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Abstract. The study will further discuss the novel real-world-semantics-based approach (RWS-

approach) to the interpretability of fuzzy systems proposed in [8] to show that the RWS-interpretability

of fuzzy systems in this approach is very essential and practical. It is also analyzed that the usual

theories as in mathematics and physics are all RWS-interpretable or, roughly speaking, they are

able to model their real-world parts, properly. It is pointed out that though the fuzzy set theory

is a great one which is very flexible, has many advantages in the application and obtains numerous

achievements, methodologically, it still has an essential shortcoming that it is not RWS-interpretable

on the viewpoint of this RWS-approach. To ensure the RWS-interpretability of a fuzzy linguistic

system, it is argued that word-domains of variables with their own order-based semantics should be

made use and interpreted as a formal bridge to connect the real-world semantics with the constructed

fuzzy linguistic system that works on the designed computational semantics of linguistic words. It

is initially shown that there exists a formalism based on the theory of hedge algebras to design

RWS-interpretable fuzzy systems.

Keywords. Real-world-semantics-based approach, real-world-semantics-based interpretability, lin-

guistic fuzzy rule bases, fuzzy system.

1. INTRODUCTION

It is obvious that real world (RW-) owns numerous various structures and humans cognize
the RW-structures based on their formal languages including formal theories in distinct fields
such as mathematics, physics, chemistry, social-economy. . . , which are developed based on
their own formalisms. Of course, the ultimate aim of these formal theories is to apply them to
develop techniques and methods to handle formal objects, which semantically express their
corresponding real-world entities, in terms of the formalisms of the theories to solve real-
world problems. To guarantee the effect of such developed methods, it is implicitly required
in practice that these theories should be developed in a strong relation with the structures
of the theory real-world counterparts. For illustration, let us consider a very simple theory,
the theory of real numbers, to serve for calculating the length of segments of straight lines in
reality. The theory is developed relying on a formal language using decimal (symbolic) strings
in an axiomatic way based on well-known axioms which represent specific key relationships
between the lengths of line segments discovered in the real-world counterparts. This theory
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developed in such a way to ensure that it has a close relation with the real-world counterparts
which are the straight lines on the earth under assumption that they are actually straight.

While the math- and physical theories, for instance, are developed in close relations
with reality, many theories/methods in the fuzzy set framework are developed based on
very weak formal relationships with their real-world counterparts. As an example, let us
consider the symbolic approach to fuzzy multi-criteria group decision making problems in
a fuzzy linguistic environment. In such an approach, its fundamental structure is linguistic
assessment scales of the form S = {l0, . . . , ln} used instead of numerical assessment ones,
where l′is are linguistic labels whose semantics induces a linear order that satisfies the
condition that li < lj iff i < j [4]. In general, S can be considered as a subset of the word-
domain of a linguistic variable X, e.g. X is the variable “technology” of an equipment bid.
Since S is still not interpreted as a math-structure in the fuzzy set framework and it has no
numerically computational features, instead to compute on the linguistic assessments l′is, one
has to establish a computational formalism to compute on their respective indexes without
any justification that these indexes express the real-world semantics of l′is. The numeric result
of such a computation, denoted by r, is translated into the linguistic label whose index is the
round number of r without an explanation why one can manage linguistic labels in such a
manner. This approach and its extended ones have attracted many studies in almost last two
decades, but it can be observed that there are no logical and mathematical bases to support
this computational formalism [4, 11, 12, 2]. On our study’s standpoint, this situation is an
inevitable consequence of the lack of a formal connection of the indexes of linguistic labels
of S with their real-world semantics. Similarly, to simulate human capabilities in handing
linguistic words in the framework of fuzzy sets, it is assumed that the fuzzy sets under
consideration are always associated with their linguistic words assigned intuitively by user.
However, the operations, say union or intersection, on the fuzzy sets are also defined without
any explicit relation with the respective operations OR or AND on their assigned words to
guarantee that the behavior of the union or the intersection on the fuzzy sets is appropriate
to the one of the OR or the AND acting on their words. Noting that the operations on fuzzy
sets are always defined in the set of all fuzzy sets of an uncountable universe U , while the
set of linguistic words is only finite, we can follow that the behavior of the operations on
fuzzy sets is not appropriate to the one of the respective operation of their assigned words
as it will be discussed in sequels.

This motivates us to state that the functionality of every natural language can be strongly
related with the RW, i.e. the semantics of their elements express certain entities/relationships
in the RW, and hence they may be utilized to form a bridge to connect the fuzzy sets
and the operation on them with the real-world semantics (RWS) of the corresponding op-
erations acting on their assigned words. For this reason, the study [8] proposed a novel
RWS-approach to the interpretability of the fuzzy sets and introduced a new concept of the
RWS-interpretability of the fuzzy system (FSyst) components, to guarantee that the seman-
tics of their components must represent a real-world semantics or they must specify their
entities in the RW. The ultimate purpose of the approach is to establish a methodology for
designing FSysts to ensure that the behavior of the designed FSysts will meet the designer
expectation.

Following the novel RWS-approach to the FSyst interpretability proposed in [8], in this
study we will examine the following main problems:
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• To make the RWS-interpretability concept more understandable and to further justify
the RWS-interpretability of natural human languages and word-domains of variables
and its elementary role in examination of the RWS-interpretability of the FSyst com-
ponents.

• To examine the RWS-interpretability of basic operations of the fuzzy set theory which
is oriented for the first time to answer the question whether this theory is RWS-
interpretable.

• To show an ability to solve the RWS-interpretability of some approximate reasoning
method based on the theory of hedge algebras (HAs) and their quantification.

The paper is organized as follows. In Section 2, a short overview on the introduc-
tion of the RWS-approach to the FSyst interpretability and a general discussion on the
RWS-interpretability of non-fuzzy and fuzzy theories and methods, specially, on the RWS-
interpretability of HAs. Section 3 is devoted to an examination of the RWS-interpretability
of FSyst components which is considered as a further study [8]. Section 4 presents some
first results in studying the RWS-interpretability of the fuzzy set theory and of HAs. Some
conclusions are given in Section 5.

2. RWS-INTERPRETABILITY OF VARIABLE WORD-DOMAINS & ITS
CRUCIAL ROLE IN STUDYING THE RWS-INTERPRETABILITY OF

FUZZY THEORIES

In mathematics and physics there are various formal theories that are developed in ax-
iomatic manners and they are RWS-interpretable because their axioms represent certain
essential properties of their research RW-counterpart in terms of their own formalism. This
statement is justified by numerous achievements of the applications of these theories to solve
social or technological problems to successfully develop the societies. However, as it will
be seen below, there are many problems for the theories dealing with fuzzy linguistic data
as, methodologically, they lack necessary formal bases to connect to the RW. This situation
motivates the authors of [8] to introduce and initially examine the RWS-approach to the in-
terpretability of FSysts to establish a methodological foundation to ensure that the behavior
of the FSysts designed based on this foundation in reality is just expected by the designers.

