MỘT THUẬT TOÁN GEN CHO THIẾT KẾ TOPOLOGY MẠNG CÓ KHÁ NĂNG HỘI PHỤC

NGUYỄN QUÝ MINH HIỆN, PHẠM QUỐC HUY

Viện Khoa học Kỹ thuật Bưu điện

Abstract. Today, telecommunication technologies and services are deploying rapidly in NGN (Next Generation Network) networks. Quality of Service (QoS) problems in NGN networks are addressed in network designing, deploying, maintaining phases. In network designing phase, one of QoS problems is designing survivable networks to assure that services are not disrupted when a failure happens. On an ATM, MPLS, GMPLS based-on network technologies, there are many approaches for designing survivable networks. This paper introduces a genetic algorithm for topological design of survivable networks by a repetitively-restorable method.

Tóm tắt. Hiển nay, với việc triển khai công nghệ mạng NGN, các dịch vụ thông tin truyền thông đang được phát triển rất nhanh chóng với nhiều loại hình dịch vụ. Một trong những vấn đề đặt ra đó là cần phải thiết kế, triển khai mạng có khả năng bảo chất lượng dịch vụ cho các loại dịch vụ triển khai trên đó. Một trong những yêu cầu về chất lượng dịch vụ đặt ra đối với việc thiết kế mạng, đó là mạng phải có khả năng hồi phục để đảm bảo cung cấp dịch vụ với chất lượng như đã cam kết với khách hàng ngay trong những trường hợp mạng có sự cố. Trên cơ sở các công nghệ mạng như ATM, MPLS, GMPLS, có nhiều cách thức tiếp cận để đảm bảo khả năng hồi phục của mạng. Bài báo này giới thiệu một thuật toán thiết kế topology với khả năng hồi phục dựa trên phương pháp hồi phục lặp trên nhiều đường hồi phục.

1. GIỚI THIỆU

Một chiến lược hồi phục có thể triển khai ở các lớp khác nhau theo quan điểm giao thức mạng OSI như hồi phục tại lớp vật lý, kết nối, mạng hoặc dòng thông trên nhiều lớp. Tại mỗi lớp, các chiến lược hồi phục có những đặc tính khác nhau. Với lớp vật lý, các chiến lược
hồi phục có thời gian hồi phục nhanh nhất khoảng 50ms. Các chiến lược hồi phục tại lớp kết nối thường dùng cho các mạng lưới kết nối như ATM và MPLS. Các kiến trúc mạng chuyển mạch nhận thức là trường hợp không chuẩn LSP (Label Switch Path) chuyển tiếp lưu lượng giữa nút nguồn và đích. Mục tiêu của các chiến lược tại lớp này là hồi phục phần lưu lượng trên các LSP mà bị ẩn hoặc hỏng. Các chiến lược hồi phục tại lớp kết nối có nhiều điểm linh hoạt như không phân nhò mạng thành các phần nhỏ hơn hoặc không phải giải thích rằng topology của mạng phải có cấu trúc. Các tuyến và các nút có thể tham gia trong chiến lược hồi phục. Sự dụng các thuật toán hoach định trước, thường dùng để xác định cách thức tốt nhất định tuyến lưu lượng khi có sự cố xảy ra, vì dự như trong chiến lược hồi phục đường, sự sử dụng một đường khác để chuyển lưu lượng khi xảy ra sự cố mạng. Mặc dù thời gian cho việc định tuyến lịch lưu lượng trong trường hợp nhất lần hơn trường hợp thứ hai, nhưng các phương pháp trong [2, 5, 8, 12] chỉ ra rằng hiệu suất sử dụng băng thông hồi phục tại lớp kết nối lớn hơn đáng kể so với khi hồi phục tại lớp vật lý.

