and reliability. Moreover, the feature extraction pro-
cess was adjusted to closely follow the changes in accelerometer data, ensuring the
study’s efficiency and effectiveness.

In this study, the features Mean, Standard Deviation (SD), Root Mean Square (RMS),
Median, and Range were found to be suitable for addressing the challenges in the research.
With the current development of IoT systems, a real-time behavior monitoring system, using
motion data collected from sensors and a visual interface, can be feasibly built based on the
results of this study, as demonstrated in studies [25–27].

The rest of this paper is structured as follows: Section 1 discusses related research and
the issues of the proposed system. Section 2 presents the materials of the proposed system.
Section 3 presents the methods of the proposed system. The proposed method uses the
GBDT classifier for activity recognition in the study. The proposed features are Mean, SD,
RMS, Median, and Range. Section 4 evaluate and discuss system performance for the six
selected behaviors. Section 5 concludes the paper.

2. MATERIALS

2.1. Conditions for breeding and animal species

In the study by Wang et al. conducted in Nanyang, Henan Province, China [15], five
Holstein dairy cows were selected for the experiment based on similar body size and early
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lactation stage. The cows’ legs are equipped with devices that use accelerometers to record
their movements. The cows were kept in a designated section of the free-stall barn, which
measured 180 m × 31 m. According to the description provided by Wang et al., the barn
featured a feeding passage, two rows of self-locking headlocks, and two rows of head-to-head
stalls equipped with sand bedding. The roof, made of lightweight colored steel plates, had a
symmetrical design with a 1:3 slope. The barn stood 10 m tall, with eaves measuring 4.65 m.
The cows were kept in a loose housing area in the middle of the barn, separated by fences.
The space included a watering trough, a row of self-locking headlocks, and seven groups of
head-to-head stalls.

The cows were milked twice daily using a fish-bone milking machine, and the floors were
cleaned daily with a scraper blade. The cows were fed a total mixed ration (TMR) diet and
remained healthy, without any signs of serious lameness or conditions that could affect their
behavior.

2.2. Data used in this study

We approached the cow behavior classification problem by identifying a learning frame-
work based on studying acceleration data features. This framework was validated exper-
imentally using data extracted from online public datasets provided by Wang et al. [15].
The dataset consists of 3685 records collected from five cows and is publicly available. Since
the dataset offers raw data, it was selected for use in our study. To assess performance, we
compared our results with the study by Wang et al., focusing on accuracy, sensitivity, and
positive predictive value.

Figure 1: ADXL 345 Accelerometer

In the study of Wang et al. [15], the accelerometer was used to attach to the cow’s legs.
The cow’s leg sensor is a accelerometer ADXL 345 (Figure 1) that collects movement data
along the X, Y, and Z axes at a 1Hz sampling rate, with a measurement range of ±8g. It
converts analog signals into digital data using a 12-bit A/D converter. Six behavior classes
are identified: Feeding (when cows search for or chew food in the feeding area), Lying (resting
in a lying position inside the barn), Standing (fully on all fours), Lying-standing-transition
(movement between lying and standing), Normal-walking (at least three consecutive limb
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movements per second), and Active-walking (fast forward movement with long strides, two
strides per second).

In [15], the dataset is limited to observations within a 6-second timeframe. As noted
in [28], when the sliding window is too brief, it can blur the differences between behav-
iors. For this research, we tailored the dataset to align with our proposed design. Each
labeled observation in the dataset comprises 15 acceleration samples, captured at a 1 Hz
sampling rate along three perpendicular axes. Table 1 provides a sample data record with
15 samples/record, while Table 2 offers a detailed breakdown of the behavioral observation
component with 15 samples/record.

