DO TỤ ĐỒNG NONG ĐÓ CLOR TRONG NƯỚC

PHẠM HUY THỌA
BÀN THÀNH PHU
PHẠM THƯỜNG CẤT
Phòng KT lý động hóa
Viện khoa học TT và ĐK

1. Mô điều.

Nước ăn và sinh học rất ngày được khai thác từ các nguồn ngầm và được xử lý tại các trận nước. Trước khi bom nước ra mạng lưới thành phó nguồn ta phải bom CLOR vào nước để Satan trong. Nếu nồng độ CLOR trong nước quá thì không đảm bảo về mặt tương trong nước toát nguồn liệt như nồng độ CLOR quá nhiều thì làm cho nước có mùi vị rất khó chịu. Vì vậy nguồn ta cần phải kiểm tra thường xuyên nồng độ CLOR trong nước trước khi bom ra mạng lưới thành phó ở mỗi trận nước. Năm đó dẫn này về xử lý dẫn nhòng độ CLOR trong nước ở các trận nước tại Hà Nội với chỉ được tiến hành bằng phương pháp theo công nghệ xử lý chất quan của mặt nguồn, rất thiếu chính xác.

Trong bài này tác giả muốn giới thiệu một máy để xử lý đồng nồng độ CLOR trong nước đã được thiết kế, lập ráp và thử nghiệm nhằm thay thế cho việc đó thí nghiệm hiện nay.

2. Nguyên lý làm việc và cấu tạo của máy đó.

Nồng độ CLOR trong nước được xác định bằng thủ tục thô máu. Khi cho thô máu O.Tolidin vào nước có CLOR thì nước sẽ ngắt màu vàng. Độ đạm chất của máu vàng này thể hiện nồng độ CLOR trong nước nhờ hay ít. Dựa trên cơ sở này ta có thể đo nồng độ CLOR trong nước thông qua việc đo độ đạm chất của máu vàng của nước để độc dung của thô máu thô O.Tolidin.

2.1. Đồ điểu thể đồng nồng độ CLOR trong nước.

Máy đo làm việc theo nguyên lý quang - điện (hình 1).

[Hình 1. So độ khối máy đo nồng độ clor trong nước]

Để xác định nồng độ CLOR trong nước ta cho nước đã sẽ pha thử thô máu vào bình chứa Bn1 và cho nước không có thô máu vào bình chứa Bn3. Đo sắc độ của thô máu với CLOR có trong nước, nước ở bình chứa Bn1 sẽ có màu vàng. Khi thành phẩm phát ra từ nguồn sáng Na đi qua cả hệ thống thô máu Tk và kinh lroc máu Lm, rồi qua bình chứa Bn1, Bn3 tới các tế bào quang điện F1 và F2, sinh ra ở F1 và F2 điện áp tương ứng là u1 và u2. Hiệu của hai điện áp này trong nhưng khoảng làm việc nhất định lấy thể thuan với độ đạm chất của máu vàng dùng điện chửa trong nước của do. Ta có

\[\eta = k (u_2 - u_1) \]
trong đó I là nồng độ COLR, u₁, u₂ là điện áp ở đầu vào F₁ và F₂; k là hệ số tỷ lệ.

Để đảm bảo độ chính xác của máy đo, nguồn sáng được sử dụng ở đây là một bóng đèn chuyển dạng trong các máy so màu (loại 6V/15W) được nối với một bóng hơn một nguồn điện áp rất ổn định. Ảnh sáng trắng phát ra từ bóng đèn đi qua hệ thống thu kính và lọc màu. Kính lọc màu chỉ cho phép ánh sáng có bước sóng λ = 450 nm đi qua, loại ấm sáng mà dùng để làm dạng hình ảnh nhỏ nhất. Do đó điện áp u₁ và u₂ do được nhỏ F₁ và F₂ sẽ chính lệch nhau nhiều nhất. Như vậy mà độ sai lệch máy đo có thể sử dụng kính lọc màu tăng lên rất nhiều.

Do tín hiệu do là sự chênh lệch điện áp (u₂ - u₁) rất nhỏ nên mạch khuếch đại tín hiệu do được chọn ở đây là một mạch khuếch đại vi sai dùng các khuếch đại tự chỉnh toàn LF 350 (hình 2). Ưu điểm của mạch này là điện trở đầu vào rất lớn, khả năng chống nhiễu độ phân giải cao. Hệ số khuếch đại của toàn mạch rất lớn và có thể được tính thông qua sau:

\[K = \frac{u_A}{u_2 - u_1} = \frac{R_4R_5}{R_3R_1} \left(1 + \frac{R_2}{R_1} \right) \]

[**Hình 2. Mạch khuếch đại tín hiệu đo.**]

Diễn áp đầu ra u₂ của mạch khuếch đại tín hiệu đo nằm trong khoảng 0 đến ±5V, tương ứng với nồng độ COLR trong khoảng từ 0 đến 1,1 mg/l được thể hiện qua đường đồ tuyến tính ở hình 3.

[**Hình 3. Đường đồ tuyến tính.**]

Đường đồ tuyến tính là một đường phẳng tuyến tính. Nên có thể đo được số xi bàng 2 đoạn thẳng sau:
\[u_{1A} = 4 \mu \text{H với } 0 \leq \eta_1 \leq 0.5 \text{ mg/l} \]
\[u_{2A} = 5 \eta_2 - 0.5 \text{ với } 0.5 \text{ mg/l} \leq \eta_2 \leq 1.1 \text{ mg/l} \]

Sau khi được khuyếch đại, tín hiệu do được ghép nối với hệ vi tính 8085 qua bộ biến đổi tương tự - sổ ADC 0816. Hệ vi tính lọc tín hiệu đó, tín hiệu biến đổi ra năng độ CLOH tương ứng rò rỉ tiểu tiện làm mình kết quả do và cho in kết quả do ra Teletype để lưu trữ.