2.1. The novel concept of RWS-interpretability of any formalized theories -A
deeper discussion

This concept was proposed and initially examined in [8], but due to the space limit of
its publication it is difficult to present such a complex and novel concept more comprehen-
sively. In this study, we will more explicitly and deeply analyze practical and methodological
necessity of the study of the RW-interpretability of formalized theories, in general, and of
formalized FSysts, in particular, where the terminology “formalized” used in this study is
to emphasize that it should be careful to deal with the relationship between symbolic ex-
pressions viewed on the syntactical standpoint and their semantics which is interpreted in a
computational structure. This is very essential because, methodologically, human beings cog-
nize the reality around their daily lives by using symbolic languages associated with implicit
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semantic interpretation assignments, by which their elementary symbolic elements convey
real-world semantics, such as natural languages of human communities, mathematical lan-
guages, physical languages. . . So, it is necessary to put the study of the FSyst interpretability
in relationships between human beings, the RW and natural languages, as it is exhibited by
a scheme given in Fig. 1. Remember that every natural language has been taking form by
human beings when they interact with their RW in a very long period of the human devel-
opment history. This is the practical basis to ensure the RW-interpretability of the natural
languages.

Figure 1. Relationships between formalized theories, their models and applications and their
RW counterparts

To make this new RW-interpretability concept easy to understand, let us first consider
simpler theories in the fields of computer science or mathematics. It is useful to recall
ourselves the crucially important role of mathematics, one feature of which saying that
“The core knowledge of computer science is nothing but mathematics” and, in addition,
it is observed that the semantics of the elements (represented by symbolic expressions) of
the underlying set of any given math-theory Tare nothing but their relationships in its
structure developed on its underlying set. When a computer handles symbolic expressions
represented in the computer to simulate a process in reality in a right way, it is required
that the computational semantics of these expressions handled by the computer in a certain
math-formalism must rightly express their RW-meaning, i.e. certain RW-objects assigned
to them, which in nature is completely different from the computational semantics. Since
relationships between elements are essential, similarly as in the field of the mathematics, one
way to model the RW-semantics of RW-objects is to establish an interpretation mapping
from the RW-objects to their computational ones so that this mapping can preserve the
discovered relationships between the RW-objects in question.

From this analysis, the RWS-approach to the FSyst interpretability proposed in [8] is
actually examined under the following assumptions that are explicitly formulated in this
study as follows:

• The RW and its parts always have their own structures, which are collections of rela-
tionships between their RW-entities/objects.

• The natural languages of human communities are RWS-interpretable, i.e. their ele-
ments used in each other’s communication and in decision making can properly convey
RW-semantics. This point will be discussed in more details next.

• Since the ultimate purpose of the fuzzy sets theory is to simulate human capacities
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in handling fuzzy linguistic words, every fuzzy set under consideration of a linguistic
variable must always be associated with a fuzzy linguistic word.

• Since in this approach, RW plays a basic role in studying the interpretability not only
of the FSysts, but also of any formalized theories, an RW-structure can be modeled
by a formalized fuzzy linguistic theory TL as well as by a formalized numeric theory
TN . For this reason, if x denotes a variable in the RW, then xL (xN ) denotes the
same variable x modelled by TL (TN ). It will be seen that this notation is useful in
the examination of the RWS-interpretability of FSysts to easily present the semantic
compatibility between two theories TL and TN when they model the same part of the
RW to solve a problem.

2.1.1. The concept of RWS-interpretability of formalized theories

A FSyst whose functionality is to produce outputs from given input data and its fuzzy
knowledge can be considered as a formal theory TFSyt. As discussed above and from the
above given assumptions, for a given FSyst we denote by SRWP the structure of a Real
World Part (RWP), that represent relationships of its RW-counterpart objects of the theory
TFSyt. SRWP describes relationships between RW-variables in the SRWP . Roughly speak-
ing, in the RWS-approach, to ensure that the theory TFSyt can model the structure SRWP

properly, one has to establish an interpretation mapping f from the objects of RW-variables
to computational objects of the corresponding variables of TFSyt so that f does preserve
key observed essential relationships within SRWP . This idea suggests the authors of [8] to
apply the concept of the interpretability of a theory S in another one T defined by Tarski
et al. in [10] which can be formulated informally as: assuming T and S are formal theories,
S is said to be interpretable in T if there is an interpretation mapping from the formalized
language underlying S into the formalized language underlying T so that every theorem of
S can be translated into and proved in T . That is, the interpretation mapping can convey
the structure of S into the one of T . In mathematics, it is necessary to required that this
mapping can convey the axioms (i.e. key relationships) of S into certain theorems of T .
Therefore, the study [8] introduces the following definition.

Definition 1. ([8]) A formalized method/theory T formulated in its formalized language
to simulate a real-world structure, denoted by WT , is said to be RWS-interpretable if there
exists an interpretation mapping RT : WT → T , which assigns real-world objects of W to
elementary formalized elements of T that can convey or preserve the essential properties of
WT . In this case, T is called an RWS-model of WT or WT is interpretable in T . Such a
formalized method T is called RWS-interpretable. Note that, the structure WT is a subjective
concept as it depends on the observation/perception of a human user. In this sense, most of
classical mathematical theories are RWS-interpretable.

Example 1. The classical math-theories, like the theory of the real numbers, math-analysis,
the Cantor’s set theory, metric spaces. . . , are RWS-interpretable. It can easily be verified
that the operations and axioms of these theories represent relationships of RW-objects in
their corresponding parts of the RW discovered by human founders whereby readers/students
can understand the theories.

Example 2. If the RWS-interpretability of the theories in Example 1 looks like at first
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glance natural, but, as it will be discussed in the next section, that the fuzzy sets theory
seems to be not RWS-interpretable and, thus, the RWS-interpretability of fuzzy linguistic
theories seems to be a quite novel problem. A question that arises is that does there exist
such a theory which is RWS-interpretable. Therefore, this example aims to argue that the
theory of the HAs immediately dealing with fuzzy linguistic words is RWS-interpretable
under a previously adopted assumption that human community natural languages are RWS-
interpretable. This question will be proved in sequel and, here, we only give some facts
supporting this assertion.

Since natural languages are RWS-interpretable, the word-domains of variables that can be
recognized as order-based structures induced by the inherent order-based semantics of their
words are also RWS-interpretable. For example, assume firstly that for every RW-variable x,
xL and xN are, respectively, the linguistic variable with linguistic domain LDom(xL) and the
numeric variable with numeric domain NDom(xN ) used to describe the variation of x in the
RW. It is observed that if the first state of the RW-variable x is smaller than its second one,
then so are the two respective descriptions of either xL or xN . That is, the order relation of
two linguistic words of LDom(xL) expressing the RW-relationship between the two (RW-)
states of x observed by a human user and expressed in terms of his words is compatible with
the respective numeric states of xN observed by the same user. Similar as for the theory
of the real numbers, since the axioms of a HA represent certain key essential relationships
between words of the word-domain under consideration and the HAs is developed in an
axiomatic manner, this ensures the RWS-interpretability of the HAs.

