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Abstract. Nowadays, the DiffServ architecture is considered the most prevalent solution of QoS

provision in IP networks. What is the best way to implement this architecture is still a question

without answer. The most complicated part in DiffServ implementation belongs toAFBHP . Indeed,

the complication of AF comes not only from its architecture, but also from its goals. This paper will

propose a method to implement AFij of AFBHP at core routers in DiffServ networks. Using this

method, we can make AF subclasses (AFij) easily. Moreover, the performance of the system will be

better since the mechanism has congestion control ability and fair sharing between subclasses in an

AF class.

Tóm tắt. Hiê.n nay, kiến trúc di.ch vu. khác biê.t du
.o.. c xem nhu. mô. t gia’ i pháp da’m ba’o chất lu.o.. ng

di.ch vu. trên ma.ng Internet. Cách thu.. c thi tốt nhất kiến trúc kiê’u này còn là mô.t vấn dè̂ dê’ ngo’.

Thành phà̂n phú.c ta.p nhất trong viê.c thu
.
. c thi di.ch vu. khác biê.t thuô.c vè̂ AFBHP . Tı́nh phú.c ta.p

cu’a AF không chı’ là vấn dè̂ kiến trúc mà còn là mu. c tiêu cu’a nó. Bài báo dè̂ xuất mô.t phu
.o.ng pháp

dê’ thu.. c thi AFij cu’a AFBHP o.’ trong lõi bô. di.nh tuyến trong ma.ng di.ch vu. khác biê.t. Su
.’ du. ng

phu.o.ng pháp này, ta có thê’ chia ló.p AF thành các ló.p con AFij mô.t cách dẽ̂ dàng. Tuy nhiên, hiê.u

năng cu’a hê. thống sẽ tốt ho
.n khi co. chế có kha’ năng diè̂u khiê’n tắc nghẽn và chia se’ công bằng giũ.a

các ló.p con trong ló.p AF .

1. INTRODUCTION

The DiffServ architecture is based on a network model implemented over a complete Au-

tonomous System (AS) or domain. All traffic entering and flowing through the domain are

managed by clear and consistent rules. Depending on [2], IP packets entering network at edge

routers are classified and aggregated into different groups called Behavior Aggregates (BAs).

Inside the domain, packets belonging to the same BA are forwarded according to previously

established rules. Like this, the real work is creating classes of flows that travel through net-

works. Each flow is treated along the domain according to the class to which it belongs. Thus,

the treatment of routers for classes is also established and takes forms called Per Hop Behav-

iors (PHB). PHB are implemented by allocating resources quite differently inside routers.

Currently, only two PHB are adopted and deployed, they are EFPHB and AFBHP . AF

PHB is more intricate than EFPHB. Indeed, [3] specifies that AF PHB has four classes,
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called AF classes. Each AF class is further divided into three priority levels, which will be

called AF subclasses and denoted AFij . PHBs and AF classes are implemented by assigning

resources of the system, such as buffer, bandwidth, service time, etc. There are numerous pro-

posals and evaluations on implementing PHB for IP DiffServ Networks by various authors.

For example, in [4] authors implemented EFPHB by using CBQ (Class Based Queuing) and

proved that it is more efficient than priority scheduling or WRR (Weighted Round Robin) pro-

posed by Christian Worm Mortensen. Some others, such as in [5] also implemented AFPHB

by using CBQ, just called AFCBQ. Recently, in [6] used HTB (Hierarchical Token Bucket)

proposed by Martin Devera to implement AF , and named AFHTB. [6] also used the packet

dropping mechanism of RED for implementing AF subclasses. By this way, the packet drop-

ping probability depends on the average queue length, qave, and with determined maximum

threshold/minimum threshold, the higher qave gets, the bigger the probability is. So, adding

various values into qave will make different behaviors of the queue, which are truly AF sub-

classes. However, the method depends much on RED. It is nearly impossible to select such

RED parameters that the impact on network performance and on stability of the system

doesn’t get worse. The proposed method in this paper bases on a controllable queue manage-

ment (CQM) scheme instead of using RED, an active queue management (AQM) algorithm.