Table 1: Sample data record

Feeding

X-axis (g) Y-axis (g) Z-axis (g)

-0.9 0.1 0.3
-0.9 0.1 0.3
-0.8 0.1 0.2
-0.9 0 0.2
-0.9 0 0.2
-0.9 0 0.2
-0.9 0 0.2
-0.9 0 0.2
-0.9 0 0.2
-0.8 0.2 1.1
-0.8 0 0.4
-0.8 0 0.4
-0.8 0 0.4
-0.8 0 0.4

Table 2: Behavioral observation components

Behavior pattern Number of observations

Feeding 613
Lying 731

Standing 451
Lying-standing-transition 629

Normal-walking 738
Active-walking 516

Total 3678

3. METHODS

3.1. Machine learning approaches to cow behavior classification

We propose a behavior classification model using a set of five features (Mean, SD, RMS,
Median, and Range). During the recognition of crawling behavior, our approach incorpo-
rates a window selection method paired with feature extraction from the acceleration data.
We applied a fixed window width of n seconds, where each record i contains n samples,
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overlapping with the last n − 5 samples from the preceding record i − 1. A vector of five
features will be extracted from a window. The input of the classifier is trained to recognize
behavior using these samples.

From the collected dataset, 60% was randomly designated as the training set, while the
remaining 40% was allocated for testing. The classifier was trained using features derived
from the measurements (input) that were associated with their corresponding behaviors
(output). To evaluate the performance of the proposed method, we implemented different
supervised learning algorithms using Python 3.5. The steps involved in constructing the
classifier are depicted in Figure 2.

Figure 2: Flow chart of constructive process of the classifier

The performance of classification algorithms is closely related to the characteristics of
the data based on the time window. We performed some comparisons with a human action
recognition (HAR) problem with wearable devices sampling at higher frequencies (e.g., 50
Hz) [29] than with cow data (1 Hz). The sampling frequency in cows is lower because cows
are less active than humans, so we can use a longer sampling window for the cow behavior
classification problem.

To analyze the combination with the best results in this study, the classification per-
formance of four separate machine learning algorithms: GBDT, Support Vector Machine
(SVM), Random Forest (RF), and K-Nearest Neighbor (KNN) was evaluated using five
characteristics (Mean, SD, RMS, Median, and Range) and different windows (5s, 10s, 15s,
20s). Finally, the overall performance is compared with the results of Wang et al. study [15].

3.2. Feature extraction

In this study, five features are selected including Mean, SD, RMS, Median, and Range.
Equations (1–5) represent five feature sets for X-axis data; The formulas for Y-axis and
Z-axis are similar.

range(Xj) =

[
N
min
i=1

{xi},
N

max
i=1

{xi}
]
, (1)

median(Xj) =
x[#N/2] + x[#N/2+1]

2
, (2)
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m(Xj) =
1

N

∑N

i=1
xi, (3)

σ(Xj) =

√
1

N

∑k

i=1
(x

i
−m)2, (4)

RMSXj =

√
1

N

∑N

i=1
x2i , (5)

where X represents the data along the X-axis, Xj refers to the j-th record, N is the number
of samples in a record (i.e., the window size), xi denotes the i-th sample of record Xj . The
statistical measures are as follows: m(Xj) represents the mean of the values in Xj , σ(Xj)
is the standard deviation, RMS(Xj) denotes the root mean square, min(Xj) and max(Xj)
indicate the minimum and maximum values, respectively. Additionally, range(Xj) is defined
as the difference between the maximum and minimum values within Xj .

For research on machine learning, a feature represents a distinct measurable attribute
derived from acceleration data. Designing features that are informative, discriminative, and
independent is crucial for building effective classification models. The key contribution of
this work is the introduction of an efficient feature set tailored for classifying six specific
cow behaviors. Properly selected features allow machine learning algorithms to accurately
detect the desired patterns. Tables 3–5 display the statistical metrics for six segments within
each behavior class. In particular, the computed features for each static behavior (Feeding,
Lying, Standing) and dynamic behavior (Lying-standing-transition, Normal-walking, Active-
walking) are detailed along the X, Y, and Z-axis.