Based on the concept of the interpretability defined in Def. 1 and the successful appli-
cations of math-theories in reality, we adopt the following hypothesis.

Hypothesis 1. The developments of math-theories based on axiomatic methods ensure their
RWS-interpretability, that is, a math-theory with its axioms whose semantics is justified to
represent key structural relationships between entities of the RW-counterpart of the theory
is RWS-interpretable.

2.1.2. Proposal of a scheme to solve a RWS-interpretablity problem

In math-logics, the inference mechanisms of predicate logics guarantee that a conclu-
sion derived from valid statements is also valid. However, as RW-structures are not for-
malized theories, according to our knowledge, the above hypothesis could not be proved
even in the field of mathematics. In the fuzzy/uncertain environment with inexact state-
ments, one has no strict mechanism that permits to derive valid statements from given valid
ones, a similar assertion is even more difficult to prove. In addition, as discussed in [8],
the RWS-interpretability concept is subjective as it depends on which RW-features of the
RW-counterpart the developer can discover, especially when one deals with problems in a
fuzzy environment. In such complex environment which may even involve several distinct
structures in the same RW-counterpart, one may not observe all necessary RW-features to
solve a given problem. For instance, the generality-specificity of words has not been con-
sidered in the fuzzy set framework. Thus, it is necessary to introduce a scheme to solve a
given RWS-interpretability problem as shown in Fig. 2, where the RWS-interpretability of
a formalized fuzzy expression depends on which a structure of its RW-counterpart can be
discovered, including expressions representing Approximate Reasoning Methods (ARMs). A
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given component of a FSyst or even the whole FSyst itself, or any method/algorithm can
be considered a formalized expression E that is formulated to solve a problem in a part of
the RW, W , with its own RW-structure SW . For example, for a given fuzzy rule base FRB
formulated by a human expert to solve a problem discovered by him in a certain part of
the RW, assume that its rules are understood as being combined by a logical conjunction.
Let LRB be obtained from FRB by replacing the occurrences of fuzzy sets in FRB with
their respective associated linguistic words. Then, LE is the linguistic expression obtained
by the conjunction of the linguistic rules of LRB. Of course, to solve the discovered problem,
one has to translate LE into a certain computational expression, CE, of a computational
space constructed by the human expert, CS, whose elementary elements must represent the
semantics of words used by him to describe the basic objects the RWP W.

Figure 2. Scheme to solve an RWS-interpretability problem

So, in the RWS-approach it is required that the CE must be RWS-interpretable when
representing the RW-semantics of LE in W. The scheme shown in Fig. 2 comprises the
following main tasks:

Task 1. For a given W and the linguistic expression LE formulated by a human expert, it is
necessary to discover all necessary key features of the structure SW of W, noting that SW
may contain several substructures that are distinct in nature. For example, the order-based
relationships and the generality-specificity relationships define quite different structures be-
tween the words of the same linguistic variable. Based on these discovered features, one
should formulate constraints that impose on the interpretation mapping defined in Task 3.

Task 2. To make use of certain computational formalism, construct numerically computa-
tional space CSWwhich is appropriate to solve the problem arising in the real-world part
W . Noting that the objects of SW are completely different in nature from the corresponding
ones of CSW , to model the discovered structure SW , one should define suitable notions and
necessary relationships in CSW that serve for the representation of key characteristics of the
structure SW in the computational structure CSW .

Task 3. Build an interpretation mapping f from the RW-objects to computational objects
of CSW so that f is satisfied by the constraints formulated in Task 1 to convey key features
of SW to the corresponding ones in CSW .

In sequel, we will demonstrate important and useful role of this scheme in examining the
RWS-interpretability of the components of FSyst.
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2.2. The RWS-interpretability of human natural languages and of HAs of vari-
ables

Since the concept of RWS-interpretability of a formalized theory/expression is very essen-
tial, but it is a pity that theories and methods in the fuzzy linguistic environment, in general,
are not RWS-interpretable. One of main reason is that they have no formal basis to connect
with natural languages which are RWS-interpretable, as we will argue in the following point.

2.2.1. The RWS-interpretability of natural languages of any human communi-
ties

This point has still not explicitly discussed in the study [8], however, it is methodologically
very essential and, hence, it is necessary to discuss about it here.

Every language of a human community considered as a whole cannot be formalized as a
structure and, therefore, we cannot show that it is RWS-interpretable in the sense of Def.
1. However, the history of fighting for the human existence and development, in which its
language has been being used throughout the length of its history to communicate with each
other or to make decisions in daily lives, proves that its language must be RWS-interpretable,
otherwise the human community cannot exist.

As a consequence, the word-domain of a variable, i.e. the set of all words in the language
that are the human community uses to describe linguistically the states (or, values) of the
variable. Moreover, it can be seen that every word-domain of the language is, at least,
partially ordered based on the meaning of its words. It is more essential that this semantic
order relation on this word-domain has been taken shape in the long-term history of the
community to serve for daily life decision making, for which the comparison of values of
decision criteria to choose a better alternative among other ones is crucial. The successes
of human beings in their activities of decision making result in a consequence that the
comparison between alternatives of a decision making problem based on the order-based
relationships of the words used to describe the one decision alternatives are appropriate to
the reality. That is, natural languages provide actually powerful functionality to be used to
describe all things in the RW serving for human cognition and decision making. In other
words, we have

Hypothesis 2. Any human natural languages are RWS-interpretable.

The RWS-interpretability of the word-domains is methodologically very crucial in the
study of the FSyst RWS-interpretability, as FSysts play a tool to simulate human capabilities
in handling linguistic words in problem solving. This is also a basis that motivates the authors
of [8] to propose the RWS-approach to the FSyst interpretability to show that the lack of
a formal basis to connect fuzzy sets with the semantics of the words assigned to them is a
crucial reason which makes the FSyst interpretability examined in the fuzzy set framework
to become too sophisticated [8].

2.2.2. The RWS-interpretability of HAs–Mathematical models of word-domains
of variables

Straight lines in reality and the human calculation demand based on their structures
motivate the development of the theory of the real numbers. The successful applications of
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this theory in reality demonstrate that it is RWS-interpretable. So, methodologically, the
RWS-interpretability of the theory of real numbers can be ensured by the following two facts:

• The RWS-interpretability of its axioms: It is well known that straight lines are RW-
models of the theory of the real numbers and, hence, its axioms that formulate the
properties of the operations on the real numbers are compatible with the respective
measurements made by human being on corresponding segments of a straight line.
These demonstrate that the theory of the real numbers has a close connection with its
RW-counterpart. Thus, the RWS-interpretability of its axioms are justified by RW-
semantics representing distance relationships between real points on the straight lines.

