Tap chi Tin hoc va Piéu khién hoc, T. 19, S. 2 (2003), 78-90

A FORMAL SPECIFICATION OF THE ABORT-ORIENTED
CONCURRENCY CONTROL FOR REAL TIME DATABASES
IN DURATION CALCULUS

HO VAN HUONG

Governmental Cipher Department HaNoi

Abstract. In this paper, we present a formal model of real time database systems using duration
calculus (DC). First, we present a formal description of the real time database model using state
variables expressing data objects and operations of period transactions. Then, we give DC formulas
to express their behavior and relationships. We also give a formal specification of the Basic Aborting
Protocol (BAP) and a formal proof for the correctness of the BAP using the DC proof system. And
then, we propose an extension of BAP.

Tém tAt. Bai bdo trinh bay vé mot moé hinh hinh thitc cia hé théng co sé dir liéu str dung logic
tinh todn khodng. Phan diu gidanh miéu ta hinh thtrc ciia moé hinh co s dir lieu thoi gian thue, str
dung cac bién trang thai thé hién cdc déi tuong dir lidu va céc thao téc cla cdc giao téc ¢b chu k.
Tiép nira la dua ra cong thitc DC (Duration Caculus) dé thé hién hanh vi va quan hé cia chiing.
Bai bdo con dua ra mot dac ta hinh thite cia giao thitc huy bé (BAP) vA mot chirmg minh hinh thire
cho diéu kién diing cida giao thitc BAP st dung hé théng chirng minh DC. Cudi ciing 13 dé xuat mot
thuat todn dé mé rong cho giao thirc BAP.

1. INTRODUCTION

In the past two decades, the research in RTDBS has received a lot of attention [5, 12]. It
consists of two different important areas in computer science: real time systems and database
systems. Similar to conventional real time systems, transactions in RT'DBS are usually as-
sociated with time constraint, e.g., deadline. On the other hand, RTDBS must maintain a
database for useful information, support the manipulation of database, and process trans-
actions [12]. RTDBS are used in a wide range of applications such as avionic and space,
air traffic control systems, robotics, nuclear power plants, integrated manufacturing systems,
programmed stock trading systems, and network management systems.

In this paper, we concentrate on mathematical modelling of RTDBS such as the time
behaviour of the data, the integration of concurrency control with scheduling in RTDBS. We
will use real time logic for our modelling.

The main goal of this paper is to formalise some aspects of RI'DBS, in particular BAP
using DC. This will allow us to verify the correctness of BAP formally using the proof system
of the DC. We also propose an extension of BAP. We make use of duration calculus because
DC is a simple and powerful logic for reasoning about real time systems, and DC has been used
successfully in many case studies, for example [6, 7, 8, 9], we will take it to be the formalism
for our specification in this paper.

Our approach is summarised as follows: We apply a formal model of RTDBS proposed
by Ho Van Huong and Dang Van Hung [9] to specify and verify the Basic Aborting Protocol.
To show the advantages of our model, we give a formal specification of the Basic Aborting
Protocol (BAP) and a formal proof for the correctness of the BAP using the DC proof system.

The paper is organized as follows. In the next section, we give an informal abstract

A FORMAL SPECIFICATION OF THE ABORT-ORIENTED CONCURRENCY CONTROL FOR ... 79

description of RTDBS and BAP. Section 3 presents a review of DC. Section 4 presents a
formal model of Real Time Database Systems in DC. Section 5 presents a fomalization of
BAP in DC and a formal proof of correctness and certain properties of this protocol. Section
6 presents an extension of BAP.

2. PRELIMINARIES

We briefly recall in this section the main concepts of RT'DBS and the integration of
concurrency control with priority scheduling, which will justify our formal model given in
later sections. We refer to [5, 9, 12] for more comprehensive introduction to RTDBS.

A real time database systems can be viewed as an amalgamation of conventional database
management system and real time system [5]. In RTDB, the transactions not only have
to meet their deadline, but also have to use the data that are valid during their execution.
Many previous studies have focused on integrating concurrency control protocols with priority
scheduling in RTDBS [5, 12].