Nếu kết quả do nằm ngoài vùng cho phép (không từ 0.4 đến 0.6 mg/l) thì hệ vi tính đưa ra tin hiệu báo động bằng âm số và âm thanh.

2.2. Đồ thị động năng độ CLOH trong nước.

Theo yêu cầu sau thư 126 ra, năng độ CLOH trong nước cần được đo, kiểm tra một cách trực động bằng như các tham số về bán hóa của ngày chuyển công nghệ khai thác, xử lý nước. Động thái để tận dụng thấm khắc năng uống như chính mình để ở hệ vi tính 8085 trong việc đo lường và kiểm tra nhiều thông số, máy đo năng độ CLOH trong nước có thể phát triển thêm khả năng làm việc hoàn toàn tự động được áp dụng diệu chỉnh của hệ vi tính. Ngoài ra tất cả quá trình động, mở nguyên cổ máy do, việc rửa bình chứa, việc pha trong thu hồ tiến mạch liên tục cần đo quá trình do, kiểm tra, thông báo kết quả đo do hệ vi tính điều khiển.

Để đạt được mục đích này máy đo được trang bị thêm cơ điện từ Val. Va2 và Val để mở cho thủy thiếu mâu, nước cần do vào bình chứa và để thủy nước từ bình chứa ra ngoài theo một quá trình nhất định (hình 1).

![Hình 4. Đồ hồ khối máy đo tự động năng độ CLOH trong nước](image)

Khối lượng nước hay lưu thể được mở vào bình phụ thủy vực do đó có thể chỉ báo được ở van và thể giới mầu van.

Việc đông, mở các van điện tử trong các khoảng thời gian cần thiết khá nhiều đều do các tín hiệu điều khiển tương tự được đưa ra từ hệ vi tính qua cầu căn với mạch PPI 8255 và được khuyếch đại bởi bộ khuyếch đại công suất Kd2. Tương tự như vậy, hệ vi tính cũng đưa ra tín hiệu điều khiển qua PPI 8255, rồi qua bộ khuyếch đại Kd3 để đóng hoặc mở nguyên điện cầu máy do. Cúm trừ sai máy do tự động năng độ CLOH trong nước có cơ thể được đong quản theo một hệ thống hệ thưa hình Tk, kênh lọc mầu Lm và một tế bào quang điện hỗ trợ tín dụng thấm mầm để của hệ vi tính (hình 4). Để đạt được mục đích này, quá trình do đã được thiết kế như sau: Đầu tiên hệ vi tính đưa ra tín hiệu xe nguyên mầu do, rồi mở cơ thủy vực do đến bình chứa. Tiếp theo do nước cần đến được mầu của bình chứa nhưng chưa cơ thủy thiếu cho vào, hệ vi tính do và sự kết quả này vào bộ báo. Sau đó lại cho nước cần do và thủy thiếu thủy thiếu xây vào bình chứa, cho thoát gần để thủy thiếu tác dụng
với CLOH trong nước, họ vi tinh lắt dọ và sau đó lập hiệu số giữa kết quả đó eát trong họ nhọ với kết quả mới đó. Sau khi xem tỷ, tính toán, biên đái ra nồng độ CLOH trong ênh, họ vi tinh cho hiện kết quả lên màn hình, cho in ra Teletyp.

Cuối cùng họ vi tinh dựa tin hiệu để thảo nước ở bình chen ra cho nước van đến bình và rằng ra tin hiệu từ nguồn máy đó.

Chương trình do Lý Đopération nồng độ CLOH trong nước do việt bằng ngôn ngữ Assembly và thế thì dẫn tài bằng số đó xẩt sau:

Máy đo nồng độ CLOR trong nước sau khi được thử nghiệm nhiều lần đã cho những kết quả chính xác, đạt được yêu cầu được đề ra.

Máy đo có khả năng lâm về hoán toàn tự động đều đặn sau điều kiện vận một hệ thống. Máy đo còn có thể được phát triển thành một thiết bị độc lập, như như ta trong bài thơ tính trong máy một hệ thống gồm 4 Chips CPU 8085, I 8755, I 8156, ADC 82 và đến thời điểm 7 máy tính.

Máy đo tự động đo nồng độ CLOR trong nước cần được ứng dụng trong thực tế thiết kế hàng ngày để có thể đánh giá được độ ổn định của máy, được lặp lại sự hoạt động của các van điện tử để tạo ra tỷ lệ chính trong một đường có độ chất (môi trường O, Tolidin và CLRF).

TAI LIÊU THAM KHẢO

2. Electronics, Designer’s Casebook Nr. 5.

ABSTRACT

AN APPARATUS FOR AUTOMATIC MEASURING DENSITY OF CLOR IN THE WATER

For controlling a quality of water, an automatic apparatus for measuring density of clor in the water is constructed and tested.

This apparatus functionates on the basis of optoelectrical principle. It can functionate automatically. The measuring process of the apparatus is controlled by a system of KP. The measuring result is displayed in the display and is printed in the teletype. An acoustic alarm is signalized when the measuring result lies over the value determined.