• The development of the theory that is based on the inference rules of a formal logics
does maintain the RWS-interpretability of the whole theory. The (logical) validity of a
sentence is verified based on the RW-events. For instance, the validity of the sentence
“If we have free time on Sunday AND there is sunshine on this day, then we will
visit your family” is verified based on the respective events actually happen or do not
happen in that day and, hence, it is RWS-interpretability. Since all inference rules
preserve the validity of the sentences, it follows the validity of the mentioned above
fact.

Based on these facts, we can show that the theory of HAs including their quantification are
RWS-interpretable. Since the logical rules are the same as in the field of the mathematics, it is
sufficient to show that the axioms of the HAs and their quantification are RWS-interpretable.

On one hand, human societies including their natural languages are evidently considered
as a part of the RW. On other hand, as previously argued, natural languages are RWS-
interpretable and, hence, the word-domains of the variables, which are ordered based on
their inherent meaning and viewed as their sub-RW-parts, can also be considered as RW-
parts. Thus, to model the word-domains of variables, similarly as for the theory of the real
numbers, the theory of HAs is developed in an axiomatic manner and their axioms are formal
formulations of key essential properties of words and hedges of their respective word-domains
[5, 6, 7, 9] viewed as RW-counterparts. As examined in [9], the quantification of HAs is also
developed in axiomatic way and its axioms are established based on the structure of HAs.
This ensures the RWS-interpretability of the quantification axioms.

In such a way, their RWS-interpretability is guaranteed by the hypothesis formulated
above. So, similarly as for any classical math-theory, we have the following proposition.

Proposition 1. Any HA and its quantification theory are RWS-interpretable.

This claim is very important as we will see that the fuzzy sets theory is in general
not RWS-interpretable, though this might not decrease the great meaning of this theory in
application problem solving. This shows only that in the standpoint of the RWS-approach,
the fuzzy set theory has some methodological shortcomings, emphasizing that its successful
applications of the up to now demonstrate that the fuzzy sets theory is very elastic and
flexible and based on this many powerful methods can be developed to solve application
problems in various distinct disciplines.
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3. RWS-INTERPRETABILITY OF THE FUZZY SYSTEMS
COMPONENTS

Since the RWS-interpretability in the sense of Def. 1 of the ordinary math-theories and
the physical ones seems to be an evident natural requirement, their RWS-interpretability
problem is not necessary to explicitly formulate. However, in the fuzzy linguistic environ-
ment it becomes a research topic in [8] which is motivated by the observation that there is
a formalized gap between the RW-semantics of words and their computational semantics,
including the fuzzy set based semantics, in the existing approaches. The semantics of the lin-
guistic words, as symbolic expressions, of a variable is understood as a relationship between
the linguistic words and the RW-objects that the words express. For the math- or physical
theories, it is easy to specify these RW-objects, but for linguistic words it is not because the
semantics of words are still not formally defined. For this, one has no formal foundation to
examine whether linguistic words can represent certain RW-objects in reality. At the same
time, the role of the natural languages in connecting with the RW has still not been taken
into account.

This analysis shows that the RWS-approach is actually quite new and it is for the first
time discussed in [8]. By this reason, in order to more easily understand the practical
meaning of the scheme described in Fig. 2 and its application in Section 4, it is more useful
to summarize here how one can solve the RWS-interpretability of the FSyst components
examined in that paper. To properly follow Task 1–3 mentioned above, the main idea to
ensure the RWS-interpretability of these components is to discover key structural features of
the RW-semantics of the components that are described by human expert in terms of his own
linguistic terminologies to formulate certain constraints to impose required restrictions on the
constructed interpretation mappings to translate the components into their computational
expressions in a computational space CS. So, differently from existing approaches, linguistic
words actually play crucial and fundamental role in the RWS-approach.

A FSyst can be viewed as comprising a fuzzy knowledge base, which includes its linguistic
frames of cognition (LFoC) and its linguistic fuzzy rule base (LRB), and a fuzzy inference
engine, which is constructed mainly based on an approximate reasoning method (ARM).

3.1. The RWS-interpretability of LFoCs

In the fuzzy set framework, there is a concept of Frame of Cognition (FoC) which is any set
of pre-specified fuzzy sets associated with an attribute/variable used as a set of descriptions
to cognize the RW. Its fuzzy sets are always associated with words based only on human
user intuition which are linearly ordered from left to right relying on their meaning. In the
HA based approach (HA-approach) [12, 3, 2] the set of these words is called a Linguistic
Frame of Cognition (LFoC), denoted by F. In the fuzzy set framework, these fuzzy sets
arranged in this way are considered as a fuzzy set representation of the set of words without
any reasonable formal justification. In this situation, the interpretability of this fuzzy set
representation of the LFoC F is studied based only on expert intuition, i.e. the expert has
to answer the question how he can arrange the shapes and the positions of the fuzzy sets on
the variable universe in a meaningful way. Of course, these arrangements of fuzzy sets have
no formal relation with the semantics of words.

In the RWS-approach, an RWS-interpretable computational representation of a given
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LFoC F is constructed based on the scheme given in Fig. 2 described as follows, where
F = X(k) = {x ∈ X: the set of the words of a variable whose length is not greater than
k > 0}.

3.1.1. Try to discover structural relationships between words of F being con-
sidered as an LE

As previously discussed, F can be regarded as a RW-counterpart (or, its words can
properly convey their RW-semantics) and we try to find out key structural features of F. It
can be seen that on this set there exist two relations, denoted by ≤ and GS (x, y), which are
still not considered in the fuzzy set framework.

◦ F is linearly ordered set induced by the word meaning. Its structure is denoted as
(F,≤).

◦ GS (x, y) is a generality-specificity relation on F. For example, for the variable AGE,
“old” is more general than “very old”, and “rather very young” is more specific than
“young”, if they all are in F. It can be verified that G(x, y) have the following prop-
erties:

- Anti-symmetry : GS (x, y) & GS (y, x)⇒ x = y.

- Transitivity : GS (x, y) & GS (y, z)⇒ GS (x, z).

These relations are taken as constraints imposed on two respective interpretation map-
pings of sound computational representations of LFoCs, where a sound computational rep-
resentation of an LFoC means that these exists an explicit formal basis to believe that the
computational objects of this representation can properly represent the semantics of the
words appearing in the LFoC of a variable:

Definition 2. A fuzzy set representation of a given LFoC F, FR(F) = {F (x): x ∈ F}, where
F (x) denotes the fuzzy set assigned to x, is said to be RWS-interpretable if the following
conditions hold:

(i) On FR(F) can be defined two relations: the first one is denoted by ≤*, which is
reflexive, anti-symmetric and transitive, and the second one is denoted by GS*, which
is anti-symmetric and transitive.

