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Abstract. Collaborative robots (Cobots) can interact with humans, simultaneously promoting

the advantages of both humans and cobots to increase work efficiency. Cobots operate friendly

and interact with humans because they are programmed to detect collisions safely. Therefore, the

requirement to accurately and quickly detect collisions of cobot arms is a topic that attracts the

attention of many researchers. This paper proposes an approach applying a supervised machine

learning technique, SVR (Support Vector Regression), to detect collisions with CURA6 cobot arms.

A real-world experiment (the Intema dataset) was used to validate the proposed method.
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1. INTRODUCTION

Cobots are robots that can work simultaneously with human [1]. Unlike industrial robots,
cobots are designed to ensure safe interaction with humans as well as collaborative working
environments. So, cobots are made of lightweight materials and designed with a shape that
simulates the human arm. Cobots work in coordination with humans to increase production
efficiency or overcome technical limitations without the need for physical protective devices
such as shields, nets, and protective fences like industrial robots [2].

Because cobots work with human in a defined collaborative workspace, they should have
a collision detection function that can detect collisions in man-cobot interaction. There have
been many publications on the collision detection problem with the research object being
the cobot arm [3–6]. A typical example is the 6-DoF (Six Degrees of Freedom) cobot arm
designed to perform precise and safe tasks with humans. Figure 1 describes the Cooperative
Universal Robotic Assistant 6 (CURA6) cobot arm by Intema [3].

This paper proposes using SVR (Support Vector Regression) with a suitable feature
vector to detect collisions of CURA6 cobot arm. The advantages of the proposed method
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are not requiring additional external sensors, not requiring friction compensation, and having
low computational cost.

The main contributions of the paper are as follows:

• Propose using a new and robust feature vector - x (consists the monitored signal with
suitable time sampling - details in Section 3).

• Propose using a continuous output filter before labeling collision index.

Figure 1: (a) The CURA6 cobot at Intema’s lab; (b) Model of the CURA6 cobot [3]

The structure of this paper is organized as follows: Section 1 introduces cobot and
collision detection for cobot. Section 2 introduces related research works. In Section 3,
we provide an overview of cobot dynamics, and describe the proposed collision detection
method. The experimental results and discussions are presented in Section 4. Finally,
Section 5 provides conclusions and future research directions.

2. RELATED WORK

Haddadin et al. [7] published a comprehensive study on the problems of cobot collision.
The collision problems include: collision detection phase, collision isolation phase, collision
identification phase, collision classification phase and collision reaction phase (Figure 2 il-
lustrates phases of the collision problems). This work focuses on the collision detection
problem, which is the first step. This step will orient other tasks in the collision problems.
The collision detection methods on cobot arms can be divided into (1) using machine learn-
ing and (2) not using machine learning. The group of methods (2) often relies on tactile
surface sensors (sensor skins) covering the outside of the cobot [8,9]. However, tactile surface
sensors are often expensive, not durable, and can be damaged when subjected to strong or
repeated collisions. Machine learning-based methods [3, 5, 7] typically estimate the external
joint torques due to collisions and then compare them with a set of pre-determined thresh-
old values to check whether a collision has occurred. Direct torque measurement would be



COLLISION DETECTION FOR COBOTS: A NEW EFFECTIVE ALGORITHM 3

ideal, but torque sensors can be expensive, an alternative is to estimate the joint torque from
current measurements at the joint actuators.

Figure 2: Overview diagram of the phases of the collision problem [7]

Nowadays, collision detection methods using machine learning have become popular [3,5].
With the condition of collecting enough diverse and good-quality data, machine learning
methods can overcome the uncertainty of parameters in the dynamics model as well as
unmodeled effects such as friction and measurement noise.

Sharkawy et al. [10] used Multilayer Feedforward Neural Network (M-FNN) with joint
position and velocity errors as input, and estimated the external joint torque without using
cobot dynamics (but also required manual adjustment of collision thresholds for each joint),
while [11] considered the measured joint torques and gravitational force vectors of the ma-
nipulator. However, these methods were only tested with two- and three-joint movements
of a 7-DoF cobot manipulator. Zhang et al. [12] train an FNN with 36-dimensional input
signals extracted from both the time and frequency domain features of joint torque sensor
measurements. For full-body humanoid cobots, the research group of Narukawa [13] proposes
an improved one-class support vector machine (OC-SVM) technique, in which the input is
considered to be the moment point vector of the humanoid cobot and the force and torque
measurements for each limb.