Các chiến lược hồi phục lớp kết nối được dự trên các kiến trúc mạng lưới kết nối như MPLS, ATM hoặc GMPLS như đã chỉ ra trong nhiều tài liệu. Lấy ví dụ cho mạng MPLS, mặc dù có thể sử dụng các mạng khác, chiến lược hồi phục lớp kết nối do là chiến lược hồi phục đường đơn MIMPLS. Dạng 1+1 gián nhắt của hồi phục đường đơn là chiến lược chuyển mạch đường đơn tự động APS (Automatic Path Switching). Trong chiến lược này, hai đường đơn với cùng băng thông được thiết lập giữa điểm nguồn và điểm đích, tuy nhiên trong quá trình hoạt động, chỉ một đường dịch vụ là chuyển tải lưu lượng và đường còn lại là đường dự phòng (mắc đủ đường dự phòng vận chuyển tại bàn sao của lưu lượng của đường dịch vụ). Đường dự phòng hoàn toàn cách ly khỏi đường dịch vụ, khi có một tuyến nào đó trên đường dịch vụ có sự cố, đường dự phòng sẽ được sử dụng thay thế. Một chiến lược hồi phục khác là chiến lược 1:1 APS cũng sử dụng hai đường đơn cách ly nhau hoàn toàn nhưng không với chiến lược 1+1 APS do là chỉ đường dịch vụ chuyển tải lưu lượng, đường dự phòng không chuyển tải. Chiến lược hồi phục 1:1 APS một số hiện được hồi phục hữu chiến lược hồi phục 1+1 APS. Tuy nhiên, chiến lược hồi phục này lại có ưu điểm là đường dự phòng không chuyển tải lưu lượng do đó trong điều kiện mạng hoạt động bình thường, băng thông không được tản dụng, do vậy làm giảm yêu cầu về băng thông.

Một chiến lược hồi phục khác là hồi phục theo tuyến kết nối. Không như các chiến lược hồi phục 1+1 APS và 1:1 APS, hồi phục trên cơ sở đường đơn ([2, 4, 5, 8, 12]), các chiến lược này dựa trên cơ sở tính tuyến kết nối như trong [10, 12]. Xem xét ví dụ dưới đây.

[Diagram]

Hình 1. Hồi phục theo tuyến và đường

Trong trường hợp mạng bình thường, lưu lượng giữa A và D được chuyển theo đường...
ABCD. Theo chiên lược hội phục 1+1 APS hoặc 1:1 APS, đường AEFD được sử dụng làm đường hồi phục. Khí có sự cố, giả sử là tuyến AB bị đứt, các chiên lược hội phục trên sẽ sử dụng đường hồi phục AEFD để chuyển tải lưu lượng giữa A và D. Một cách khác, nếu theo chiên lược hội phục tuyến, lưu lượng chuyển vòng qua tuyến bị đứt, cứ thế trong trường hợp này đường AEBCD sẽ được sử dụng. Chiên lược này cũng có thể sử dụng cho các trường hợp nút bị sự cố, khi đó có thể có khoảng có lưu lượng chuyển qua các tuyến có kết nối tới nút đó. Các kết quả nghiên cứu từ [10,12] cho thấy chiên lược hội phục theo đường có hiệu suất sử dụng băng thông cao hơn.

Có hai phương pháp hội phục đường: phương pháp hội phục đường theo phương thức phân tách phần lưu lượng trên đường bị ảnh hưởng sang một số đường dự phòng khác nhau và phương thức chuyển tải toàn bộ phần lưu lượng bị ảnh hưởng trên một đường dự phòng khác. Hình 2 dưới đây minh hoạ cách thức hội phục này.

![Diagram](image_url)

Hình 2. Hội phục đường với nhiều đường hồi phục khác nhau

Xét lại trường hợp khi nhu cầu lưu lượng AD đi theo đường ABCD. Khi tuyến BC gặp sự cố, nhu cầu lưu lượng AD được phân tách làm hai phần: phần thứ nhất được định tuyến lại đi theo đường AEFD, phần thứ hai đi theo đường AGHD. Điều này là hoàn toàn có thể bởi trong nhiều trường hợp, nhu cầu lưu lượng AD lớn hơn băng thông còn lại của một trong các tuyến AE, EF, FD trên đường AEFD. Vì vậy chỉ một phần lưu lượng được phân bỏ trên đường này. Phần còn lại đi đi trên đường khác (AGHD), mặc dù chỉ phi cao hơn. Với phương thức hội phục theo nhiều đường, trong thiết kế, chỉ phải tổng cộng (bao gồm cả chỉ phí dự phòng cho hội phục) giảm, khả năng tận dụng băng thông cao hơn.

2. VĂN ĐỆ VÀ PHƯƠNG PHÁP THIẾT KẾ TOPOLOGY MÀNG CO KHÁ NĂNG HỘI PHỤC

Mô hình bài toán thiết kế topology mạng hội phục sẽ được thiết lập trên cơ sở mô rồng mô hình đồ thị trinh bày trong [1] để tính đến chi phí băng thông hội phục.

Một mạng được biểu thị qua mộtグラフ$G(V,E)$ với V biểu thị tập các nút mạng với n phần tử và E biểu thị tập các đường kết nối giữa các nút. Mỗi một nhu cầu lưu lượng (commodity) được định nghĩa là nhóm lưu lượng cùng chập nguồn đếm. Gọi D là tập các nhu cầu lưu lượng (quy đổi theo đơn vị bps), đồ tạo nên bởi các phần tử nằm trên đường chéo của một ma trận vuông nhu cầu lưu lượng kích thước n. Mỗi một nhu cầu lưu lượng có thể được truyền tải trên một tập đường dẫn khác nhau.