Table 3: The X-axis acceleration data is calculated by the features

Feeding Lying Standing Lying-
standing-
transition

Normal-
walking

Active-
walking

Mean -0.82 -0.1 -0.82 -0.01 -0.02 -0.07
SD 0.07 0 0.09 1.05 0.45 1.49
RMS 0.82 0.1 0.82 1.05 0.45 1.49
Median -0.8 -0.1 -0.8 0 0 -0.2
Range 1.1 0 1.5 4.8 2.3 8

Table 4: The Y-axis acceleration data is calculated by the features

Feeding Lying Standing Lying-
standing-
transition

Normal-
walking

Active-
walking

Mean -0.02 0.3 -0.02 0.03 0.02 -0.03
SD 0.16 0 0.12 1.05 0.48 1.55
RMS 0.16 0.3 0.12 1.05 0.48 1.55
Median 0 0.3 0 0.1 0 0
Range 2.1 0 1.3 6.1 2.6 8.3

Static behaviors such as Lying exhibit a Mean and RMS close to 0, with SD and Range
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Table 5: The Z-axis acceleration data is calculated by the features

Feeding Lying Standing Lying-
standing-
transition

Normal-
walking

Active-
walking

Mean 0.36 -0.6 0.34 0.07 0.04 -0.02
SD 0.09 0 0.07 1.07 0.53 1.56
RMS 0.37 0.6 0.35 1.07 0.53 1.55
Median 0.4 -0.6 0.3 0 0 0.2
Range 0.9 0 0.7 5.9 3 10.4

equal to 0, indicating a state with no significant variation. In contrast, Standing, though also
a static behavior, has higher SD and Range values than Lying, particularly on the Z-axis
(0.07 and 0.7), reflecting slight movements related to maintaining balance. Feeding displays
similar Mean and SD values across the axes as Standing but with a larger Range on the Y
and Z axes (2.1 and 0.9), indicating small but consistent movements during feeding.

For the transitional behavior Lying-standing-transition, the Mean is nearly 0 across all
axes, but SD and Range are the highest among all behaviors (SD = 1.07, Range = 6.1),
highlighting significant variability during the abrupt transitions between Standing and Lying.
Normal-walking shows a low Mean, but SD and RMS are at moderate levels (SD 0.5),
indicating steady movement with moderate energy. Compared to Normal-walking, Active-
walking demonstrates a significantly higher activity level, with the largest SD and Range
values (SD = 1.56, Range = 10.4), reflecting faster and more sudden movements.

Comparing the metrics shows that Mean and RMS are suitable for capturing overall
movement intensity, while SD and Range emphasize variability in motion, particularly im-
portant for fast and irregular behaviors. In these cases, Median proves stable, especially
when smoothing out anomalies or noise. Thus, the combined use of these features not only
clearly distinguishes between different behaviors but also provides an accurate descriptive
model of the kinematics of each activity.

3.3. Evaluation methods

To evaluate the effectiveness of the proposed method, the classification results are pre-
sented in the form of a confusion matrix, with the metrics calculated as follows:

Acc =
TP + TN

TP + FP + FN + TN
, (6)

Sen =
TP

TP + FN
, (7)

PPV =
TP

TP + FP
, (8)

NPV =
TN

TN + FN
, (9)

where Acc represents accuracy, indicating the correct classification rate, Sen refers to sen-
sitivity, which measures the model’s classification capability, PPV stands for positive pre-
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dictive value, representing the rate of correctly classified positive cases, while NPV refers
to negative predictive value, indicating the rate of correctly classified negative cases. True
Positive (TP ) occurs when an activity takes place, and the model correctly predicts its occur-
rence. False Positive (FP ) happens when no activity takes place, but the model incorrectly
predicts that it did. False Negative (FN) occurs when an activity takes place, but the model
incorrectly predicts a different activity. True Negative (TN) is when no activity takes place,
and the model correctly predicts that no activity occurred.