Recently, Heo et al. [14] proposed a method for fast collision detection of a 6-DoF cobot
arm using a one-dimensional convolutional neural network (1D CNN) with size (where the
time window size is denoted) in which the estimated external joint torques are input; the
output is the binary collision detection result (True, False). Park et al. [5] focused on solving
the collision detection problem of the Doosan M0609 cobot arm. Meanwhile, Czubenko and
his team [3] proposed a combination of several different neural networks such as AR, RNN,
CNN-LSTM, and MC-LSTM to accurately detect collisions of CURA6 cobot arm. However,
the common limitation of the methods proposed by Park and Czubenko is the dependence
on motor friction, especially Coulomb friction, which is generally difficult to estimate.

There have been many studies on current intensity prediction models in recent years
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and several techniques have been used in building current intensity prediction models. A
widely used technique for current intensity prediction is the Support Vector Regression (SVR)
method. This is a method developed from the Support Vector Machine (SVM) algorithm.
The basic idea of SVR is to map the input space to a multidimensional feature space where
linear regression can be applied (which is ineffective if linear regression is applied directly).
The characteristic of SVR is that it gives us a sparse solution; that is, to build a regression
function, we do not need to use all the data points in the training set. The points that
contribute to building the regression function are called Support Vectors. The classification
of a new data point will depend only on the support vectors.

This paper proposes to apply a supervised learning method - SVR - with a suitable feature
set, to detect collisions of CURA6 cobot arm based on current measurements along with the
cobot dynamics model. Heo [14] trained a 1D CNN with a 66-dimensional signal stack
consisting of cobot sensor measurements including estimated external joint torques as input
and output the detected binary decomposition of the signal. The validation was performed
only on the cyclic movements of the 6-DoF manipulator. Our proposed method improved the
learning-based approach to detect cobot stress points using only current sensor measurements
similar to its dynamic model. For the collision detection algorithm, we considered SVR while
simultaneously using energy estimators and baseline models of the robot hardware without
friction terms. Therefore, our approach has the advantage of not requiring threshold tuning
and matching points. The proposed method has the advantage of not requiring any other
additional external sensors, compared to [12] which requires joint torque sensors at the joints.
The proposed method does not require friction compensation. The computational cost in the
proposed method is significantly less for both training and inference (4-dimensional input
for SVR) while the method of Heo [14] has 66-dimensional input.

3. PROPOSED METHOD

3.1. Structure of the cobot arm

The main components of a CURA6 cobot [3] include: base-component, rotating-component
or translational joints, links between joints and the cobot arm, also known as the end ef-
fector. Intema’s CURA6 cobot arm is compact with a payload of 5000 grams and a wide
operating radius of 1200 mm. The CURA6 cobot can perform complex tasks with high
precision requirements such as handling and contacting objects that are easily deformed or
easily torn or broken under operating conditions with very strict technical requirements.

Symbols in Table 1:
ai: distance parameter from axis Zi−1 to axis Zi measured along the axis Xi.
αi: parameter of axis rotation Zi−1 around axis Xi parallel or coincident with axis Zi.
di: distance parameter from axis Xi−1 and axis Xi measured along the axis Zi−1.
θi: rotation angle parameter of axis Xi−1 around axis Zi−1 parallel or coincident with

axis Xi.