The essence of the method is a mechanism, which includes controllers and token buckets as

proposed in [1]. This mechanism also uses packet discarded levels to make difference of ser-

vices (drop precedence) but these time token buckets are responsible for dropping packets in

urgent situations.

As mentioned above, the paper will focus on implementing AF subclasses in each AF

class. The implementation not only satisfies the requirements of AF class specification, but

also uses maximum capacity of the system without congestion and shares allocated resources

of the system between subclasses in each AF class.

The rest of the paper is structured as follows. In section II, we present the principle of

implementation and operation inside the mechanism. This section not only explains how to

make various drop precedences (AFij), but also guides to share resources between them. In

the next section, we clarify the method by establishing the dynamics of the mechanism. In

section IV, we simply validate the proposed method by a computer simulation. The results

of simulation also show that the system is always protected from congestion and can obtain

the highest utility. In the final section, we present our conclusions and mention some relative

issues for the future work.

2. THE PRINCIPLE OF IMPLEMENTATION AND OPERATION

The mechanism applies the results from [1], and the principle scheme is shown in Figure 1.

The mechanism has two separate modes, namely the free mode and the constrained mode.

The free mode is corresponding to switches K at 0 position that connects K to the constant

token buckets (CTBs). CTB is a new component defined in this mechanism. CTB is a token

bucket that fully contains tokens and never losses tokens. Once the system in the free mode, IP

packets from all AF subclass are forwarded without any restriction. This mode aims to satisfy
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needs of AF subclasses traffic conditioned at edge routers (also to match AF specification)

while traffic load enters the core router not heavily. It also doesn’t conflict with the shaper

at edge routers in the normal situations. When the system falls into urgent situations, the

AF monitor switches Ks into 1 position that connects K to the second token bucket. At that

time, the mechanism operates in the constrained mode. In this mode, AF subclasses traffic

is governed by corresponsive token bucket in cooperating with a PI controller. The controller

takes the current queue length, and then generates an adequate token rate so that congestion

doesn’t happen. The token bucket will drop or mark arriving IP packets if there are not enough

tokens at that time. Drop level of each token bucket is truly drop precedence and different

from others. According to AF class specification, there are three drop precedences in each

AF class, thus in the implementation there are three corresponsive token bucket-controller

sets. Inside the system, the referential queue size, qrefi, is used as the key parameter in order

to make various drop levels. The bigger qref is, the lower the drop level is, or the lower the

drop precedence is. Hence, assign qref1 > qref2 > qref3 if AFi1, AFi2 and AFi3 are the Gold

service, Silver service and Bronze service respectively. The specific values of these qref depend

on the desired differences between AF subclasses. However, there is a new problem concerning

buffer sharing between subclasses. What will happen when lower priority levels are disabled

(ri(t) = 0) but still contain full bucket of tokens? The answer is still packets from these token

buckets continue to flow into the common buffer. This will overflow the buffer in case of all

lower priority levels be disabled. To overcome this problem, follow the proposition below.
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Figure 1. The principle scheme to implement AF subclasses
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Proposition 1. Suppose the sharing buffer has the size of B packets and size of buckets are

respectively b1, b2 and b3 tokens. For the sake of protecting buffer from overflowing, qref1
should be configured as

qref1 = B −
3∑

1

bi.

This simply makes a surplus space in the buffer for standby purpose.

Now, we would like to explain how alter operating mode in this mechanism. In the queue,

we define a threshold, called alterative threshold. When the queue length is equal to or smaller

than the threshold, the system is in normal state, and thus it operates in the free mode. But

if the queue length is greater than the threshold, the system is considered in urgent situation,

and it operates in the constrained mode. The reason we define the threshold is simply that

the queue surely has a certain size in the normal operating condition. This assures to exploit

complete bandwidth of C. The AF monitor is responsible for keeping trace of the queue length,

comparing with the threshold and switching between two modes.