Để thuận tiện, các ký hiệu sau được sử dụng:
l_{ij} biểu thị đường kết nối giữa hai nós i và j với nhau;
c_{ij} là dung lượng đường kết nối l_{ij};
c_{ij}^s biểu thị bảng thông phân bố trên đề truyền tài các nhu cầu l_{ij} khi mạng chưa có sự cố;
c_{ij}^B biểu thị bảng thông phân bố trên chế độ phòng l_{ij} khi mạng có sự cố;
R_{kl}^0 biểu thị tập các tuyến r truyền tài nhu cầu d_{kl} của hai nós k và l;
R_{kl}^1 biểu thị tập các tuyến hỗ trợ b dùng để hỗ trợ nhu cầu d_{kl};
λ_{ij} là chi phí cho một đơn vị dung lượng đường l_{ij};
f_0^r là phân lưu lượng của d_{kl} trên tuyến r khi mạng chưa bị sự cố;
f_1^r là phân lưu lượng của d_{kl} cần hỗ trợ trên tuyến hỗ trợ b khi mạng bị sự cố;
δ_{ij}^r bằng 1 nếu tuyến r sử dụng đường kết nối l_{ij} được sử dụng để chuyển tải phân lưu lượng của nhu cầu d_{kl}, ngược lại bằng 0;
$h_{ij}^r \geq 1$ là hệ số liên quan đến van đề trẻ cho phân lưu lượng f_0^r hoặc f_1^r dựa đường kết
nối l_{ij}, hiện có giá trị bằng 1;
$0 \leq \mu_{kl} \leq 1$ là hệ số hỗ trợ phân lưu lượng của d_{kl} trên tuyến r sang một tuyến khác, hiện có giá trị bằng 1;
σ_{kl}^r có giá trị 1 khi trên tuyến r, chuyển tải phân lưu lượng của d_{kl}, có chứa đường kết nối
bi sự cố. Nếu lại sẽ có giá trị 0;
R_{kl}^0 là tập các tuyến chuyển tải nhu cầu d_{kl} trên mạng khi chưa có sự cố;
R_{kl}^1 là tập các tuyến chuyển tải nhu cầu d_{kl} trên mạng khi có sự cố;
S là tập nhu cầu lưu lượng phải hỗ trợ khi có sự cố;
F là tập sự cố mạng có thể xảy ra;
E_f là tập các đường kết nối có thể ảnh hưởng bởi tập sự cố F;
c_{ij}^B là bảng thông dự phòng cần phân bố cho đường l_{ij} để hỗ trợ mạng cho sự cố f đang xet;
G_{ij}^s là chỉ phi truyền tải các nhu cầu trên mạng trong điều kiện bình thường;
G_{ij}^B là chỉ phi cho việc hỗ trợ các nhu cầu khi có sự cố.

Từ đây có thể lập công thức cho bài toán thiết kế topology mạng có khả năng hỗ trợ như sau:

To tổng hoá

$$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \lambda_{ij} (c_{ij}^s + c_{ij}^B)$$

(1)

sao cho

$$d_{kl} = \sum_{r \in R_{kl}^0} f_0^r \quad \forall k, l \in V$$

(2)

$$c_{ij}^s = \sum_{d_{kl} \in D} \sum_{r \in R_{kl}^0} \delta_{ij}^r h_{ij}^r f_0^r \quad \forall i, j, k, l \in V$$

(3)

$$c_{ij}^B = \sum_{d_{kl} \in D} \sum_{b \in R_{kl}^1} \delta_{ij}^b \mu_{kl} h_{ij}^b f_1^b \quad \forall i, j, k, l \in V$$

(4)
\[\sum_{bc \in R_{kl}} f_{ij}^b = \sum_{r \in R_{kl}} \sigma_{kl}^r f_{ij}^r, \quad \forall i, j, k, l \in V. \] (5)

Ràng buộc trong (2) nhằm đảm bảo mọi nhu cầu lưu lượng đề được chuyển tại trên mạng. Biểu thức (3) đảm bảo bằng thông phân bố trên các đường kết nối là bằng hoặc lớn hơn lưu lượng trên đó. Biểu thức (4) và (5) đảm bảo bằng thông phân bố cho phần lưu lượng cần hỗ trợ phục vụ khi mạng có sự cố. Biểu thức (6) đảm bảo phân lưu lượng trên các tuyến có sự cố được hỗ trợ trên các tuyến khác.