For example, the Read/Write Priority Ceiling Protocol (R/WPCP) is an extension of the
well-known Priority Ceiling Protocol (PCP) [12] in real time concurrency control, adopts Two
Phase Locking (2PL) in preserving the serializability of transactions executions.

Although R/WPCP and its variants provide ways to bound and estimate the worst case
blocking time of a transaction, they are usually pretty conservative, and it is often unavoidable
to avoid lengthy blocking time for a transaction in many systems. Transaction aborting is
suggested by many researchers to solve problems due to lengthy blocking time. In particular,
Tei-Wei Kuo, et, al, [11] proposed a Basic Aborting Protocol (BAP). The Basic Aborting
Protocol is an integration of the Two Phase Locking Protocol, Priority Ceiling Protocol, and
a simple aborting algorithm. The basic idea of the Basic Aborting Protocol is that, when a
transaction T; attemps to lock a data object x, the lock request will be granted if the priority
of T; is higher than the priority ceiling of all data objects currently locked by transaction
other than T;, otherwise, a rechecking procedure for the lock request is done as follows: if all
of the transactions other than T; that locked data objects with priority ceilings higher than
the priority of T; are abortable, then T; may abort all of the transactions that lock such data
objects and obtain the new lock. Otherwise, T; will be blocked. Aborted transaction are
assumed to restart immediately after their abortings. Since BAP consists of 2PL, PCP, and
a simple aborting algorithm, BAP does preserve many important properties of 2PL and PCP
such as serializable, guarantees deadlock-free and blocking at most one for every transaction.

3. DURATION CALCULUS

The Duration Calculus (DC) represents a logical approach to formal design of real time
systems. DC is proposed by Zhou, Hoare, and Ravn, which is an extension of real arithmetic
and interval temporal logic. We refer to [10] for more comprehensive introduction to Duration
Calculus.

Time in DC is the set R* of non-negative real numbers. For ¢,#' ¢ RT ¢ <t [t,t'] denotes
the time interval from ¢ to ¢'.

We assume a set I of boolean state variables. F includes the Boolean constants 0 and
1 denoting false and true respectively. State expressions, denoted by P, Q, P;, @1, etc., are
formed by the following rules:

1. Each state variable P € F is a state expression.
2. If P and Q are state expressions, then so are =P, (PAQ), (PVQ), (P = Q), (P < Q).

A state variable P is interpreted as a function I(P): RT™ — {0,1} (a state). I(P)(t) =1

80 HO VAN HUONG

means that state P is present at time instant ¢, and I(P)(¢t) = 0 means that state P is not
present at time instant ¢. We assume that a state has finite variability in a finite time interval.
A state expression is interpreted as a function which is defined by the interpretations for the
state variables and Boolean operators.

For an arbitrary state expression P, its duration is denoted by [P. Given an interpretation
I of state variables and an interval, duration [P is interpreted as the accumulated length
of time within the interval at which P is present. So for an arbitrary interval [¢,t'], the
interpretation I(f P)([t,t']) is defined as ftt I(P)(t)dt. Therefore, [1 always gives the length
of the intervals and is denoted by ¢. An arithmetic expression built from state durations and
real constants is called a term.

We assuie a set of temporal propositional letter X,Y,.... Each temporal propositional
letter is interpreted by I as truth-valued functions of time intervals.

A primitive duration formula is either a temporal propositional letter or a Boolean expres-
sion formed from terms by using the usual relational operations on the reals, such as equality
= and inequality <. A duration formula is either a primitive formula or an expression formed
from other formulas by using the logical operators =, A, V, =, < the chop .

A duration formula D is satisfied by an interpretation I in an interval [¢,¢"] just when it
evaluates to true for that interpretation over that time interval. This is written as

L [t ¢ D,
where I assigns every state variable a finitely variable function from R* to {0,1}, and [¢/,¢"]

decides the observation window.

Given an interpretation I, the chop-formula D" Dq is true for [¢/,t"] iff there exists a ¢
such that ¢ <t <t and D; and D, are true for [t/,¢] and [¢,t"] respectively.

We give now shorthands for some duration formulas which are often used. For an arbitrary
state variable P, [[P]] stands for (f P = ¢) A (€ > 0). This means that interval is a non-point
interval and P holds almost everywhere in it. We use [[]| to denote the predicate which is
true only for point intervals.