(ii) There exists an interpretation assignment I≤ and IGS that both map F into FR(F),
such that they respectively preserve the relations ≤ and GS on F, i.e., for all x, y in
F, we have x ≤ y ⇒ I≤(x) ≤* I≤(y) and GS (x, y)⇒ GS* (IGS(x), IGS(y)).

This definition states that the RWS-interpretability of FR(F) can be ensured by imposing
discovered constraints on the desired interpretation assignments. These constraints are so
strong that there does not exist any fuzzy set representation of a given LFoC examined
in recent literature that can be deemed as RWS-interpretable. That is, there do not exist
interpretations induced by this representation that satisfy the conditions in Def. 2. So,
to construct a RWS-interpretable computational representation of an LFoC F, one has to
find a suitable topology (not only linear arrangement of the desired computational objects) to
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arrange the computational objects to represent F so that the interpretation mappings I≤ and
IGS induced by the constructed computational representation of F can meet the proposed
constraints.

3.1.2. Try to construct a computational space that can properly represent the
semantics of F

This is a difficult task as one has to find which computational space is appropriate, that
is, one has to solve which math-objects can be used to represent the word semantics and,
in the same time, to find suitable relations defined on the desired computational space to
model the discovered relations ≤ and GS. Restricted to the triangle or trapezoid fuzzy sets,
the study [8] argued that the topology of multi-granularity structure of fuzzy sets, as shown
in Fig. 3 can meet both above discovered constraints, where the fuzzy sets are arranged in
three level of their generality. Here, the fuzzy sets on the k th-level represent the semantics
of the words of the generality of degree k. For k = 0, the words on this level are the most
general and the fuzzy sets are either all triangles or all trapezoids, whore core are therefore
represented by bolded points in the figure and whose supports are uniquely defined by the
fuzziness intervals of the respective words. Representing triangles/trapezoids by triples of
the form (a, b, d), where b’s are the cores of triangles/trapezoids, the order between the
fuzzy sets are defined as follows: (a, b, d) ≤* (a′, b’ , d′)⇔ {b ≤ b’ & there is at least one of
the remaining components of the triples, say the first one, satisfying the inequality a ≤ a′}.
The relation GS* between the triples are defined as follows: GS* ((a, b, d), (a′, b’ , d′)) ⇔
[a, d] ⊆ [a′, d′]. Obviously, the triples on the top level are of the most generality which is
compatible with the semantics of the words on this level.

Note that, in the existing approaches in the fuzzy set framework, the fuzzy sets are
usually arranged to form a single-granularity structure, i.e. they are arranged on a unique
level instead of the three levels as in the case of Fig. 3. That is, all their associated words
are on the same level of generality (vs. specificity) and, hence, in this topology, they are in
general not able to represent the relation GS.

Figure 3. RWS-Interpretable triangle/trapezoid multi-granular representation of XAGE,(2)

3.2. The RWS-interpretability of computational representation of LRBs and
ARMs

The concept of the RWS-interpretability of FSysts or, more generally, of formalized
expressions is very complex and of high abstract. In this section, the RWS-interpretability
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of LRBs and ARMs will be analyzed with more exact and confident explanation and a
modification of the concept of the RWS-interpretability of computational LRB-representation
and ARMs examined in [8] is given here. E.g. as an ARM must be developed based on
a given method producing a computational representation of any given LRB, the RWS-
interpretability of the computational representation of LRBs and of an ARM to be developed
to work on it will be defined in a close relation to each other.

In [8], it is argued that one may acquire a piece of knowledge about a numeric dependent
relationship between two variables only when it is observed that they are monotonically de-
pendent on each other on a certain interval of each variable, otherwise their dependence is
chaotic. Compatibly with this, as discussed in that study, it is interesting that the seman-
tics of a multi-variable linguistic rule does also express monotonic dependent relationships
between its unique output variable and one of its input variables. For example, in case of
one output and one input variable, it is easily observed that the rule “IF AGE(a) is young,
THEN RUN SPEED(a) is fast” represents an inversely proportional relationship between
AGE and RUN SPEED of a person a, while “IF HIGH(a) is tall, THEN RUN SPEED(a) is
fast” represents a directly proportional one.

Given the above two sentence with their own RW-semantics, we may intuitively deduce
the following linguistic rule with two input variables, where ‘More’ is viewed as a hedge [5, 6]:

“IF AGE(a) is young AND HIGH(a) is tall, THEN RUN SPEED(a) is More fast”

This sentence can be considered as an aggregation of the two given sentences above.
More generally, the following linguistic rule of one output and m input variables,

(r) IF X1L is x1& . . . &XmL is xm THEN Xm+1,L is xm+1 (1)

where, by our convention, XjL’s are its linguistic variables of the respective given real-world
variables Xj ’s,j=1 to m+ 1. The rule r can be considered as an aggregation of rules ‘IF
XjL is xj THEN Xm+1,L is xm+1, j = 1 to m+ 1, and, thus, r represents m monotonic
relationships of Xm+1,L and XjL on certain interval of each variable, for j=1 to m. This
semantics of linguistic rules is very crucial but the fuzzy rules in the fuzzy set framework do
not own such a semantics. It is even more crucial that the above monotonic relationships
defined by rgiven in (1) represent similar relationships between the corresponding real-world
variables Xj ’s and, hence, they are compatible with the respective relationships between the
corresponding numeric variables XjN ’s,j= 1 to m+1.

To further analyze, we assume that a LRBRB is full of conditions, that is, all m variables
XjL, j = 1, . . . ,m, are explicitly present in each rule (as it happens with the well-known
Wang and Mendel rules ([?]). In this case, it is simply called a full LRB. It is natural to
require RB to be consistent, i.e. if the antecedents of any two rules of RB are identical,
then so are their conclusions. Then, a full and consistent LRB RB may be considered as
representing a linguistic functional dependence of Xm+1,L on XjL’s, j = 1 to m. By the RWS-
interpretability of natural languages and the RW-semantics of linguistic rules and LRBs, RB
represents a real-world functional dependence of Xm+1 on Xj ’s, for j = 1 to m.