Trong quá trình thiết kế mạng, các thuật toán hỗ trợ phân bố trên lớp kết nối có thể chia làm hai loại, một loại sử dụng phương pháp ILP (Integer Linear Programming) như trong một số tài liệu và loại còn lại sử dụng phương pháp thực nghiệm (heuristic) ([4, 5, 6, 10, 12]). Với phương pháp ILP, các kết quả đạt được rất tốt, tuy nhiên mất rất nhiều thời gian, cho nên thường phụ hợp với những mạng nhỏ, có số lượng nút ít. Nhưng thuật toán thực nghiệm mất ít thời gian hơn, dù vậy các kết quả đạt được cũng gần với các kết quả từ phương pháp ILP. Trong những mạng có số lượng nút nhiều, đến hơn bằng việc thực nghiệm, thời gian cần thiết để giải quyết bài toán là rất lớn, đặc biệt trong những trường hợp số đường kết nối lớn như mạng lưới đầy đủ (full mesh) cần sử dụng những thuật toán thực nghiệm. Các phương pháp thực nghiệm như ([4, 5, 6, 10, 12]) giải quyết vấn đề hỗ trợ mạng dựa theo hai cách tiếp cận là định tuyến lại dựa trên đường ngắn nhất ([5, 6, 10]) hoặc trên nguyên tắc hướng các đai ([4]). Tuy nhiên, đối với các phương pháp này đều thường đưa ra giải thiết khi xảy dụng thuật toán. Các thuật toán trong [5, 6, 10, 12] định trước một tập các tuyến hỗ trợ và sử dụng trong quá trình hỗ trợ mạng với giải thiết rằng số lượng tuyến hỗ trợ là nhỏ. Mặc dù trong [5] chỉ ra rằng việc sử dụng tập tuyến hỗ trợ này ảnh hưởng đến kết quả và mở rộng hơn tập tuyến hỗ trợ, hoặc trong [4] cho rằng các tập cá nhân (cut sets) là nhờ việc sử dụng tập hỗ trợ mạng (hay các tập cá nhân được định trước) sẽ làm giảm khả năng tìm kiếm giải pháp. Những giải thiết như vậy có thể khống phục cho các mạng lớn mà sử dụng các tuyến hỗ trợ hoặc số lượng rất lớn cho các cặp nút là rất lớn.

Vi vậy, phương pháp được xuat ở đây là không sử dụng các tập tuyến hỗ trợ, hay các tập cá nhân được định trước để giải quyết bài toán. Với mỗi topology mạng đưa ra, các tuyến hỗ trợ được tính toán trên cơ sở dạng ngắn nhất. Để tối ưu việc thiết lập tuyến hỗ trợ, một trong những vấn đề quan trọng cần giải quyết đó là làm thế nào để tăng hiệu suất sử dụng các kênh hỗ trợ, tức là tăng tối đa việc sử dụng chung băng thông hỗ trợ phân trong đường hợp mạng giúp sự cố. Phương án được xuat ở đây là, lập lại (một số lần nhất định) quá trình thiết lập và phân bố băng thông hỗ trợ, với mỗi lần lập là quá trình lựa chọn ngẫu nhiên các sự cố trên mạng. Quá trình lập và lấy ngẫu nhiên các sự cố sẽ cho phép tìm ra các giải pháp có hiệu suất sử dụng băng thông hỗ trợ hiệu quả hơn.

Phương pháp thiết kế được xuat như sau: Sử dụng thuật toán di chuyển tuyến di chuyển một topology mạng đảm bảo chuyển tải tập D các nhu cầu, sau đó thực hiện quá trình thiết lập các nhu cầu lưu lượng cần hỗ trợ theo phương pháp hô trợ phái trong nhu cầu lưu lượng hỗ trợ khác nhau. Quá trình xác định các đường hô trợ sẽ được lập với một số lần xác định. Chỉ phục tổng cộng cho cả hai quá trình này là cơ sở để tính mức độ phù hợp (fitness) trong thuật toán gen phục vụ cho quá trình lập trong các thế hệ tiếp theo.