Modalities ¢, O are defined as: $D= true™ D" true, DD=-{—-D (we use = as a define).
This means that $D is true for an interval iff D holds for some its subinterval, and OD is true
for an interval iff D holds for every its subintervals.

In this paper, we will use the following abbreviation as well.
TPT=I T v TP

DC with abstract duration domain is a complete calculus, which has a powerful proof
system.

4. A FORMAL MODEL OF REAL TIME DATABASE SYSTEMS IN DC

4.1. Basic model

We now give a formal model of Real Time Database System (RTDBS) using DC. We will
first introduce DC state variables to model the basic primitives of RT'DB and to characterise
the data and the transactions. We then write DC formulas on the introduced state variables
to capture the essential properties of the RTDBS.

The system consists of a set O of data objects ranged over by x, v, z, etc, and set T of n
transaction T;, 1 < ¢ < n.

Fach transaction T; arrives at the database system at time \; which is unknown in advance.
After arriving a transaction performs some read operations on some data objects, does some

A FORMAL SPECIFICATION OF THE ABORT-ORIENTED CONCURRENCY CONTROL FOR ... 81

local computations and then performs some write operations on some data objects. We assume
the atomic commitment of transactions: if a transaction has been aborted then it’s execution
has no effects on the database. We also assume that each transaction can read and write to
a data object at most once during its execution in one period. These assumptions are for the
simplicity but well accepted in the literature. Each transaction T; has its own deadline D;, a
priority p;, an execution time C;, a period P;, a data read set RO;, a data write set WO, (note
that RO; and WO, may be empty).

Now we introduce DC state variables to model the behaviour of data objects and trans-
actions. Let z be a data object. For each i < n a state variable let T;.written(x) be a DC state
variable expressing the behaviour of x. T;.written(x) holds at time ¢ iff the value of = at ¢ is
the one written by transaction 7;.

T; written € |O — Time — {0, 1}]

T, written(z)(t) = 1 iff at time t object = holds the value written by T; most recently
For each period, a transaction T; can read a data object x at most once, and after it reads a
value of x, it keeps this value until the end of the period. The view of T; on x can be captured
by a state variable T;.read(z) defined as follows. Tj.read(x) holds at time ¢ within a period iff
T; has performed a read operation on z successfully before ¢ in that period. Therefore, the

read operation on z in a period is performed at the time that T;.read(z) changes its value from
0 to 1 in that period.

T;.read € [O — Time — {0,1}]
T;.read(x)(t) = 1 iff T; has performed a read operation on x successfully before ¢
in a period containing t.
A transaction T; has a period P;. Therefore, for each i < n temporal propositional letter
T;.priod is introduced to express that a time interval [a, b] is a period of T;. Let Intv denotes
the set of time intervals over reals.
T;.period € [Intv — {0,1}]
T;.period([a, b]) = true iff [a,d] is a period of Tj.
Of course,
T;.period = € = P;. (1)
For each ¢« < n state variables T;.arrived is introduced to express that T; is in the system at
time .
T;.arrived € [Time — {0,1}]
T;.arrived(t) = 1 iff at time ¢ transaction T; is in the system and
has not been committed or aborted since then.

Because we assume that T; arrived at the begining of any period, it holds:
T;.period = [[T;.arrived]|” true. (2)

A transaction T; can request a lock for a data object z which is either read lock or write
lock. Therefore, for each ¢ < n state variables T;.request_rlock(x) and T;.request_wlock(z) are
introduced to express that T; is requesting lock for a data object at time t.

T;.request_rlock, T;.request_wlock € [0 — Time — {0,1}]
T;.request_rlock(x)(t) = 1 iff transaction T} is requesting a read-lock on x at time ¢
T;.request_wlock(z)(t) = 1 iff transaction T; is requesting a write-lock on z at time ¢.

82 HO VAN HUONG

Let T;.request _lock = T;.request wlockV Ti.request_rlock. When a transaction T; requests a lock
on data object z, it may be granted or may have to wait. Therefore, for each ¢« < n and for
each z, we introduce the state variables T;.wait_wlock(x) and T;.wait_rlock(z) to express that
T; is waitting for a lock on data object = at time ¢, and state variables T;.hold_wlock(z) and
T;. hold_rlock(x) to express that T; is holding a lock on data object z at time ¢.