3.2. Dynamic equations

The dynamic equations defined for the CURA6 cobot are

M (q) q̈ + C (q, q̇) q̇ + g (q) + τF = τm, (1)
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Table 1: Denavit - Hartenberg (D-H) parameters of the CURA6 cobot [3]

i Distance ai Parameter αi Distance di Parameter τi Parameter θi

0 0 π
2 0.105 τ0 θ0

1 0.4 0 - τ1 θ1

2 0.4 0 - τ2 θ2

3 0 π
2 0.220 τ3 θ3

4 0 −π
2 0.200 τ4 θ4

5 0 0 0.140 τ5 θ5

where q (t) = [q0 (t) , q1 (t) , ..., qn−1 (t)] ∈ Rn includes the location of each joint (n = 6),
q̇ (t) ∈ Rn and q̈ (t) ∈ Rn represent the velocity and acceleration vectors respectively. M (q) ∈
Rn×n is the cobot inertia matrix, C (q, q̇) ∈ Rn×n is the Coriolis matrix, g (q) ∈ Rn is gravity,
τF ∈ Rn represents friction and τm ∈ Rn is the joint moment vector. Note that matrix M (q)
is symmetric; τm = Kiim and Ki ∈ Rn×n is the amplification matrix and im ∈ Rn is the
intensity motor. When a collision occurs, equation (1) becomes

M (q) q̈ + C (q, q̇) q̇ + g (q) + τF = τm + τext, (2)

where τext ∈ Rn is the external joint torque caused by collisions or other external forces
acting on the cobot.

Matrix Ṁ (q)−2C (q, q̇) is obliquely symmetrical, with Ṁ (q) being the derivative symbol
of M (q) over time (details in [15]).

The signals need to be normalized in the range [0,1] before being processed as input. The
output without considering friction is described by the equation

r = KO

(
ρ (t)−

∫ t

0

(
τm − β̂ + r

)
ds− ρ (0)

)
, (3)

with
˙̂ρ = τm − β̂ (q, q̇) + r, (4)

and

ṙ = KO

(
ρ̇− ˙̂ρ

)
, (5)

Under ideal conditions, the dynamic relationship between r (t) and external joint torque
τext is

ṙ = KO (τext − τF − r) . (6)

3.3. Collision detection method

Based on the SVR method [16], we research and develop a collision detection method
based on our feature extraction scheme (Figure 3) for the CURA6 cobot arm.

Convention: A time-varying f -dimensional signal s (t) ∈ Rf sampled at the sampling
interval tI over a time window of size tW , number of samples is N + 1 = tW

tI
+ 1 ∈ N.
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SVR takes the absolute value of the output in (3) as input.
Feature vector includes converting the signal into a vector form and assigning labels to

the features. To sample over time, through experimentation, we set time sampling tI = 7 ms
and tW = 70 ms. After sampling the output of the momentum observer and transforming
it into a matrix R ∈ Rn×(N+1), value of rows 1, 2, 3 and 4 of R to form a single vector,
resulting in feature vectors x (t) as below

x =
[
rJ1 rJ2 rJ3 rJ4

]T ∈ R4(N+1), (7)

where rJi ∈ R1(N+1) represents the value of the ordered row i of R. Note that row i of R
represents the sampled momentum observation output of the joint i. Compared with using
the signals of all joints, the size of the feature vector x is smaller, reducing the amount of
computation for SVR.

SVR training: We propose to use the radial basis function [17] as below

K
(
x, x

′
)
= exp


∥∥∥x− x

′
∥∥∥2

2σ2

 , (8)

SVR hyperparameter is σ = 3 in (8).
Collision detection sensitivity adjustment: The output of the trained SVR is a scalar value

normalized to a unit which is then thresholded and converted to the corresponding binary
collision. The output value is close to 0 when no external force is applied and increases as
the estimated external torque of joints 1–4 increases and decreases as the external torque
decreases. The larger the estimated external torque and the more joints affected by the
external force, the larger the SVR output value.

We filter the output to reduce false positives (false alarms). Collisions are only reported
if the output of the collision detection method is consistently true for tc ms. The output
filter eliminates false positives (false alarms with long durations in the 1−tc ms range) which
makes collision detection more efficient. We set tc = 0.3 ms for the SVR method.

We programmed and tested the proposed method in Python.

3.4. Evaluation method

The confusion matrix evaluates the classifier’s performance by comparing real and pre-
dicted outputs (Figure 3). Four indicators including Accuracy, Sensitivity, PPV (Positive
Predictive Value), and Specificity are utilized to evaluate the performance of the proposed
method.