It’s no need to say any more about resource sharing between subclasses in an AF class

in the free mode, but this is a really problem in the constrained mode that we have to solve.

Indeed, when the higher priority subclass is idle, its resource lays waste while the lower pri-

ority subclasses may need some more. Like this, it is important to find the way of an idle

subclass concedes its unused resource to lower priority subclass. The proposed way in this

implementation leans on the possibility of redistributing qref for subclasses of AF monitor.

The monitor is aware of an idle AFij by checking the ingress buffer of corresponsive token

bucket and if see it empty. Hence, it raises every lower qref to a next higher qref , namely if

AFi3 is idle, no need to do any thing but if AFi2 is idle, assign qref3 = qref2, and if AFi1
is idle, assign qref3 = qref2 and qref2 = qref1, especially, if both AFi1 and AFi2 are idle,

assign qref3 = qref1. Whenever an AFij engages traffic again, these qref must be adjusted

appropriately.

Proposition 2. In the constrained mode, every qref of AFij should be assigned and adjusted

as following Algorithm 1.

Algorithm 1.

Initial

{Declare variables}

mode, start, i;

Main

mode = true;

start = true;

event = false;

Loop

If (mode and start) then

begin

assign (AFi)
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start = false

end

Check (event)

if (event) then

begin

assign(AFi);

update(AFi);

event=false;

end

End

Assign (AFi)

{ qref1 = value1;

qref2 = value2;

qref3 = value3;

}

Update (AFi)

{ for i = 1 to 2 do

if (tb buffer[i] = false) then

for j = 3 downto i+ 1 do

qrefj = qref(j−1)
}

Check (event)

{ for i = 1 to 3 do

begin

current tb buffer[i] = true

if (the buffer(i) is empty) then current tb buffer = false

if (current tb buffer[i]) xor (tb buffer[i]) then

begin

event[i] = true;

tb buffer[i] = current tb buffer[i]

end

end

Event = event[1] or event[2]orevent[3]

}

3. THE DYNAMIC MODEL OF SUBCLASS IMPLEMENTED MECHANISM

According to [12] each token bucket have two parameters concerned. The first parameter

r is the rate of flow that pours tokens into the bucket. The second parameter b indicates the

height of bucket or exactly, this is the maximum amount of tokens which can be contained

in that bucket. In other applications of token bucket, the parameter r is fixed but it is a

varying parameter in our approach, denoted ri(t). ri(t) is governed by a control mechanism
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which bases on current free space of the sharing buffer. The number of tokens in the bucket

at the time t is yi(t), 0 � yi(t) � b. Packets arrive token bucket at rate of vi(t). The rate

of packets forwarded from token bucket to output buffer is called ui(t). Following fluid flow

model mathematically represents this:

q̇(t) = −1(q(t) > 0)C +

3∑

1

ui(t),

ui(t) = 1(vi(t) > 0)
[
ri(t) +

yi(t)

T

]
. (1)

where, T is the continuous transmitted time. The outgoing link has capacity of C, a constant

in IP DiffServ networks.

From (1), we find that u(t) ≈ 1(v(t) > 0).r(t) if T is a considerable time. With any time

scale, we always have:

ui(t)max = 1(vi(t) > 0)[ri(t) + yi(t)] (2)

with T gets the value of unit.

Considering ui(t) = ui(t)max as a general case because it is the case filling buffer at the

greatest speed.