T;.wait_rlock, T;.wait_wlock, T;. hold_rlock(x), T;. hold_wlock(x) € [O — Time — {0, 1}]

T; wait_rlock(x)(t) = 1 iff transaction T; is waitting for a read-lock on data object z at time ¢
T; wait_wlock(x)(t) = 1 iff transaction T; is waitting for a write-lock on data object z at time ¢
T;.hold_rlock(x)(t) = 1 iff at time ¢ transaction T; holds a read-lock on data object =

T;. hold_wlock(z)(t) = 1 iff at time ¢ transaction T; holds a write-lock on data object =

Let
T, wait_lock = T;.wait_rlock(z) V T;.wait_wlock(z)
T;.hold_lock(x) = T;.hold_rlock(z) V T;. hold_wlock(z)
In a period, a transaction can commit or abort. Therefore, for each ¢ < n state variables

Ti.commatted and T;.aborted are introduced to express that T; has already committed or aborted
at time ¢.

T;.committed, T;.aborted € [Time — {0, 1}]
T;.committed(t) = 1 iff T; has committed successfully before ¢ in a period of containing ¢
T;.aborted(t) = 1 iff T; has aborted before ¢ in a period of containing ¢

At the beginning of a period, all transactions have not read anything from the database.

O(T;.period = /\ ([[-T;.read(x)]) "~ true))
x€TO;

Now, we write DC formulas to capture the properties of state variables and their relation-
ships. Those formulas will constrain the behaviour of the state variables introduced so far that
a RTDBS produces. For any transaction T;, at any time, either T;.arrived or T;.committed or
T;.aborted (here we assume that at the beginning, if a transaction has not arrived, it is com-
mitted).

[[T;.arrived V Ti.committed V T;.aborted]|* (3)

These three states are mutually exclusive:

[[T;.arrived = [[-(T;.commitied V T;.aborted)]]| (4)
[[T;.committed]] = [[-(T;.arrived V T;.aborted)]] (5)
[[T;.aborted]] = [[-(T;.arrived V T;.committed)]] (6)

At any time the value of a data object is given by one and only one transaction (here we
assume that there is a virtual transaction to write the initial value for all data):

Il \/ T;.written(x)]| (7)
[[T; written(z)]] = /\ [T . written(x)T] (8)

T;#T;cT

A FORMAL SPECIFICATION OF THE ABORT-ORIENTED CONCURRENCY CONTROL FOR ... 83

A transaction T; requests a lock for a data object x iff it is in arrived state and it is either
holding or waitting.

/\ /\ [[T;.request_rlock(z) < T;.arriwved A (T;.hold_rlock(z) V T.wait_rlock(z))]] (9)
T,€T 2€0

/\ /\ [[T;.request_wlock(z) < T;.arrived A (T;.hold_wlock(z) V T;.wait_wlock(x))]] (10)
T,eT 2€0

A transaction cannot hold for a lock and at the same time waits for it:

/\ /\ [[—(T;.hold_rlock(z) A T;.wait_rlock(z))]| (11)
/\ /\ [[—(T;. hold_wlock(x) A T wait_wlock(x))]| (12)

The conflicting locks cannot be shared by the transactions. Therefore,

N\ Ti.hold_rlock(@)T] = [[=T}.hold_wlock(x)T] (13)
Ti#T; €T 2€O

N\ TTs.hold_wiock(z)T| = [[=T;.hold_lock(x)| (14)
Ti#T; €T 2€O

A transaction can read or write on a data object only if it holds the corresponding lock on
the data object at the time.