Accuracy =
TP + TN

TP + FP + FN + TN
, (9)

Sensitivity =
TP

TP + FN
, (10)

PPV =
TP

TP + FP
, (11)
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Figure 3: Constructive process of the proposed SVR method

Specificity =
TN

TN + FP
, (12)

where TP - True Positive: A collision happened, the model predicted it happened, FP -
False Positive: A collision didn’t happen, the model predicted it happened, FN - False
Negative: A collision happened, the model predicted didn’t happen, TN - True Negative: A
collision didn’t happen, the model predicted didn’t happen.

4. RESULTS AND DISCUSSIONS

Drawing from the theoretical framework and the model presented, this section conducts
experiments on various datasets and assesses the efficiency of the suggested method by uti-
lizing standard metrics in collision detection and predicting relationships between methods.

4.1. Experiment data

We 15 prepared random cobot motion slices as training data, each slice containing 10000
samples (7 minutes of motion). The speed of each joint is safely designed by the solver to be
within 25% of the maximum motor speed. There are 03 slices collected without the cobot
payload and the remaining 12 slices with payload (in grams) from the following list {4039,
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2757, 2298, 1282, 1016, 782}, with 02 slices for each payload (approximate payload range is
from 500 grams to 4000 grams). Of which, training data (90%) and test data (10%). This
dataset is downloaded from Gitlab [3]. The dataset consists of two sub-datasets, the 1.6
threshold dataset [A] and the 2.0 threshold dataset [A].

4.2. Results

This section presents the experimental outcomes, as well as discussions and comparisons
with baseline or recently published studies, to highlight the advantages and disadvantages
of the proposed approach. In particular, it encompasses the experimental findings related to
collision detection and the prediction of relationships between objects.

Table 2: Confusion matrix: Threshold 1.6 [A], SVR model. A: max V 10%, B: max V 20%,
C: max V 30%, D: max V 40%, E: max V 50%, F: max V 60%

(A) max V 10% R/a Collision (10%) R/a Non-co (10%)

Predicted Collision (10%) 60 29

Predicted Non-co (10%) 5 113

(B) max V 20% R/a Collision (20%) R/a Non-co (20%)

Predicted Collision (20%) 59 40

Predicted Non-co (20%) 6 135

(C) max V 30% R/a Collision (30%) R/a Non-co (30%)

Predicted Collision (30%) 57 76

Predicted Non-co (30%) 8 136

(D) max V 40% R/a Collision (40%) R/a Non-co (40%)

Predicted Collision (40%) 60 65

Predicted Non-co (40%) 5 158

(E) max V 50% R/a Collision (50%) R/a Non-co (50%)

Predicted Collision (50%) 59 90

Predicted Non-co (50%) 6 180

(F) max V 60% R/a Collision (60%) R/a Non-co (60%)

Predicted Collision (60%) 59 87

Predicted Non-co (60%) 6 167

Table 2 shows the confusion matrix in different max V of Threshold 1.6 [A]. All cases
have 65 actual collisions. The number of non-collision observations varies.

In 207 observations (Table 2.A), the results of the proposed method are: 60/65 collision
observations detected correctly, 113/142 non-collision observations detected correctly; only
34 observations were mistaken (5 collision observations were mistakenly predicted as non-
collision, and 29 non-collision observations were mistakenly predicted as collision).

In 240 observations (Table 2.B), the results of the proposed method are: 59/65 collision
observations detected correctly, 135/175 non-collision observations detected correctly; only
46 observations were mistaken (6 collision observations were mistakenly predicted as non-
collision, and 40 non-collision observations were mistakenly predicted as collision).

In 277 observations (Table 2.C), the results of the proposed method are: 57/65 collision
observations detected correctly, 136/212 non-collision observations detected correctly; 84 ob-
servations were mistaken (8 collision observations were mistakenly predicted as non-collision,
and 76 non-collision observations were mistakenly predicted as collision).

In 288 observations (Table 2.D), the results of the proposed method are: 60/65 collision
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observations detected correctly, 158/223 non-collision observations detected correctly; 70 ob-
servations were mistaken (5 collision observations were mistakenly predicted as non-collision,
and 65 non-collision observations were mistakenly predicted as collision).