Such a RW-semantics of LRBs is very important for the examination of the RWS-
interpretability of computational representations of LRBs and of ARMs which work on
RWS-interpretable computational representation of the given LRBs. Note that in numer-
ous applications, an ARM working on an LRB with m input variables is required to produce
a numeric output for a given numeric input vector (a1, . . . , am). Since the ultimate purpose
of a FSyst equipped with a LRB is to interact with its real-world counterpart to solve an
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application problem, the RWS-interpretability of the LRB is to guarantee that the produced
real numeric output value by the system, for a given real numeric input vector, is just the
one the designer expects. This requirement is essential and, therefore, following the diagram
given in Fig. 2, one has to determine a proper part of the real-world which a given LRB
does represent to discover its natural and essential real-world properties from which con-
straints imposed on the LRB are discovered. As analyzed just above, the RW-semantics of
a given LRB, B, expresses a RW-functional dependence of Xm+1 on Xj ’s,j = 1 to m, which
is monotonic with respect to every individual input variable on a certain interval of its real
universe. In reality, the RW-semantics of B is also modeled by a numeric functional depen-
dence of Xm+1,N on XjN ’s, for some j, which must be monotonic on the observed intervals
of its two variables. This real-world semantics induces necessary constraints related to the
monotonicity of B imposed on a method assigning B to a computational object C(B) and on
a ARM R working on C(B) that can be formulated in a close relation as follows.

In the fuzzy set framework, B can be represented by a fuzzy relation R defined in
Cartesian product U1 × . . .× Um+1 that is produced a certain representation method.
More generally, we deal with LRBs instead of FRBs. In general, there are several comput-
representation methods (CRep-methods) of LRBs. Every such a CRep-method, M, should
transform any LRB B of rules of the form (1) into a desired comput-object that represents
the computational semantics of the given LRB in a way as follows:

(i) Construct an interpretation IX j that maps words of Xj to a desired comput-space CS j ,
j = 1 to m;

(i) Construct a procedure P that maps connectives present in B to their operations of a
space S = (C,≤S) defined on Cartesian product CS 1 × . . .× CSm+1, where (CS j ,
≤j)’s are order-based structures, so that the composition P ◦ (IX1, . . . , IXm+1)
transforms B into an object of S and B may be a unique rule r.

For illustration, the fuzzy relation R defined by Mamdani’s method to model a LRB B
of n rules can be rewritten as

(P ◦ (Ix1 , ..., Ixm+1))(B) =
⋃

1≤i≤n
Ix1(xi,1 ∩ ... ∩ Ixm+1(xi,m+1) =

⋃
1≤i≤n

(P ◦ (Ix1 , ..., Ixm+1))(ri)

where IX j ’s assign the words of their variables to their fuzzy sets of the respective variable
universes.
M defines a mapping which maps any LRB B to a comput-representation M(B) of B

in S. By M(B)|X j we denote the projection of M(B) on the universe of Xj . The following
definition is more formally defined than that given in [8].

Definition 3. Given comput-space S = (C,≤S) defined on Cartesian product of order-based
structures CS ′js. A CRep-methodM with its interpretations I ′X js, IX j : Dom(Xj) → CS j ,
is said to be RWS-interpretable in S provided that

1) The interpretations I ′X js are order isomorphisms.

2) For a given LRB B, M preserves the discovered monotonicity, if any, of B. That is, if
B is increasing (or decreasing) and for a = (xi1, . . . ,xim) ≤ a ′ = (xi′1, . . . ,xi′m), where
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a and a ′ are any two linguistic vectors formed by m words appearing in, respectively,
some two rules ra and ra′ of B, thenM(ra)|Xm+1 ≤M(ra′)|Xm+1 (or, M(ra)|Xm+1 ≥
M(ra′)|Xm+1).

It can be observed in general that any method that represents any LRB as an (m+1)-
dimensional fuzzy relation cannot be RWS-interpretable, as the order of words and their
fuzzy sets is ignored.

The ARMs developed to solve application problems play a key role to construct effective
but also interpretable FSysts. They strongly depend on a given LRB B itself as well as
also on the proposed method M which produces a computational representation of B. As
the developed ARM R must be developed to work on the computational representation of
B produced by an M, its RWS-interpretability is strongly dependent on M. Thus, the
RWS-interpretability of an AMR should be defined based on a given the RWS-interpretable
CRep-methodM. Now, we are ready to introduce the following definition, where for a given
vector a = (a1, . . . , am), R(a) denotes the numeric output value of a produced by R.

Definition 4. Assume that an ARM R is developed to work on the LRB-representations
produced by a given CRep-method M. Then, R is said to be RWS-interpretable provided
that for any LRB B which is monotonic with respect to every individual input variable of B,
it satisfies the following condition

(∀a , a ′){[a a ′ ⇒ RM(B)(a) ≤ RM(B)(a
′)] and [a 6= a ′)⇒ RM(B)(a) 6= RM(B)(a

′)]} (3)

4. THE RWS-INTERPRETABILITY CONCEPT OF LINGUISTIC FUZZY
EXPRESSIONS/THEORIES

As discussed in Section 2 and 3, the novel RWS-interpretability of any fuzzy proce-
dures/theories, in general, and of any FSysts, in particular, seems to be very essential and
practical. So, a natural question that arises is that whether the fuzzy sets theory or its
expressions are RWS-interpretable and if it is not, whether there exist methodologies to
develop RWS-interpretable FSysts?

4.1. Examination of the RWS-interpretability of some fuzzy expressions of the
fuzzy set theory

The RWS-interpretability of the fuzzy set theory is too big a problem and, therefore, in
this section it is restricted to examine the RWS-interpretability of the standard fuzzy set
algebras.

4.1.1. An analysis of the RWS-interpretability of the standard fuzzy set algebra

Let us consider a universe U and denote by F (U) the set of all fuzzy sets of U , F (U) =
{µ : µ∈ [0, 1]U}, where [0, 1]U is the set of all (membership) functions from U into [0, 1] and
the fuzzy sets and their membership functions can be viewed as being identical. It is well-
known that the union (∪), intersection (∩), complementation (∼) can be defined in F (U)
as a generalization of the respective operations on the crisp sets of U . They are pointwise
defined on the membership functions of the fuzzy sets in the whole F (U). Then, we have a
standard fuzzy set algebra that can be denoted by FA= (F (U), ∪, ∩, ∼).
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To examine the RWS-interpretability of FA, we have to find out which is the RW-
semantics of individual fuzzy sets and the RW-semantics of the operations ∪, ∩ and ∼ when
they act on fuzzy sets. To answer these questions, we should come back to the ultimate aim
of the development of the fuzzy sets theory: to simulate human capabilities in handing words.
This is why in applications the operations ∪, ∩ and ∼are usually interpreted as representing
the computational semantics of the respective logical connectives in natural languages, AND,
OR and NOT. So, we will examine the RWS-interpretability of the operations of the standard
fuzzy set algebra based on the real-world semantics of the connectives AND, OR and NOT.

There are two main reasons that show that FA can not be RWS-interpretable.