/\ /\ [[=T;.read(x)]| " [[Ti.read(x)]] = O[T hold_rlock(z)T] (15)
/\ /\ [[—T;.written(z)]| [[T;.written(z)]] = O[[T;-hold_wlock(x)])| (16)

In any period, a transaction T; cannot hold a lock for a data objects x after it has released

this lock.
/\ /\ (Ti.pem’od = =T .ﬁold_rlock(x)ﬂ”))
rer deo \ [-Ti-hold_rlock(z)T| ™~ [TT;. hold_rlock(x)T])
/\ /\ (Ti.pem’od = ([T hold_wlock(x) |~) ®)
ooy 2oy \ =T hold_wlock(x)T) ™ [T hold wlock(x)T))

As mentioned earlier, for each period, for every ¢ and x the state T;.read(x), T;.committed and
T;.aborted can change at most once.

T;.period = O([[T;.read(z)]| " true = [[T;.read(x)]]) (19)
T;.period = O([[T;.commatted]] " true = [[T;.commilted]|) (20)
T;.period = O([[T;.aborted]| " true = [[T;.aborted]]) (21)

From the assumption of atomic commitment it follows that if a transaction has written some-
thing into the database then it should commit at the end.

T;.period = ((O[[T; . written(x)]]) = true™ [[T;.committed]]) (22)

84 HO VAN HUONG

Let ENV be the set of the formulas (1), (2), (3), ..., (22). ENV capture the axioms for the
state variables introduced so far.

4.2. Execution Model

At any time, a transaction 7T is running on processor or not running on processor. There-
fore, for each i < n state variables T;.run is introduced to express that T; is running on a
processor at time t.

T;.run € [Time — {0,1}]
T;.run(t) = 1 iff transaction T; is running on a processor at time ¢

When a transaction 7; has arrived and got all data object locks it needs, it is ready to run on
the processor.

T;.ready € [Time — {0,1}]
T;.ready(t) = 1 iff transaction T; is ready to execute on a processor at time ¢

T;.ready will be defined via the assumption about the behaviour of transactions as follows.
A transaction ready it must in arrived state.

/\ [T;.ready]] = [[1;.arrived]]
T, €T

When a transaction T; ready then it must not wait for a read-lock or a write-lock for it.

/\ /\ [T;.ready]] = [[-T;-wait_rlock(x)]|

T;€T x€O

/\ /\ [T;.ready]] = [[-T;-wait_wlock(z)]]

T;€T x€O

A transaction runs only if it is ready and this holds for every transaction.
Al = /\ O([[T;.run]] = [[T;.ready]])
i=1

The accumulated run time of transaction T; over an interval is given by [T;.run. In a period
if a transaction is standing, then the maximal required execution time has not been reached.

T;.period = (true™ [[=T;.committed]] true =

A2= A : :
i (/ Ti. Run < C;) 7 [[-T;.committed]] " true)
In a period if execution time of T; is equal to C;, T; will commit from that time.

A3 =

~.

(T;.period = (/Erun =, > 0= true” [[T;.committed]]))

i=1

Let EXEC be A2 A A3

A FORMAL SPECIFICATION OF THE ABORT-ORIENTED CONCURRENCY CONTROL FOR ... 85

4.2.1. Uniprocessor Model

Assume that the transactions 71, ... , T,, share a single processor, and transaction priorities
are assigned by the Rate Monotonic Algorithm.

Since there is only one processor, at any time if one transaction is running, then any other
transaction can not be running.

A4 =20 /\ ([T;.run]] = /\|_|——|Tj.run—|_|)

1<i<n G4

The processor cannot stay idle when a transaction is ready:

A5 =0(] \/ T;.ready]] = [[\/ T;.run]|)

1<i<n 1<i<n

A transaction with lower priority cannot be running when a transaction with higher priority
is ready
A6 = /\ O([[T;.ready]| = /\ [[—1;.runl])

1<i<n i<j<n

The conjunction of the preceding formulas constitute our uniprocessor model for the transac-

tions, we have:
Usys = A1 N A2 AN A3 AN A4 N AD A A6

4.2.2, Multiprocessor Model

Assume there are n transaction and they share with m processor.

The variables specification, some assumptions for multiprocessor are the same as that of
the execution model.

In environment multiprocessor, instead of specifying that there is only one running trans-
action in any time interval, we specify that the number of running transactions in any time
interval should be no more than the nunber of processors.

Adm = /\ O([[T;.run]] = 85 < m)

1<i<n

where #5 denotes the number of running transactions in any time.