Thư tạo toàn gen [1], với phương pháp mà hóa theo thứ tự đưa nhu cầu lưu lượng lên mạng
cho những mạng mà dung lượng đường kết nối là hữu hạn, đạt hiệu quả hơn các phương pháp mà hóa khác trong các tài liệu \cite{7,9,11}. Mối nhu cầu sẽ được gán một số xác định. Chú ý các số này sẽ tạo nên một trạng thái cho các nhu cầu lưu lượng trên mạng. Ví dụ, giả sử một mạng gồm 4 nút với các nhu cầu lưu lượng là \(D_{12}, D_{13}, D_{14}, D_{23}, D_{24}, D_{34}\) và được gán số lần lượt là 1, 2, 3, 4, 5, 6. Nếu vậy nếu theo một chữ cuối trạng thái ví dụ 234516 sẽ tạo ra một topology mạng khi lần lượt sắp xếp các nhu cầu lưu lượng \(D_{12}, D_{13}, D_{14}, D_{23}, D_{24}, D_{12}, D_{34}\) lên mạng. Các nhu cầu lưu lượng được sắp xếp trên mạng trên cơ sở thứ tự toán đường ngắn nhất. Trong những mạng có dung lượng đường kết nối võ hạn hoặc rất lớn so với nhu cầu lưu lượng thì trạng thái cho các nhu cầu lưu lượng lên mạng không làm ảnh hưởng đến chi phí tổng cộng. Tuy nhiên, ở những mạng có dung lượng hữu hạn, trạng thái nhu cầu lưu lượng tác động rất nhiều đến chi phí tổng cộng.

Khởi tạo thế hệ khởi đầu được thực hiện bằng cách sinh ra các chữ cuối trạng thái ngẫu nhiên của các số gán cho các nhu cầu lưu lượng. Ví dụ như các chữ cuối 234165, 623415, 342165...
se tạo nên các topology mạng khác nhau.

Toán tử lai ghép, dựa trên cơ sở sẽ đã có chữ cuối trạng thái ngẫu nhiên trên, giả bài câu thể có kích thước chữ cuối \(N\), lai ghép tại vị trí \(L\) (\(L < N\)) bất kỳ, ví dụ \(L = 3\), sẽ được thực hiện như sau:

- Cả thế 1 thế hệ \(n\): \(136425\)
- Cả thế 2 thế hệ \(n\): \(234156\)
- Cả thế 3 thế hệ \(n + 1\): \(136245\)

Nếu vậy nguyên tắc lai ghép là tự hai câu thể hệ đầu kích thước \(N\), lai ghép tại vị trí \(L\) (\(L < N\)), hệ hai sau được tạo ra với kích thước \(N\) và chữ cuối được thiết lập với \(L\) phần tử đầu là phần tử của chữ cuối nhất và \(N - L\) phần tử tiếp theo lấy từ chữ thể hai, bằng cách duyệt theo trạng thái của chữ thể hai, phần tử được lấy là phần tử không xuất hiện trong \(L\) phần tử đầu.

Toán tử đột biến, thực hiện trên một câu thể nào đó, hai vị trí \(K\) và \(L\) (\(K < N\) và \(L < N\)), được thực hiện bằng cách hoán đổi hai vị trí \(K\) và \(L\) cho nhau, ví dụ \(K = 2\) và \(L = 5\).

- Cả thế 1 thế hệ \(n\): \(234156\)
- Cả thế 2 thế hệ \(n\) sau khi thực hiện đột biến: \(254136\)

Những loại này, tạo các đường kết nối \(l_{ij}\) cùng với bằng thông phần bô \(c_{ij}\) và chỉ số \(G_{ij}\) để đảm bảo truyền tải các nhu cầu lưu lượng là được xác định.

Tiếp theo, ta tính bằng thông dụng phẳng \(c_{ij}\) và chỉ phả cho việc cấp bằng thông dụng phẳng \(G_{ij}\) cho việc hỗ trợ mạng khi có sự cố. Để tính toán bằng thông dụng phẳng, xem Hình 3 sau.

Từ Hình 3 cho thấy, giả sử tất cả bao gồm tuyến AB và BC có thể có sự cố. Giả sử, khi tuyến kết nối BC bị sự cố, nhu cầu lưu lượng \(D_{AD}\) và \(D_{ED}\) sẽ được chuyển từ đường dẫn ABCD và EBCD sang đường dẫn AEFD và EFD. Việc chuyển sang các đường dẫn mới cùng được thực hiện theo thứ tự toán đường ngắn nhất. Trong trường hợp này, giả sử nhu cầu lưu lượng \(D_{AD}\) và \(D_{ED}\) nằm trong tập \(S\) (tập cần phải bảo vệ) thì, bằng thông dừng
phòng trên tuyến kết nối EF và FD cho sự có tuyến BC đứt liên lặp là $C_B^{B{EF}}$ và $C_B^{B{FD}}$ bằng tổng nhu cầu lưu lượng D_{AD} và D_{ED}. Băng thông dự phòng trên tuyến kết nối AE là $C_A^{B{AE}}$ sẽ bằng nhu cầu lưu lượng D_{AD}.