1) A methodological reason present in the fuzzy set framework. Let us consider the vari-
able HIGH of people of a community and the meaning of the sentence “he is ‘Tall OR
Rather tall’”. The semantics of this sentence must be considered in the context of the word-
expressions of the word-domain of HIGH, LDom(HIGH). Assume that the standard fuzzy set
algebra defined on the universe U of HIGH is FA= (F (U), ∪, ∩, ∼). In principle, to simulate
human capabilities in handling linguistic words, the fuzzy set based semantics of the words
of LDom(HIGH) is defined by an interpretation mapping = : LDom(HIGH) → FA in such
a way that = can convey the RW-semantics of the own worlds of HIGH and of the linguistic
expressions, say ‘Tall OR Rather tall ’, to the structure of the fuzzy set algebra FA, with
its own formalism, which closely depends on the nature of the computational objects (fuzzy
sets, here) and the way one can manipulate the fuzzy sets in the fuzzy set algebra FA, i.e.
it closely depends on the computational structure of FA. Mathematically, it can easily be
seen that

Figure 4. The union of the two given fuzzy sets of variable HIGH

Proposition 2. As LDom(HIGH) is finite, while F (U) is innumerable and even of continuum
power, there does not exist an interpretation mapping = from LDom(HIGH) into F (U) that
can maintain the relationships that characterize the structure of LDom(HIGH), noting that
the operations of FA are defined in the whole F (U).

Proof. If = can preserve the relationships of LDom(HIGH), the set =(LDom(HIGH)) ⊆ F (U)
must be closed with respect to the connectives (i.e. operations) defined on LDom(HIGH).
However, the fuzzy set operations cannot be defined in the finite set =(LDom(HIGH)) of
fuzzy sets associated with the words in LDom(HIGH). For example, the union of the two
fuzzy sets A and B defined in the whole F (U) is represented by the dashed line in the Fig. 4,
which is formed by just segments of the border lines of A and B. The semantics of the words-
expression “wA AND wB”, where the words wA and wB are assigned respectively to A and B,
means that it is an expression which dominates the both wA and wB. So, the interpretation
mapping preserves these relationships only when A ∪Bbelongs to =(LDom(HIGH)), which
in general is impossible.

2) A methodological reason on standpoint of the RWS-approach. First, we adopt an assump-
tion that we deal with only variables with numeric linear universe and hence the word-
domains of their linguistic variables are linearly ordered. So, their respective HAs are also
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linear.

In Section 2, it is shown by Proposition 1 that the HA AX HIGH is RWS-interpretable.
That is there exists an interpretation mapping =HIGH from LDom(HIGH) into the underly-
ing set of AX HIGH , which implies that =HIGH(wA AND wB) = =HIGH(wA)∨=HIGH(wB),
where ∨ is joint operation defined in the order-based structure AX HIGH . Since AX HIGH is
RWS-interpretable, = preserves the relationships between words of LDom(HIGH), the ex-
pression =HIGH(wA)∨=HIGH(wB) represents the semantics of the word-expression “wA AND
wB”. As AX HIGH is linear, =HIGH(wA) ∨ =HIGH(wB) = max{=HIGH(wA), =HIGH(wB)}
and it represents the RW-semantics of the expression “wA AND wB”. Since as mentioned
above, the fuzzy sets A and Bassociated with respectively the word wA and wB, but
A∪B /∈{A, B}, which is not compatible with =HIGH(wA)∨=HIGH(wB) = max{=HIGH(wA),
=HIGH(wB)} which represents the RW-semantics of “wA AND wB”. This asserts that the
standard fuzzy set algebra FA is not RWS-interpretable.

4.1.2. A discussion of the RWS-interpretability of Mamdani fuzzy reasoning
method

In Mamdani fuzzy reasoning method which is denoted by ARMMmd, its fuzzy rule base
(FRB), B consists of n rules of a similar form as in (1), but at the positions of the words
xjk’s are fuzzy set f(xjk)’s assigned to the words denoted also by xjk’s

(B) IF X1L is f(x1,k)& . . . &XmL is xmi,k, THEN X(m+1)L is x(m+1),k, for k = 1 to n (4)

Note that, in the fuzzy set framework, linguistic words are only linguistic labels intuitively
assigned by human user to the fuzzy sets under consideration. They do not play any role
in formally handling their associated fuzzy sets. So, there is no formal basis to connect the
designed fuzzy sets with their assigned words.

Table 1. Simplified FRB for the actuator on the 1th-storey

Figure 5. Computational representation of the rules r1 and r15 of the LRB B given in Tab. 1

Let us consider an FRB, B, given in Tab. 1, consisting of 9 fuzzy rules, that is simplified
from the one having 25 rules given in [3]. The fuzzy sets associated with linguistic labels
are represented in Fig. 5 which are plotted similarly as in [3] with a note that in practice
the linguistic labels under consideration are not required to be present in the FRB B. The
constructed fuzzy sets associated with the linguistic labels absent in B contribute to define
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the desired fuzzy-set-based semantics of all the linguistic words under consideration. It
is observed that it describes a linguistic function whose linguistic labels of the linguistic
variable UL increasingly depend on the linguistic labels of every input linguistic variable
X1L or Ẋ1L. Since, by our hypothesis, every human language is RWS-interpretable, the
given FRB B describes a RW-function u = f(x1, ẋ1) which is also increasingly dependent
on every variable x1 or ẋ1, when regarding U , X1 and Ẋ1 as RW-variables. This discovered
increasing dependence must be considered as a constraint on any applied to the given B.

The ARMMmd can be described as follows:

• Construct fuzzy sets associated with the linguistic labels of every linguistic variable
appearing in the given FRB. Assume that they are constructed as shown in Fig. 5,
which represents a fuzzy rule r1 formulated by “IF X is PS & Ẋ is PS THEN U is
PM”, where the linguistic labels of r1 are bolded in the figure. The 8 remaining fuzzy
rules are represented in a similar way.

• For every numeric input vector, say (a1, b1), it fires the antecedent components of a
given rule under consideration, say r1 in Fig. 5, and this rule produces a numeric
output calculated in the following way: Denote by µX,PS and µẊ,PS the membership

functions of the fuzzy sets associated, respectively, with PS of X and with PS of Ẋ.
The values a1 and b1 of the input vector (a1, b1) fire respectively the fuzzy set with
µX,PS and the one with µẊ,PS . The firing degrees are respectively µẊ,PS(a1) and
µẊ,PS(b1). The smaller firing degree among them is µX,PS(a1) which is conveyed to
cut the fuzzy set µU,PM of U on the right side of r1at the level µX,PS(a1) and, in this
way, the rule r1 produces an output fuzzy set A1U (a1, b1).

Similarly, the input vector fires (a1, b1) also the rules rj of the given by Tab. 1, for j
= 1 to 8, and rj produces a fuzzy set output, denoted by AjU (a1, b1), for j = 1 to 8.
It should make a note that a1 fires also the fuzzy set of PB, but there is no rule in B
that has PB in its antecedent.

• The output fuzzy set AU,(a1, b1) produced from the FRB B and from the input vector
(a1, b1) is defined by AU,B(a1, b1) =

⋃
1≤j≤15AjU (a1, b1). Its corresponding numeric

output of (a1, b1), denoted by u1,(a1, b1), is determined by the centroid defuzzification
method applied to AU,B(a1, b1).