The conjunction of the preceding formulas constitute our multiprocessor model for the

transactions, we have:
Msys = A1 AN A2 AN A3 A Adm

5. A CASE STUDY:
FORMALISATION OF BASIC ABORTING PROTOCOL IN RTDB

As presented in section 2, BAP is an extension of the well-known PCP in real time
concurrency control. BAP offers higher priority transaction a chance to abort lower priority
transaction and BAP requires transaction to lock data object in 2PL. In this section, we show
the use of our model by giving a formal specification of BAP.

5.1. Serializability of 2PL

A formal specification of 2PL can be done in the same way as in [1] and it is omitted here.

86 HO VAN HUONG

5.2. Formalisation of BAP

In order to formalise the protocol, for each 4,7 < n, x € O, we introduce the following
notations. Let PL(z) be constants and PN C N denote the set of priority numbers, T;.locked —
data and T;.sysceil be temporal variables.

The priority ceiling PL(x) of each data object x is equal to the highest priority of trans-
actions which may read or write .

PL(z) = max{pjlx € RO;UWO,,j <n}.
T;.locked — data denotes the data objects locked by transactions other than 7; at time ¢.

Ty.locked — data € [Time — 2°]
T;.locked — data(t) = {x | T;.hold lock(x)(t), T; #T;}

T;.sysceil denotes the highest priority ceiling of data objects locked by transactions other than
T; at time ¢.

T;.sysceil € [Time — PN]
T;.sysceil(t) = max{PL(z)(t)|x € T;.locked — data(t)}

A transaction T} can abort or can not abort a lock on data object x. Therefore, for each j <n
state function T}.abortable(x) is introduced to express that 7; can abort a lock on data object
x and —Tj.abortable(x) is introduced to express that 7 can not abort a lock on data object .

When a transaction 7; attempts to lock a data object x, T; will be blocked and the lock
on an object x will be denied, if the priority of transaction T; is not higher than T;.sysceil and
transactions other than T; can not abort. Therefore, the blockedby state function is:

T;.blockedby(T;) =

\/ \/ (1. hold_lock(z) A T;.wait_lock(z) A —T;.abortable(x) A T;.sysceil > p;)
Ty #T;€T 2€O

When a transaction T; attempts to lock a data object z, if the priority of transaction T; is
not higher than 7;.sysceil and transactions other than 7T; are abortable then T; can abort all
transactions other than T;. Therefore, the abortable state function is:

T;.abortable(T;) = \/ \/ (T;.hold_lock(x) N'T;.abortable(x) A T;.sysceil > p;)
Ty #T;€T 2€0

Using the framework presented above, we present DC formula schemas for specifing BAP.
First, the formula schema for the preemptive priority scheduler is presented as follows:

Let HiPrigap(1;,T;) be a boolean-valued function for denoting which transaction between
T; and T; has a higher priority.

(a) HiPripap is a partial order:

N (HiPrigap(T;,T;) = ~HiPrigap(T;, T;))
T #T; T

/\ (HZ'P’I“Z'BAP(Ti7T]€) A HZ'P’I“Z'BAP(TJWTJ‘))

AT, #TheT = HZ'P’I“Z'BAP(Ti7Tj)

A FORMAL SPECIFICATION OF THE ABORT-ORIENTED CONCURRENCY CONTROL FOR ... 87

(b) HiPrigap depends on the priority inherited by transactions:

/\ Ty .blockedby(T;)
Ty AT, #Th €T =4 (HiPTiBAp(Tk7Tj) =4 HZ'P’I“Z'BAP(T“TJ‘))

(N\ T € T(=T;.blockedby(T})))
T21r,er \ = (HiPrigap(Ti, 1) = pi > pjy)

N (Ti.blockedby(T)) A (Ti.aborted)
TeeT

L#T;eT \ = (HZ'P’I“Z'BAP(T“TJ‘) = p; > pj)
The first formula expresses that when a transaction T; inherits the priority of transaction T},
it HiPrigap(Ty,T;) then HiPripap(T;,T;). The second formula shows that if a transaction
T; does not inherit any priority, then the relation HiPrigsp is consistent with the original

assigned priorities. The third formula shows that if a transaction T; inherit any priority T and
Ty is aborted, then the relation HiPrigp,sp is consistent with the original assigned priorities.

