Higgs Mass Constraint on a Low Scale SUSY Model

Tran Minh Hieu, Nguyen Thu Huong, Trieu Quynh Trang

Abstract


Randal-Sundrum models have an interesting feature that an effective physical scale can be generated from a much larger one of the underlying theory. In this paper, we investigate a model of supersymmetry in the Randall-Sundrum spacetime with a low cutoff scale. Due to the warp factor, the Kaluza-Klein scale is warped down to \(\mathcal{O}\)(100) TeV. With the MSSM superfields living in the bulk, the soft SUSY breaking terms of the 4D effective theory are derived from the original 5D Lagrangian by integrating out the extra-dimension. We examine the constraint of the Higgs boson mass measurement on the model. As a result, the viable parameter space with the ability to reproduce a 125 GeV Higgs mass is identified. The constraint rules out parameter regions with the stop masses larger than 20 TeV. Therefore, the parameter space of the model can be explored in a future 100 TeV collider.

Keywords


Higgs boson; supersymmetry; Randall-Sundrum; extra-dimension

Full Text:

PDF


DOI: https://doi.org/10.15625/0868-3166/26/4/9117

Refbacks

  • There are currently no refbacks.


Editorial Office:

Communications in Physics

1st Floor, A16 Building, 18B Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam

Tel: (+84) 024 3791 7102 

Email: cip@vjs.ac.vn

Copyright by