In 335 observations (Table 2.E), the results of the proposed method are: 59/65 collision
observations detected correctly, 180/270 non-collision observations detected correctly; 96 ob-
servations were mistaken (6 collision observations were mistakenly predicted as non-collision,
and 90 non-collision observations were mistakenly predicted as collision).

In 319 observations (Table 2.F), the results of the proposed method are: 59/65 collision
observations detected correctly, 167/254 non-collision observations detected correctly; 93 ob-
servations were mistaken (6 collision observations were mistakenly predicted as non-collision,
and 87 non-collision observations were mistakenly predicted as collision).

In summary, we can see that with threshold 1.6 [A], the results in collision detection were
good, but the results in non-collision detection are not as good as expected.

Table 3: Confusion matrix: Threshold 2.0 [A], SVR model. A: max V 10%, B: max V 20%,
C: max V 30%, D: max V 40%, E: max V 50%, F: max V 60%

(A) max V 10% R/a Collision (10%) R/a Non-co (10%)

Predicted Collision (10%) 51 3

Predicted Non-co (10%) 14 113

(B) max V 20% R/a Collision (20%) R/a Non-co (20%)

Predicted Collision (20%) 50 4

Predicted Non-co (20%) 15 135

(C) max V 30% R/a Collision (30%) R/a Non-co (30%)

Predicted Collision (30%) 53 10

Predicted Non-co (30%) 12 136

(D) max V 40% R/a Collision (40%) R/a Non-co (40%)

Predicted Collision (40%) 56 10

Predicted Non-co (40%) 9 159

(E) max V 50% R/a Collision (50%) R/a Non-co (50%)

Predicted Collision (50%) 56 16

Predicted Non-co (50%) 9 180

(F) max V 60% R/a Collision (60%) R/a Non-co (60%)

Predicted Collision (60%) 59 12

Predicted Non-co (60%) 6 167

Table 3 shows the confusion matrix in different max V of Threshold 2.0 [A]. All cases
have 65 actual collisions. The number of non-collision observations varies. Table 3.A shows
the results of the proposed method when max V 10% and Threshold 2.0 [A].

In 181 observations, there are: 51/65 collision observations detected correctly, 113/116
non-collision observations detected correctly; only 17 observations were mistaken (14 collision
observations were mistakenly predicted as non-collision, and 3 non-collision observations were
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mistakenly predicted as collision).

Table 3.B shows the results of the proposed method when max V 20% and Threshold 2.0
[A]. In 204 observations, there are: 50/65 collision observations detected correctly, 135/139
non-collision observations detected correctly; only 19 observations were mistaken (15 collision
observations were mistakenly predicted as non-collision, and 4 non-collision observations were
mistakenly predicted as collision).

Table 3.C shows the results of the proposed method when max V 30% and Threshold 2.0
[A]. In 211 observations, there are: 53/65 collision observations detected correctly, 136/146
non-collision observations detected correctly; 22 observations were mistaken (12 collision
observations were mistakenly predicted as non-collision, and 10 non-collision observations
were mistakenly predicted as collision).

Table 3.D shows the results of the proposed method when max V 40% and Threshold 2.0
[A]. In 234 observations, there are: 56/65 collision observations detected correctly, 159/169
non-collision observations detected correctly; 19 observations were mistaken (9 collision ob-
servations were mistakenly predicted as non-collision, and 10 non-collision observations were
mistakenly predicted as collision).

Table 3.E shows the results of the proposed method when max V 50% and Threshold 2.0
[A]. In 261 observations, there are: 56/65 collision observations detected correctly, 180/196
non-collision observations detected correctly; 25 observations were mistaken (9 collision ob-
servations were mistakenly predicted as non-collision, and 16 non-collision observations were
mistakenly predicted as collision).

Table 3.F shows the results of the proposed method when max V 60% and Threshold 2.0
[A]. In 244 observations, there are: 59/65 collision observations detected correctly, 167/179
non-collision observations detected correctly; 18 observations were mistaken (6 collision ob-
servations were mistakenly predicted as non-collision, and 12 non-collision observations were
mistakenly predicted as collision).