The preemptive priority scheduler can be expressed as:

pps= N\ O(T.run]] A[Tjready]] = [HiPripap(Ti, T)T)
T #T; T
The Granting rule for BAP can be expressed as:
Granting Rule used to decide if the lock data object requested is granted or not.

Gr = /\ /\ O ([[-T3. hold_lock(z)]| [[T;. hold_lock(x)]] = &([ps > Ti.sysceil]])
T, €T 2€0
The blocking rule for BAP can be expressed as:

Blocking Rule used to decide whether a transaction is blocked on its request for a lock
data object or not.

Bl 2 /\ /\ O([[ps > Ti.sysceil || = [T wait_lock(z)]])
T, €T x€c©

Then, the unblocking rule can be specified as:

Unblocking Rule used for deciding which among the blocked transactions is to be
granted the lock data object.

UnBl 2 /\ /\ 0 ([[T;.wait_lock(x) A Tj.wait_lock(x)]] ™)

TAT €T 2e® [T wait_lock(x)]] = HiPripap(1;,T;)

By combining these formula schemas together, the scheduler, BAP, is obtained:
BAP = (2PL A PPS A Gr A Bl A UnBl)

Since BAP adopts Two Phase Locking (2PL) in preserving the serializability of transactions
executions. Therefore, all executions of the transactions system produced by BAP are serial-
izable i.e BAP |= SERIAL.

Properties:

88 HO VAN HUONG

The properties for the BAP are blocked at most once and deadlock free.

As we mentioned early, when a transaction T; requests a lock on a data object z, T; will
be blocked, if the priority of transaction T; is not higher than T;.sysceil. When a transaction
T; holds a lock on a data object then T; will not be blocked by any lower priority transaction
until 7; completes its execution.

BAO = N\ O(T\/ Tihold_tock(x)T) = [\ ~Ti.wait_lock(x)T))

T, €T zx€eQ zx€eQ

Deadlock free which means that no exist a situation in which some or all transactions are
waiting for a lock while others are committed.

DLF = 0~([/\ /\ (T;.committed V T;.wait_lock(x)) A \/ \/ T;.wait_lock(x)]])
TieT 2€0 TieT 2€0

A formal proof that BAP + BAO A DLF can be done in the same way as in [6, 9] and is
omitted here.

5.3. The schedulability condition of BAP in RTDB

Recall that in [11], we have the schedulability condition for BAP a transaction T; scheduled
by BAP will always meet its deadline for all process phase if there exists a pair (k,m) € SP;
such that

JEHPC;

where B; and ab; are the worst case blocking cost and aborting cost of transaction T;, respec-
tively, and HPC; = {T1,Ts, ..., Ti_1} be the set of transactions with a priority no less than that
of T; and

SP, = {(k,m)|1 < k|lt,m=1,2,...| P/ Ps])}.

Each pair (k, m) represents a scheduling time point mPy, to test the schedulability of process T;.
To determine the value of ab; and B;. We refer interesting readers to [11] for details.
Let CF = C;+ B; +ab;. For above conditions, we can formalise the schedulability condition

for BAP as:

Theorem 1.
(ENV AUsys ABAP A Y (C3[mPy/Pj]) + Cf < mPy)
JEHPC;

= (/\(Ti.periodﬁ /Ti.run > C:‘))

i=1

A formal proof that Theorem 1 can be done in the same way as in [9] and is omitted here.

6. EXTENSION OF BAP

Since, BAP is an intergration of the 2PL, PCP, and a simple aborting algorithm. In BAP,
only a priority ceiling is needed for each data object. Therefore, BAP only allows exclusive
locks on data objects. We propose extension of BAP as follows: EBAP (Extension of BAP)
is an intergration of the R/WPCP and a simple aborting algorithm. As R/WPCP, EBAP
introduces a write priority ceiling WPL(z) and an absolute priority ceiling APL(z) for each
data object z in the system to emulate share and exclusive locks, respectively.