Hình 3. Hướng nhu cầu lưu lượng D_{ED} và D_{AD} thay đổi khi mạng có sự cố

Tiếp tục xét tiếp trường hợp sự cố là tuyến kết nối AB đứt, khi đó chỉ có nhu cầu lưu lượng D_{AD} được chuyển sang đường dẫn là AEFD. Trong trường hợp này, băng thông dự phòng sẽ được phân bố trên các tuyến AE, EF, FD lặp lặp là $C_A^{B{AE}}$, $C_E^{B{EF}}$ và $C_F^{B{FD}}$ bằng với nhu cầu lưu lượng D_{AD} . Tuy nhiên, do băng thông dự phòng đã được phân bố từ trước cho trường hợp sự có trước (BC đứt) lơn hơn bằng thông dự phòng cần cho trường hợp này, nên băng thông dự phòng không phải phân bổ thêm. Và như vậy, trường hợp sau không có chi phí cho việc phân bố thêm băng thông dự phòng. ngược lại, trong trường hợp sự có đôi hồi băng thông dự phòng lớn hơn bằng thông dự phòng đã cấp, thì băng thông dự phòng sẽ bằng băng thông dự phòng mới và chi phí sẽ tăng thêm một lượng bằng chi phí cho phân băng thông tăng thêm.

Từ đó ta có:

\[c_{ij}^B = c_{ij}^{BF} \quad \text{nếu} \quad c_{ij}^{BF} \geq c_{ij}^B \quad \text{và} \quad c_{ij}^{BF} \leq c_{ij} - c_{ij}^8, \]

(6)

\[c_{ij}^B = c_{ij}^B \quad \text{nếu} \quad c_{ij}^{BF} \leq c_{ij}^B, \]

(7)

khi đó chi phí G_{ij}^B cho việc cấp băng thông hồi phục sẽ được tính trên cơ sở cho các trường hợp (6) và (7).

Thực toán tính toán băng thông và chi phí cho việc hồi phục mạng được mô tả như sau:

- **Procedure Resilent_Cost()**
 - $C_{ij}^B = 0$;
 - for $N = 1$ to $N = N_{max}$ do
 - for $|F|$ sự cố trong Tập F do
 - Lựa chọn ngẫu nhiên một sự cố E_i;
 - Xác định tập các đường kết nối E_j bị ảnh hưởng bởi sự cố;
 - Xác định các nhu cầu lưu lượng S_j cần phục hồi sử dụng các đường kết nối E_j;
 - Cập nhật lại $G(V,E)$ trên cơ sở loại bỏ các đường kết nối E_j;
 - Định tuyến lại các nhu cầu lưu lượng S_j trên $G(V,E)$ theo đường ngắn nhất;
 - Xác định băng thông hồi phục;
 - Xác định chi phí cho băng thông hồi phục;
 - Trả lại các đường kết nối E_j trong $G(V,E)$;
 - end
 - Xác định chi phí bằng thông hồi phục tối thiểu;
 - end
Quá trình tìm kiếm các đường dẫn mới sẽ loại bỏ các đường kết nối mà không còn bằng thông cho việc hồi phục.

Các kết quả tính toán chỉ phù hợp thông G^4_1, G^5_1 do sử dụng để tính mức độ phù hợp của các cá thể. Như vậy, toàn bộ thuật toán thiết kế được mô tả như sau:

Procedure Algorithm Resilient Network()
 Khởi tạo thể hệ \mathcal{D} với số lượng N;
 for gen = 1 to maxGen do
 for $j = 1$ to $N/2$ do
 Lựa chọn ngẫu nhiên cá thể bất kỳ trong \mathcal{D};
 Chọn hai cá thể có mức độ phù hợp cao nhất trong ba cá thể;
 Lại ghép hai cá thể;
 end
 Tạo các cá thể đột biến từ \mathcal{D} với một số lượng xác định;
 Khởi tạo một số cá thể mới với số lượng xác định;
 Tính toán mức độ phù hợp của các cá thể mới; // tính cá chỉ phù hồi phục
 Lựa chọn N cá thể mới có mức độ phù hợp cao nhất trong toàn bộ tập cá thể;
 Đưa ra các kết quả;
 end
End