To answer the question that whether ARMMmd is RWS-interpretable, we prove the fol-
lowing.

Theorem 1. Mamdani’s method ARMMmd is not RWS-interpretable.

Proof. Since any ARM has to be applied to any FRBs, to prove that ARMMmd is not RWS-
interpretable, it is required that it does not satisfy constraint (3) in Def. 3 when it is run
on a monotonic FRB, say the given B in Tab. 1. To verify this, let us consider two input
vectors v1 = (a1, b1) and v2 = (a2, b2), whose component values are located as shown in
Fig. 5. It is observed that they satisfy the inequality v1¡v2 and, since the values a1and a2
cannot fire the fuzzy sets of N and Z (their firing degrees are zero) and the same for the
values b1 and b2.

So, only the 9th-rule, PSX& PSẊ ⇒PM, is fired and its output fuzzy sets with the
inputs v1 and v2 are, respectively, A1U and A2U , as plotted in Fig. 5. Note that the high of
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the trapezoid A1U , denoted by h(A1U ), is greater than the high h(A1U ),h(A1U ) > h(A1U ).
These imply that the out numeric values of v1 and v2 are equal and the condition (3) is not
satisfied. Therefore, Mamdani’s method ARMMmd is not RWS-interpretable, by Def. 3.

4.2. Discuss the RWS-interpretability of graphic representation of LRBs and
of the interpolation reasoning HA-based method

A question arising is whether there exists an RWS-interpretable ARM? In principle, this
problem depends also on the RWS-interpretability of the theories/methodologies based on
which ARMs are constructed. Since it is a complex problem, in this study we are restricted in
the concrete question saying that are there a computational representation of the FRB B and
an ARM which are RWS-interpretable? In this section, we will follow the HA approach to
the inherent order-based semantics of words and the inherent semantic structures of word-
domains of variables. The computational semantics of the words of a word-domain of a
variable is developed based on a principle that the inherent order-based semantics of words
does determine their computational semantics. Since this approach establishes a formalism to
immediately handle the variable words, we use the terminology linguistic rules (or, linguistic
rule bases (LRBs)) instead of fuzzy rules (or, fuzzy rule bases (FRBs) to emphasize this
linguistic characteristic.

There are three basic quantitative semantics of the words of every variable X, which
are defined closely to each other: the fuzziness measure, the fuzziness intervals (as being
the interval-semantics) and the semantically quantifying mapping (SQM) of the variable
word-domain which is uniquely determined by giving the numeric values of the independent
fuzziness parameters of the variable. The SQM-values of the words are called the numeric
word semantics. However, in this section, we utilize only SQMs which are characterized by
the properties that they are order isomorphisms, i.e. they preserve the order relationships
between the words, and their images of their corresponding variable domains are dense in the
respective variable reference domains.

4.2.1. RWS-interpretable computational representation of B

On the mathematical point of view, when word-domains are formalized to become math-
structures, every linguistic rule of the form given in (4) can be considered as a point in the
respective linguistic (m+1)-dimensional Cartesian space. So, every given LRB of the form
(4) can be considered as modeling a linguistic function of m variables going through these n
points, called graphic representation of (4). Then, an interpolation ARM to work with the
given LRB can be developed as follows:

• For every variable Xj , j = 1, . . . ,m + 1, construct a HA AX whose primary/atom
words and hedges are compatible with the given LRB.

• Provide the fuzziness parameter values for each Xj based on human user experience and
establish the SQM fj which maps the words appearing in the LRB into the normalized
reference domain [0, 1]. Then, n linguistic points mapped into n points in the Euclid
space [0, 1]m+1, which are regarded as determining a numeric graph going through
these points that simulates the above linguistic function.
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• Since the established SQMs are order isomorphisms, such a numeric graph can be
considered as being similar to the linguistic graph defined by the given LRB B in
terms of the semantic order relations of each individual linguistic variable.

It is worth emphasizing that this function interpreted as a computational representation
of B is compatible with the RW-function between the respective RW-variables described by
the given LRB B in terms of monotonic relationships between variables. At the same time,
it is also compatible with the numeric function which models the same above RW-function
in terms of the relationships between the respective numeric variables of the aforementioned
RW-variables. This is a specific, important and useful feature of the proposed graphic rep-
resentation of LRBs

This is a formal basis to suggest us to apply a numeric interpolation method on this
graphic representation of LRBs which is a numeric function graph in the space [0, 1]m+1.

4.2.2. A linear interpolative ARM developed to work on the graphical repre-
sentation of LRB

Applying this interpolation ARM to the LRB B given in Tab. 1, since B describes an
increasingly monotonic linguistic function of two dimensions, its graph can be represented
as in Fig. 6 which also simulates an increasingly monotonic numeric function going through
9 points in [0, 1]3 whose minimal value is located at (0.18, 0.18) and the maximal one
is located at (0.73, 0.73). An ARM proposed here is developed based on ordinary linear
interpolation on this graphical representation by establishing linear equations representing
triangular sections [1] plotted in Fig. 6. Obviously, these linear equations represents linear
dependences of U on the input variables x and ẋ and, hence, the ordinary linear interpolation
method ensures that the developed ARM satisfies the condition (3) of Def. 3. That is, it is
RWS-interpretable.

5. CONCLUSIONS

The RWS-approach to the interpretability of FSysts for the first time proposed in [8] is
quite novel and it is necessary to discussed with more details. It is argued in that paper
that while the RW-semantics of the theories in mathematics and physics is very essential,
though it is not explicitly declared, for applying these theories in applications and they are
WRS-interpretable, in the fuzzy set framework the interpretability of methods or theories
in this sense is still not under consideration. Methodologically, the RWS-interpretability of
a formal theory is a distinguished characteristic to ensure that the behavior of a method
developed based on this theory to solve a RW-problem can interact with its RW-counterpart
properly as human expectation. This shows the important role of this concept and, thus, it
is an indispensable characteristic of FSysts.

Motivated by this discussion and analysis, in this study, we aim first to more generally
and clearly discuss and analyze that the RWS-interpretability is a necessary and general
concept not only for FSysts, but also for any symbolic languages, theories, methods, . . . ,
including ordinary basic theories of math or physics and event for social-economic theories.
The RWS-interpretabilities of the two basic concepts, the LRB-Rep methods and ARMs are
more exactly formalized.
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Restricted to the fuzzy linguistic environment, we show that

(i) It is initially proved that the fuzzy set theory involves fundamental parts which are
not RWS-interpretable, e.g. the standard fuzzy sets algebra or fuzzy reasoning meth-
ods, while the theory of hedge algebras and their quantification theory are RWS-
interpretable, similarly as math-theories.

(i) Meanwhile, the graphic representation of LRBs and ARM developed based on linear
interpolation are proved to be RWS-interpretable.
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