Therefore, the dynamic of the bottleneck queue is given by:

q̇(t) = −1(q(t) > 0)C +
3∑

i=1

1(vi(t) > 0)[ri(t) + yi(t)]. (3)

Reference to operating model as shown in Figure 1, we find that it doesn’t seem like any

impact on the system when vi(t) = 0. In Addition, the buffer is not empty in the constrained

mode. From that, (3) can be rewritten as follow:

q̇(t) = −C +

3∑

i=1

[ri(t) + yi(t)]. (4)

Performing a Laplace transform on the differential equation (4):

q(s) = −
C

s2
+

3∑

i=1

(ri(s)
s

+
yi(s)

s

)
(5)

The linear dynamics is illustrated in a block diagram form in Figure 2.
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Figure 2. Block diagram of the bottleneck queue at core router
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The basic effect of the token bucket parameters r(t) and b is that the amount of packets

sent P (T ) over any interval of time T obeys the rule:

P (T ) � r.T + b. (6)

Hence, yi(t) = bi corresponds with the case of maximum amount of packets entering

the buffer. Thus, we simply consider yi(t) = bi as the worst case and replace yi(t) by bi in

calculations later.

The rate ri(t) must be controlled so that the buffer is never congested and obtain the

highest utility level. We use a controller, which controls ri(s) according to free space part

of buffer. The dynamics of system is illustrated in Figure 3. This is a feedback control

mechanism without delay because of every component at the same place (at core router).

Depending on [the possibility of], we use PI controller for controllers in our implementa-

tion, it takes the form of transfer function:

G(s) = Kp

(
1 +

1

T1s

)
(7)
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Figure 3. Block diagram of the control mechanism

No delay time in this control mechanism is an advantage for designing the controller. It

can be completely designed by the normal way for the system without delay. A PI design

involves choosing the value of the gain Kp and integrated constant TI . There are several

methods to determine these parameters such as the first Ziegler-Nichols method, the second

Ziegler-Nichols method, the Chien-Hrones-Reswick method, the Kuhn method, etc. In this

paper, we don’t focus on how to design an optimal controller for the system, instead of that,

we chose Kp ≈ 7 and TI = 1 in the next computer simulating section.
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4. SIMULATION

This section describes the results of simulation on computer, taken from Matlab software.

It shows the behavior of the bottleneck queue in a given system. In this simulation, assuming,

the buffer has a size of 500 packets; all token buckets can contain up to 50 tokens; the rate of

output link C = 150 packets per second. Choose qref1 = B−(b1+b2+b3) = 500−150 = 350;

qref2 = 250 and qref3 = 200.

From the results of computer simulation by using Matlab, we see easily that u2(t) and

u3(t) go quickly down crossing zero (actually equal to zero, corresponding to all packets be

dropped), as illustrated in Figure 4b & 4c. In this, u3(t) goes down faster than u2(t) and

also reaches zero level earlier. This means that AFi3 drops packet absolutely before AFi2
does the same affair. We also recognize that the rate of u1(t) of AFi1 decreases but still

greater than 500 as shown in Figure 4a, this because it has the most priority. Next, the

dynamics is illustrated in Figure 4d shows that although the numerous amount of coming

traffic are available, the queue length will increase and stabilize at a finite level. The buffer

or the bottle-neck queue is protected from congestion.

a. The behavior of u1(t) b. The behavior of u2(t)

c. The behavior of u3(t)
d. The dynamics of q(t) (the bottle-neck queue)

a. The behavior of u1(t) b. The behavior of u2(t)

c. The behavior of u3(t)
d. The dynamics of q(t) (the bottle-neck queue)

Figure 4. The behaviors of some parameters in the mechanism

5. CONCLUSION

The new method to implement AFij in IP DiffServ networks has been presented. This is

a way for making AF classes and their drop precedences easily. By pre-configuring qref , each

active packet flow can be treated appropriately. It completely satisfies the AF specifications

about architecture and operation. The proposed mechanism not only guarantees about

congestion control, but also gives the highest utility. The simulation on computer shows
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that the system is completely stable. In addition, the mechanism also gives the way to share

resources between subclasses. It contributes a certain degree to resolve the resource-sharing

problem in DiffServ architecture. The performance of the system depends on some factors

such as the type of the controller, the performance of the controller, the sample time, the b

parameter of token bucket, the shape of traffic etc. Therefore, the performance of the system

needs to be studied more details. These issues will be dealt in the future.
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