In summary, we can see that with threshold 2.0 [A], the results in non-collision detection
were good, but the results in collision detection are not as good as expected.

4.3. Evaluations and discussions

The performance results obtained by the proposed method (calculated by (9), (10), (11),
(12)), compared with Czubenko [3] (using the same experimental data), show similar results
(see details in Table 4).

In summary, we can see that with Threshold 2.0 [A] the performance of the proposed
method when detecting non-collisions is good (see Specificity values), the performance of the
proposed method when detecting collisions is a bit lower (see Sensitivity values). This is in
contrast to the Threshold 1.6 [A] case.

From the results obtained, it can be seen that the intensity threshold affects the detection
of collision/no collision. In this experiment, the Threshold of 2.0 [A] detects current changes
worse (so collision detection is worse), the analysis results tend to assume that there is no
intensity change. And the number of non-collision observations in the dataset is very large,
so it leads to more correctly prediction of non-collision. On the contrary, the Threshold of
1.6 [A]) is more sensitive in detecting intensity changes, so collision detection is better. For
this reason, the non-collision observations tend to misunderstood as collision.
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Table 4: Evaluation of results and comparison with Czubenko [3]

maxV Threshold
Sensitivity PPV Specificity Accuracy

Ours [3] Ours [3] Ours [3] Ours [3]

10%

1.6 [A]

0.923 0.908 0.674 0.670 0.796 0.796 0.836 0.831

20% 0.908 0.923 0.596 0.606 0.771 0.777 0.808 0.817

30% 0.877 0.862 0.429 0.427 0.642 0.646 0.697 0.697

40% 0.923 0.954 0.480 0.492 0.709 0.713 0.757 0.767

50% 0.908 0.908 0.396 0.399 0.667 0.670 0.713 0.716

60% 0.908 0.908 0.404 0.404 0.657 0.657 0.708 0.708

10%

2.0 [A]

0.785 0.800 0.944 0.945 0.974 0.974 0.906 0.912

20% 0.769 0.754 0.926 0.942 0.971 0.978 0.907 0.907

30% 0.815 0.800 0.841 0.852 0.932 0.938 0.896 0.896

40% 0.862 0.877 0.848 0.851 0.941 0.941 0.919 0.923

50% 0.862 0.892 0.778 0.795 0.918 0.923 0.904 0.916

60% 0.908 0.908 0.831 0.831 0.933 0.933 0.926 0.926

The SVR-based collision detection method detected collisions of the 6-DoF CURA6 cobot
arm effectively. The advantage of the proposed method is that it only requires measurements
of current sensors along with a dynamic model of the cobot; there is no need to model or
determine the frictional moments in the joints. The advantage of the SVR-based method
proposed is that it is suitable for the context of limited training data.

The test scenarios are limited because the study relies on public datasets provided by the
research community. Furthermore, the rationale behind the dataset design is unclear. For
instance, although the number of collisions per scenario is fixed, the non-collisions instances
are varied. Compared with the research results in [3] and [14], our method is better in
the context of handling the impact of different loads. However, the validation for unknown
random loads remains a difficult problem [18–22]. Furthermore, the problem of collision
detection of two or more cobot arms is complex and needs further research [23–30]. For
mass-produced collaborative cobots, another practical issue is that the processes required
for effective collision detection must be replicated on a large scale. These will be interesting
topics for future research.

5. CONCLUSION

The proposed SVR-based collision detection technique effectively detected collisions of
the CURA6 6-DoF cobot arm. The comparison results show that the performance of the
proposed method is similar to the existing method. However, the proposed method is suitable
for limited data contexts. The main advantage of the proposed method is that it only requires
measurements of current sensors along with a dynamic model of the cobot; there is no need
to model or determine the frictional moments in the joints.

The proposed method is better than existing methods in the context of handling the
impact of different loads. However, the validation for unknown random loads remains a
difficult problem. Furthermore, the problem of collision detection between two or more
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cobot arms is complex and requires further research. For mass-produced collaborative cobots,
another practical issue is that the processes required for effective collision detection must be
replicated on a large scale. These will be open topics for future research.
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