4. RESULTS AND DISCUSSION

4.1. Experimental results

The performance of four machine learning methods GBDT, RF, KNN, and SVM is com-
pared based on accuracy and sensitivity across five feature sets (Mean, SD, RMS, Median,
and Range) and different window lengths (5 seconds, 10 seconds, 15 seconds, 20 seconds).
Figure 3 displays the performance outcomes of the classification algorithms tested.

Figure 3: Performance comparison of GBDT, RF, KNN, and SVM

For smaller window sizes, such as 5 seconds, the models generally exhibit lower accuracy
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and sensitivity. For instance, GBDT and RF achieve 91.9% and 92% accuracy, respectively,
while KNN and SVM perform lower, with accuracies of 86% and 88%, respectively. The
smaller window sizes may be more sensitive to noise and fluctuations in the data, leading
to less stable patterns being captured and, consequently, lower classification performance.
Additionally, short windows might fail to encapsulate the full temporal characteristics of the
activities, causing misclassifications or incomplete feature extraction.

As the window size increases to 10 and 15 seconds, there is a noticeable improvement
in the performance of all classifiers. GBDT reaches 95.5% accuracy and 93.3% sensitivity
at a 15-second window, which represents its peak performance. RF follows a similar trend,
with its best results (95.2% accuracy, 92.7% sensitivity) also observed at 15 seconds. KNN
benefits greatly from larger window sizes as well, showing consistent improvements in both
metrics, reaching 92% sensitivity and 93% accuracy at the 20-second window. However, there
is a diminishing return for larger windows, particularly beyond 15 seconds. For example,
GBDT’s performance slightly declines at the 20-second window, dropping to 95.3% accuracy
and 93.1% sensitivity. Similarly, RF and KNN show minimal gains or slight drops at 20
seconds compared to 15 seconds. This can be attributed to the possibility of longer windows
encompassing more than one activity, leading to mixed or overlapping data points. Moreover,
larger windows reduce the number of samples available for training, which could limit the
model’s ability to generalize effectively.

The results indicate that window size affects classification performance. Selecting an ap-
propriate window size for the experiment can reduce computational complexity and minimize
the influence of noise. However, if the window duration is too long, the likelihood of cap-
turing more than one action within a single window increases, and the number of examples
available for classification decreases [30]. After taking computational optimization and the
characteristics of cow behavior into consideration, we found that the GBDT algorithm, using
a 15-second window, achieved the highest overall performance, with an overall sensitivity of
93.3% and an overall accuracy of 95.5%.

4.2. Evaluating the performance of the GBDT model

The results presented in Figure 4 detail the overall results yielded by the GBDT classifier
(15 second window). The number of cases that have been identified as positive (modeled
behaviors) and negative (other behaviors) is also shown in Figure 4.

As shown in the confusion matrix, the classifier demonstrates a high level of accuracy for
certain behaviors, particularly Lying and Normal-walking, where all samples are correctly
classified (291/291 and 294/294, respectively). The model also performs well with Active-
walking, correctly identifying 202 out of 205 samples. However, there is notable confusion
between Feeding and Standing behaviors. Specifically, 52 out of 179 Standing samples were
misclassified as Feeding, while 26 out of 244 Feeding samples were misclassified as Standing.
This misclassification likely stems from the similarity in postures and movements between
these two behaviors. The Lying-standing-transition behavior also shows moderate confusion,
with 6 samples being incorrectly classified as Active-walking and 1 sample misclassified as
Standing. These results suggest that while the classifier can effectively distinguish between
most behaviors, further refinement is necessary, particularly for behaviors with overlapping
postural characteristics. Table 6 describes the performance of the GBDT algorithm using
four metrics namely Accuracy, Sensitivity, PPV and NPV for all types of behavior.
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Figure 4: Confusion matrix of dairy cow behavior classification data using GBDT algorithm