A FORMAL SPECIFICATION OF THE ABORT-ORIENTED CONCURRENCY CONTROL FOR ... 89

1. The write priority ceiling WPL(x) of data object z is set equal to the highest priority
transactions that may write .

2. The absolute priority ceiling APL(z) of data object z is set equal to the highest priority
transactions that may read or write x.

3. The read/write priority ceiling RW PL(x) of data object z, that is dynamically de-
termined at run time. When a transaction read-locks =, RW PL(x) is set equal to WPL(x).
When a transaction write-locks x, RW PL(%) is set equal to APL(x). A transaction may lock
a data object if its priority is higher than the highest read/write priority ceiling RW PL(zx) of
the data objects locked by other transactions.

4. Abort ceiling is a priority level associated with transaction, determined as described
below. A transaction may be blocked a data object if its priority is no higher than the
highest read/write priority ceiling RW PL(z) of the data objects locked by other transactions.
We add an abort rule as an addition to the binary choices between preemption and blocking:
Transaction T; may abort the currently running transaction and run immediately if its priority
is higher than the current abort ceiling. If this test fails, then transaction T; must block.

We belive that with the extension of BAP, which shown the effectiveness of using read
and write semantics in improving the performance of BAP.

7. CONCLUSION

In this paper, we have presented a formal model of real time database systems. We
specified and verified formally the Basic Abort Protocol in Real Time Databases using the
proof system of DC. We also proposed an extension of BAP. These frameworks can be used
in the future for specifying many other issues of RI'DBS, we easily can specify and verify for
a set of the concurrency control protocols in RTDBS.

Acknowledgements. The author would like to thank Associate Professor Doan Van Ban,
Associate Professor Nguyen Huu Ngu, and Dr. Dang Van Hung for their kind helps and
guidances.

REFERENCES

[1] Doan Van Ban, Ho Van Huong, Duration Calculus and Application, Proccedings of Hanot
University of Sciences, National Universily of Vietnam, Nov, 2000.

[2] Doan Van Ban, Ho Van Huong, A Formal Specification of the Read/Write Priority Ceiling
Protocol in Real Time Databases, Proccedings of National Information Technology, Hai
Phong, June, 2001.

[3] Doan Van Ban, Ho Van Huong, Serializability of Two Phase Locking Concurrency Control
Protocol in Real Time Database Jounal of Computer Science and Cybernetics, 17 (3)
(2001).

[4] Doan Van Ban, Nguyen Huu Ngu, Ho Van Huong, Concurrency control protocol in Real
Time Databases, Proccedings of Institute of Information Technology, Nov, 2001.

[5] Azer Bestavros, Kwei-Jay Lin and Sang Hyuk Son. Real-Time Database Systems: Issues
and Applications. Kluwer Academic Publishers, 1997.

[6] Philip Chan and Dang Van Hung, Duration Calculus Specification of Scheduling for Tasks
with Shared Resources, UNU/IIST Report No. 44, UNU/IIST, P.O. Box 3058, Macau,
June, 1995.

[7] Ekaterina Pavlova and Dang Van Hung, A Formal Specification of the Concurrency Con-
trol in Real Time Database, UNU/IIST Report No. 152, UNU/IIST, P.O. Box 3058,

90 HO VAN HUONG

Macau, January, 1999.

[8] Dang Van Hung. Real-time Systems Development with Duration Calculus: an Overview,
UNU/IIST Report No. 255, UNU/IIST, P.O. Box 3058, Macau, June, 2002.

[9] Ho Van Huong and Dang Van Hung. Modelling Real-Time Database Systems in Duration

Calculus, UNU/IIST Report No.260 , UNU/IIST, P.O. Boz 3058, Macau, August, 2002.

[10] M.R. Hansen and Zhou Chaochen. Duration Calculus: Logical Foundations, Formal
Aspects of Computing, 9 (1997) (283-330).

[11] Tei-Wei Kuo, Ming-Chung Liang, and LihChyun Shu. Abort-Oriented Concurrency Con-

trol for Real -Time Databases, IEEE Transactions on computers, 50 (7) (2001) (660-673).

[12] Kam-Yiu Lam and Tei-Wei Kuo. Real-Time Database Systems: Architecture and Tech-
niques. Kluwer Academic Publishers, 2001.

Received october 6, 2002
Rewvised december 23, 2002