Một cách tiếp cận khác đã được đưa ra ở đây. Tắt các kết quả được thực hiện trên cơ sở lập lại một số lần. Để so sánh tính hiệu quả giữa việc sử dụng chỉ phù thiết lập mạng chưa có dự phòng và chỉ phù tổ chức (gồm cả chỉ phù phòng) để tính mức độ phù hợp cho thuật toán gen, một mạng 20 nút được sử dụng. Các ma trận nhu cầu lưu lượng, dung lượng các đường kết nối, chỉ phù dung lượng đường riêng kết nối,... được sinh ngẫu nhiên bởi chương trình. Các nhu cầu lưu lượng được quy đổi có giá trị từ 0.5Mbps đến 2.5Mbps; dung lượng đường kết nối có giá trị từ 3Mbps đến 5Mbps; chỉ phù cho một dòng vi dung lượng kênh kết nối từ 5000 đến 35000 cho 1Kbps; kích thước đắn số được đặt với giá trị 25, số thể hệ là 50, tỷ lệ lai ghép là 45%, tỷ lệ đột biến là 30%, tỷ lệ tạo cá thể mới là 55%.

Truyền các Hình 3a và Hình 3b trình bày các kết quả tính toán. Chỉ phù G_1 và G_1' ứng với trường hợp thiết kế topology mạng với mức độ phù hợp trong thuật toán gen được đưa ra trên cơ sở chỉ phù G_1 mà không tính đến G_1'. Ngược lại, chỉ phù G_2 và G_2' là cho trường hợp mức độ phù hợp dựa trên chỉ phù tổ chức $G_2 + G_2'$. Các chỉ phù G_1 và G_2 là chỉ phù thiết lập mạng chưa có dự phòng. Các chỉ phù G_1' và G_2' là các chỉ phù cho việc hồi phục mạng.
Hội phục đường trên một đường hồi phục

Các kết quả tính toán cho hai trường hợp hồi phục đường cho thấy rằng việc sử dụng chi phí tổng cộng làm cơ sở tính mức độ phù hợp của thuật toán gen sẽ cho kết quả tốt hơn. Trên cơ sở này, các tính toán tiếp theo được thực hiện nhằm so sánh ba phương thức: hội phục đường trên một đường hồi phục (non-bifurcation) - phương thức 1, hội phục đường trên nhiều đường hồi phục (bifurcation) - phương thức 2 và phục hồi lập là phương thức được đề xuất ở đây dựa trên cơ sở lập lại một số lần quả trình phục hồi đường trên nhiều đường hồi phục - phương thức 3.

Trong [12] đưa ra thuật toán hồi phục MCR (Minimum Cost Restoration) với năm bước thực hiện. Hai bước đầu tiên đồng tự như phương thức 1 trình bày ở trên. Ba bước sau thực chất là quá trình tiếp d pauses trên quá trình tìm kiếm cực bờ từ kết quả của hai bước đầu. Phương thức hồi phục theo thuật toán MCR được xây dựng nhằm làm cơ sở so sánh với thuật toán hồi phục lập được đề xuất tại đây. Trên Hình 4a, 4b và 4c thể hiện các kết quả được thực hiện trong điều kiện khác nhau về yêu cầu mức độ phục hồi tại các mức độ 12%, 40% và 60%.

Kết quá cho thấy việc thực hiện phục hồi theo phương thức lập cho kết quả tốt nhất.
Những trường hợp mức độ yêu cầu phục hồi của mạng là cao từ khoảng 40% trở lên, các phương thức hồi phục 2 và 3 đang xem xét để kết quả tốt hơn đôi chút so với thuật toán MCR ở [12]. Nguyên nhân là do trong những trường hợp mà yêu cầu mức độ hồi phục cao, việc sử dụng phương pháp hồi phục nhiều đường cho kết quả tốt hơn phương pháp hồi phục không trên nhiều đường mà thuật toán MCR áp dụng. Với trường hợp mức độ yêu cầu hồi phục thấp khoảng trên dưới 10% hoặc trường hợp với các trường hợp mà dụng lượng các đường kết nối đủ thứ thiếu nhiều khi so sánh tương đối với nhu cầu hồi phục, thì thuật toán MCR cho kết quả tốt hơn đôi chút (Hình 4a). Kết quả này do khi mạng có đủ thứ thiếu bằng thông, phương pháp hồi phục trên nhiều đường mà phương thức 2 và 3 áp dụng không vượt quá số đường so với phương thức MCR áp dụng. Mất khác, với ban đầu, thuật toán MCR cũng áp dụng một quá trình tìm kiếm tối ưu để cài đặt cấu trúc của giải pháp đạt được. Tuy nhiên, cùng cảm hối ý rằng, khác với thuật toán để xuất ở đây thực hiện theo biên đa thức thời gian (polynomial-time bound), thuật toán MCR là thuật toán thực hiện không thể biên đa thức thời gian. Do vậy thời gian chỉ phi cho việc thực hiện thuật toán MCR rất lớn, gặp nhiều lấn thường do xuất ở đây.