Table 6: Performance of the GBDT algorithm using metrics for all behavior types

Behavior Pattern Algorithm Performance Indicators

Accuracy Sensitivity PPV NPV

Feeding 94.19% 89.34% 80.74% 97.57%
Lying 100% 100% 100% 100%
Standing 94.11% 70.95% 82.47% 95.62%
Lying-standing-transition 99.18% 93.8% 97.58% 99.34%
Normal-walking 99.93% 100% 99.66% 100%
Active-walking 99.33% 98.54% 97.12% 99.74%

The GBDT model demonstrated strong overall performances. Accuracy was high for all
behaviors, with perfect accuracy for Lying (100%) and excellent values for Normal-walking
(99.93%) and Active-walking (99.33%). Sensitivity was also high, exceeding 90% for most
behaviors, except for Standing, which had a lower sensitivity of 70.95%, indicating some
difficulty in detecting this behavior. PPV varied across behaviors, with perfect values for
Lying (100%) and strong results for Lying-standing-transition (97.58%), Normal-walking
(99.66%), and Active-walking (97.12%). However, the PPV for Feeding (80.74%) and Stand-
ing (82.47%) was relatively lower, suggesting that the model struggled somewhat in correctly
predicting positive cases for these behaviors. NPV was excellent for all behaviors, with values
above 95%, indicating that the model reliably identified negative cases across all behavior
patterns.
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4.3. Discussion

The system proposed in this study demonstrates superior performance in classifying cow
behaviors through machine learning, leveraging five key features: Mean, SD, RMS, Median,
and Range. The GBDT algorithm yields highly significant classification performance (in
terms of Sensitivity, Accuracy, NPV, and PPV) for 5 out of the 6 behaviors. The range
of behaviors classified in this study is more comprehensive than those addressed in the
systems developed by Benaissa et al. [12]. In addition, as presented in Table 6, the GBDT
classifier demonstrates significantly better performance compared to the results reported in
previous studies [15]. We provide a detailed comparison of overall performance with the
study conducted by Wang et al. [15], using the same behavioral dataset. Table 7 presents
the comparison results using the macro-average evaluation method, which assesses each class
individually, while Table 8 displays the comparison results using the micro-average evaluation
method, evaluating all classes collectively.

Table 7: The overall performance indicators calculated using the macro-average

Indicators Wang et al. [15] Our work

Accuracy 92.3% 92.93%
Sensitivity 79.1% 92.1%
PPV 82.1% 92.93%
NPV Not provided 92.1%

Table 8: The overall performance indicators calculated using the micro-average

Indicators Wang et al. [15] Our work

Accuracy 86.6% 93.37%
Sensitivity 85.2% 92.1%
PPV 79.8% 92.93%
NPV Not provided 92.93%

In the study of Wang et al. [15], NPV value was not shown, preventing a direct comparison
with our NPV results. Nonetheless, as illustrated in Tables 7 and 8, our NPV values were
outstanding: 92.1% using the macro-average evaluation method and 92.93% with the micro-
average evaluation method.

When comparing the results between the two studies, our research method produced bet-
ter outcomes. This was achieved by labeling behaviors more appropriately. During the study,
it was observed that the classification performance between the behaviors of Standing-up and
Lying-down was relatively low. This is due to the fact that Standing-up and Lying-down
share significantly similar data characteristics, which directly leads to confusion in behav-
ior identification. In reality, the frequency of standing and lying down behaviors is nearly
equivalent, and there is no practical benefit in distinguishing between the two. Furthermore,
when monitoring cow behavior, tracking the total time between Lying and Standing is more
practical than focusing on the separate actions of Standing-up and Lying-down. Therefore,
the study combined these two behaviors into a single Lying-standing-transition process.

When employing the macro-average evaluation method, our approach surpassed that
of Wang et al. [15] in terms of Accuracy (92.93% compared to 92.3%), Sensitivity (92.1%
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versus 79.1%), and PPV (92.93% versus 82.1%). Similarly, with the micro-average evalua-
tion method, our performance exceeded Accuracy (93.37% compared to 86.6%), Sensitivity
(92.1% versus 85.2%), and PPV (92.93% versus 79.8%). These results indicate that our
method achieved better predictions for the most frequently observed classes.