Gọi chi phí cho việc thiết kế topology mạng có khả năng hồi phục cho trường hợp 1 là C^1, trường hợp cho phương thức 2 và 3 là C^2, C^3. Trong Hình 5 dưới đây, trực tuyến được tính từ tỷ số của $(C^1 - C^2)/C^1$ và $(C^1 - C^3)/C^1$ tương ứng với phương thức 2 và 3 nhằm so sánh mức độ tích kiếm chi phí của các phương thức hồi phục tại các mức độ yêu cầu hồi phục khác nhau. Từ Hình 5 có thể thấy rõ việc sử dụng phương thức lập - phương thức 3 có mức độ tích kiếm chi phí hơn hẳn phương thức 2 khi mức độ yêu cầu hồi phục tăng từ khoảng 40% trở lên. Phương thức hồi phục trên nhiều đường - phương thức 2 có nhiều hiệu quả hơn so với phương thức hồi phục trên một đường - phương thức 1, tuy thế với tổng mạng, mức độ hiệu quả tăng dần theo mức độ tăng của nhu cầu lưu lượng cần hồi phục và đạt đến một giá trị nào đó. Sau đó, mức độ hiệu quả lại giảm khi tăng mức độ nhu cầu lưu lượng cần hồi phục. Điều này làm cho khi tăng quá mức độ nhu cầu lưu lượng cần hồi phục, cần thiết lập các tuyến mới, do đó với các phương thức đều không tích kiếm được chi phí.

![Hình 5](image-url)
Hình 5. Chinished chi phí thiết kế khi sử dụng phương thức hồi phục 1 với 2 và 3

Với các kết quả tính toán này, chúng tôi thực hiện thiết kế topology mạng có khả năng hồi phục cho trường hợp mạng 35 nút và mạng 50 nút với mức độ nhu cầu lưu lượng cần hồi phục là 12% cho hai phương thức: phục hồi trên nhiều đường và phục hồi lập. Các kết
qua được thể hiện tại Hình 6a và 6b dưới đây.

Từ kết quả tính toán sơ bộ cho thấy, trong một số trường hợp thực nghiệm như trên, phương pháp hồi phục lập cho kết quả khá quan.

4. KẾT LUẬN

Qua các kết quả tính toán ở trên có thể thấy, thuật toán hồi phục lập được được xúc ở đây cho kết quả tính toán tốt hơn so với một số thuật toán khác đã được đề cập trước đây. Mức độ tích kiềm chỉ phí của thuật toán càng lớn khi mức độ yêu cầu phục hồi lưu lượng mạng càng lớn. Mất khá, quá trình thiết kết mạng với việc kết hợp giữa quá trình thiết kế mạng trong điều kiện bình thường và quá trình tính toán phân bố bằng thông hiệu phục đạt kết quả tốt hơn việc phân tách hai quá trình tính toán thiết kế riêng biệt. Quá trình tính toán cùng cho thấy, việc sử dụng các phương pháp hồi phục được trong nhiều trường hợp phục cho phép sử dụng bằng thông hiệu quá hơn, tích kiềm chỉ phí, khả năng thiết kế mạng linh hoạt hơn. Thụ toàn thiết kế topology mạng hồi phục như trên có khả năng thiết kế cho các mạng lưới đầy đủ, đúng lưu lượng hạn với số lượng nút lớn, đáp ứng nhu cầu thiết kế các mạng lớn trong thực tế.

Giới thiệu chương trình:

Thuật toán được thực hiện qua chương trình xây dựng trên ngôn ngữ lập trình C++. Chương trình cho phép nhập hoặc tạo sinh các dữ liệu đầu vào như ma trận nhu cầu, ma trận kết nối, đúng lưu lượng kết nối, giá đơn vị cho các đường kết nối, tập các nhu cầu cần bảo vệ. Các tùy chọn khác được hỗ trợ nhằm tăng khả năng tìm kiếm trong phần thuật toán gen của chương trình như đặt kí hiệu đường dẫn số, tỷ lệ lai ghép, tỷ lệ dot biến, tỷ lệ tạo cá thể mới.

TÀI LIỆU THAM KHẢO

Nhận bài ngày 5 - 9 - 2006
Nhận lại sau sửa ngày 15 - 1 - 2007