The dataset exhibited an imbalance in the distribution of behavioral data across the
classes. Of the 3678 total records spanning six classes (averaging around 613 records per
class), the Standing class had only 451 records, while the Active-walking class included 516
records (as shown in Table 2). Due to this imbalance, the micro-average evaluation method
is more suitable for assessing the dataset. Under this approach, our method outperformed
that of Wang et al. [15] across all evaluation metrics.

In addition, Sensitivity values were generally high, suggesting that the number of false
negatives classified as positives was low. The overall performance of the GBDT algorithm,
as outlined in Table 6, was robust, with the exception of the Feeding and Standing classes.
The study noted that when cows rotated their heads during feeding, the sensor’s position
would shift, causing misclassifications. Similarly, even when cows were standing, the occa-
sional lowering of their heads led to confusion between Feeding and Standing behaviors. To
address this, the authors recommended refining the sensor attachment to minimize these
misclassification errors.

While our approach outperformed previous studies in the literature, some limitations
persist, particularly in the lower classification accuracy for behaviors such as Standing and
Feeding. In studies of cow behavior classification using sensors, the placement of these sensors
significantly affects data quality and classification accuracy. For instance, sensors placed on
different parts of the body such as the neck, back, or legs can result in variations in movement
patterns that impact the ability to distinguish between activities like feeding and standing.
Research [16] has shown that placing sensors on the neck can be advantageous for identifying
head-related activities, such as grazing or feeding, because these behaviors involve distinct
head movements. In contrast, sensors placed on the back or the legs are more effective at
tracking overall body movement and posture, which helps classify behaviors like walking,
standing, and lying down. The placement of sensors on the neck has been particularly
successful in distinguishing feeding from standing, as feeding involves frequent and specific
head movements, which are less detectable with back or leg sensors.

Furthermore, in this study, we only applied time-domain features, and the performance
achieved was quite good. In the future, the study can be extended to include features such
as entropy, which measures the randomness or unpredictability in the data, offering insights
into the complexity of activities. Additionally, frequency-domain features, which represent
the signal in terms of its frequency components, could be explored to capture patterns that
time-domain features might miss, potentially further improving classification accuracy.

In this study, the features Mean, SD, RMS, Median, and Range were found to be suitable
for the research objectives. Their computational complexity strikes a good balance between
processing time and classification performance. Given the current development of IoT sys-
tems, a real-time behavior monitoring system, with motion data collected from sensors and
a visual interface, can be feasibly built, as shown in studies [25–27]. Based on our research
results, the construction of a real-time cattle behavior monitoring system is entirely feasible.
The system is expected to be developed in future research to enable farm managers to receive
immediate feedback on livestock conditions and visualize behavior data. This will help farm
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managers quickly identify trends and make informed decisions.

5. CONCLUSION

In this study, we specifically selected behaviors to label more appropriately and designed
an optimized set of features for classifying cow behaviors. A key factor in enhancing classifi-
cation accuracy was the selection of a 15-second window length. Using the GBDT method,
we successfully identified six distinct cow behaviors based on acceleration data: Feeding, Ly-
ing, Standing, Lying-standing-transition, Normal-walking, and Active-walking. Our method
outperformed the approach introduced by Wang et al. [15] in terms of Sensitivity, Accuracy,
PPV, and NPV, which are essential for precise behavior classification. The model was specif-
ically adapted for acceleration data obtained from leg tag sensor systems. However, since
our study utilized the dataset from Wang et al. [15], additional validation with new datasets
is necessary. Moving forward, we aim to incorporate computer vision techniques to improve
the detection of more complex behaviors, such as Feeding and Standing, and further refine
classification accuracy.
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